Evaluation of the Comparative Activity of Alcohol-Based Hand Sanitizers and Toilet Soaps against some Bacterial Isolates

By Enwa Felix O, Anie Clement O, Oghenejobo Micheal & Ilaya Sonia A

Delta State University, Nigeria

Abstract- This study is aimed at comparing the activity of alcohol based hand sanitizers (Dettol® and Lovillea®) and toilet soaps (Lux® and Premier®) against bacterial isolates. The activity of Dettol® and Lovillea® was compared with the activity of Lux® and Premier® toilet soaps against the bacterial isolates (Staphylococcus aureus, Staphylococcus epidermidis, Streptococcus specie and Shigella specie) obtained from the palms of some individuals in Abraka, Delta state. Susceptibility of the bacterial isolates was evaluated using the agar well diffusion method by measuring the zones of inhibition observed after 24 hours of incubation. Their minimum inhibitory concentrations (MIC) were also determined using the agar dilution technique. Dettol® hand sanitizer had the highest zones of inhibition (5mm, 5mm and 3mm) against Staph aureus, Staph epidermis and Shigella specie respectively.

Keywords: sanitizers, toilet soaps, hand washing, bacterial.

GJSFR-C Classification : FOR Code: 069999
Evaluation of the Comparative Activity of Alcohol-Based Hand Sanitizers and Toilet Soaps against some Bacterial Isolates

Enwa Felix O*, Anie Clement O*, Oghenejobo Micheal p & Ilaya Sonia A°

Abstract—This study is aimed at comparing the activity of alcohol based hand sanitizers (Dettol® and Lovillea®) and toilet soaps (Lux® and Premier®) against bacterial isolates. The activity of Dettol® and Lovillea® was compared with the activity of Lux® and Premier® toilet soaps against the bacterial isolates (Staphylococcus aureus, Staphylococcus epidermidis, Streptococcus specie and Shigella specie) obtained from the palms of some individuals in Abraka, Delta state. Susceptibility of the bacterial isolates was evaluated using the agar well diffusion technique. Dettol® hand sanitizer had the highest zones of inhibition (5mm, 5mm and 3mm) against Staph aureus, Staph epidermidis and Shigella specie respectively. Both soaps had no activity against Gram negative Shigella specie. Dettol® antiseptic was used as control and it gave zones of inhibition (36mm, 45mm, 35mm and 50mm) against Shigella specie, Streptococcus specie, Staph aureus, and Staph epidermidis respectively. For the MIC; the hand sanitizers inhibited all four organisms at 2ml, Premier® soap had MIC of 5mg/ml against Staph epidermidis while Lux® soap had MIC of 5mg/ml against Staph epidermidis and Streptococcus specie. The result revealed the efficacy of the antiseptic (control), hand sanitizers and soaps in descending order as follows; Antiseptic > Hand sanitizers > soaps. The use of soaps for hand hygiene appeared to be less efficacious against Gram negative organisms. However, both hand sanitizers and soaps can be used as effective measures to control the spread of diseases.

Keywords: sanitizers, toilet soaps, hand washing, bacterial.

1. INTRODUCTION

Hand washing is one of the most important steps to avoid spreading germs. Germs are microorganisms such as bacteria and viruses that may lead to harmful diseases. They can live on the skin, mouth, intestines and breathing passages. They can enter the body through openings such as the nose, mouth and also through breaks in the skin. Today, hygiene is associated with disease prevention and health promotion, and the importance of hygiene is universally recognized and evidence based. Physical contact between people and between people and objects is a key vehicle for the transmission of pathogens. Therefore, effective hand hygiene is a key intervention in disease prevention (Aiello et al, 2008). It is an integral procedure in the health care environment with healthcare workers receiving regular training about hand hygiene procedures (Hilburn et al; 2008, Johnson et al 2005, Harrington et al 2007). In the community outside of the healthcare environment, studies have reported association between improvements in hand hygiene and reduction in rates of infectious disease (Mello et al, 2007). It is estimated that simple hand washing could save one million lives a year (Curtis and Cairncross; 2003, WHO; 2000), many public health campaigns worldwide have addressed “hand hygiene with varying success” (Erasmus et al 2010, Pittet et al, 2009).

Bacteria are a tiny group of unicellular microorganisms. They can be classified into two groups, namely Gram Negative and Gram Positive organisms. An example of a Gram negative organism is Escherichia Coli; this type of bacteria is shaped like tiny pink rods and is found in raw meat or in the intestine of healthy humans and animals. Staphylococcus is an example of gram positive organisms; these are purple and clustered like Grapes. There are many types of Staphylococcus such as Staph. aureus and Staph. epidermidis. Staph. aureus colonizes mainly in the nasal passages while Staph. epidermidis is an occupant of the skin. Bacteria are found almost everywhere in environment such as air, soil, water, sewage, human body, wounds, and other solid surfaces (Hurst et al, 2009). Although some are beneficial in the human body, others are not and may cause problems (Rolli and Jenner 1998). When pathogens or opportunistic microorganisms gain access into the body, they can cause infectious diseases, induce antigen-antibody reactions, mix with the normal flora and also may form bio-films (Macowiak, 1982).

Studies on the effectiveness of hand sanitizers have been somewhat conflicting. Some findings suggest that sanitizers are actually better than normal hand washing at killing micro-organisms while others have discovered that hand washing is still superior. The research indicates that there are many variable that would be causing these discrepancies. First of all, the concentration of alcohol – based sanitizers needs to be at least 60% to be effective. Alcohol based sanitizers at
this concentration or higher are very effective at killing microbes but the alcohol evaporates quickly on the hands and may not be present on the skin long enough for adequate protection. As a result, unless the product can maintain high alcohol concentrations for a long period of time, it is probably not effective as regular hand washing hence, the center for disease control advises using warm water, working the soap into a lather and rubbing it for at least 20 seconds. However, hand washing with soap removes the body’s own fatty acid from the skin, which may result in cracked skin that provides an entry portal for pathogens (Cagatak et al., 1998, Winnefield et al., 2000). Also, high quality hand disinfectants contain additional skin care products like emollients. They also do not require the use of water which makes the application easy and uncomplicated.

II. Objectives of the Study

- To isolate potential pathogenic bacteria such as Staphylococcus aureus, Staphylococcus epidermidis, Streptococcus specie and Shigella specie from the palms of individuals within Abraka, Delta state.
- To compare the activity of two different alcohol-based hand sanitizers (Dettol® and Lovillea®) and two different toilet soaps (Premier® and Lux®) commonly sold in Abraka, Delta state against the organisms isolated.

a) Significance of the Study

This study serves to broaden the knowledge of the general public on the effect of hand sanitizers and toilet soaps against microorganisms for effective hand hygiene which is a key intervention in disease prevention.

Furthermore, the knowledge might encourage manufacturers of these products in ensuring better compliance to good manufacturing procedures.

b) Scope of the study

The study covers comparison of the effects of two alcohol-based hand sanitizers and two toilet soaps commonly found in Abraka, Delta State.

c) Limitation of the Study

This study was targeted on comparing the effects of some selected hand sanitizers and soaps against isolated bacteria species from the palms of individuals. The toxic effect of these products on the human skin was not determined.

d) Objectives of the Study

- To isolate potential pathogenic bacteria such as Staphylococcus aureus, Staphylococcus epidermidis, Streptococcus specie and Shigella specie from the palms of individuals within Abraka, Delta state.
- To compare the activity of two different alcohol-based hand sanitizers (Dettol® and Lovillea®) and two different toilet soaps (Premier® and Lux®) commonly sold in Abraka, Delta state against the organisms isolated.

e) Significance of the Study

This study serves to broaden the knowledge of the general public on the effect of hand sanitizers and toilet soaps against microorganisms for effective hand hygiene which is a key intervention in disease prevention.

Furthermore, the knowledge might encourage manufacturers of these products in ensuring better compliance to good manufacturing procedures.

f) Scope of the study

The study covers comparison of the effects of two alcohol-based hand sanitizers and two toilet soaps commonly found in Abraka, Delta State.

g) Limitation of the Study

This study was targeted on comparing the effects of some selected hand sanitizers and soaps against isolated bacteria species from the palms of individuals. The toxic effect of these products on the human skin was not determined.

III. Materials and Methods

a) Collection of the Different Alcohol-Based hand Sanitizers and Toilet Soaps

Two commonly used alcohol-based hand sanitizers commercially sold were purchased. One of the sanitizers was purchased from a pharmacy while the other was purchased from a supermarket, both in Abraka, Delta state Nigeria. The toilet soaps used were also purchased from a supermarket in Abraka. The alcohol-based hand sanitizers bought are; Dettol® and Lovillea® alcohol-based hand sanitizer while the toilet soaps bought are; Premier® soap and Lux® soap.

b) Culture media

The culture media used in the study include: Nutrient agar (Fluka, Germany), Macconkey Agar (Himedia India), Peptone water (Himedia India), Nutrient broth (San. Diego USA), Mueller Hinton Agar (Titan Biotech, India), Mannitol salt Agar (Titan Boitech, India).

c) Specimen

Swab from palms of both hands.

d) Reagents and chemicals used

Ethanol (BOH, India), crystal violet (Avishkar, Germany), Safranine (Avis, Germany), Iogol’s Iodine (Brema, Nigeria), Hydrogen peroxide, sugars (Glucose, Lactose and Sucrose).

e) Alcohol – based hand sanitizers

- Dettol® (Reckitt Benckiser)
- Lovillea® (PT Mandon, Indonesia)
f) Toilet Soaps
 • Premier® (Pz cussons Nigeria Plc. Nigeria)
 • Lux® (Unilever Nigeria Plc, ogun state)

g) Microbial Cultures
 Staphylococcus aureus, Staphylococcus epidermidis, Streptococcus specie, Shigella specie.

h) Sample collection of bacterial isolate
 Samples were obtained from individuals within Abraka, Delta state. The samples were obtained from the palms of both hands of the individuals using a sterile cotton swab. The swab specimens were then transported immediately to the laboratory for handling and analysis. The swab sticks containing the samples were aseptically streaked in different Nutrient Agar plates, after which the plates were incubated at 37°C for 24 hours. After incubation, distinct colonies were observed on fifty-eight Nutrient agar plates. The distinct colony found on each plate was then inoculated in separate nutrient agar slants prepared in McCartney bottles and incubated at 37°C for 24 hours. Thereafter, growth was observed on all the fifty-eight nutrient agar slants and the slants were properly stored for subsequent studies.

i) Characterization Based on Colony Morphology and physiology
 i. Macroscopic Identification of Colonies
 The organism identified in the course of this study were Staphylococcus aureus, Staphylococcus epidermidis, Streptococcus species and Shigella specie.

j) Biochemical Tests and Other Identification Tests
 The following biochemical tests were carried out to confirm the identified organisms. The tests include;
 • Catalase test.
 • Coagulase test
 • Indole test
 • Fermentation test

k) Bacterial susceptibility to alcohol-based hand sanitizers and soaps
 Muller-Hinton Agar was prepared according to manufacturer’s specifications, sterilized, cooled, 20mls each poured into eight sterile petri dishes and kept for 45 minutes in order to allow it solidify. Thereafter, the test organisms were aseptically inoculated into four different properly labelled petri dishes containing already solidified Muller Hinton agar by using different sterile swab sticks to pick the organisms from prepared overnight broth and streaking the organisms all over the petri dishes. This procedure was carried out using another four properly labeled petri dishes which served as duplicate for the experiment.
 A 5mm cork borer was used to bore holes in the solidified agar on each petri dish. Using a 2ml syringe, few drops each of the hand sanitizers, 10mg/ml solution of the soaps, and Dettol® antiseptic (used as control) was added to their respective holes in the petri dish. After 5 minutes, all the petri dishes were carefully packed with a masking tape and transferred into the incubator for 24 hours at 37°C. Zones of inhibition were observed and recorded after 24 hours.

l) Determination of minimum inhibitory Concentration
 The determination of the minimum inhibitory concentration of the soaps was carried out to determine the lowest concentration of the soaps that can inhibit the visible growth of the test organisms (Staphylococcus aureus, Staphylococcus epidermidis, Streptococcus specie and Shigella specie) after 24 hours of incubation. The agar dilution technique was used and it involves the following process. Firstly, 19ml of sterilized Muller Hinton agar was poured with 1ml of each dilutions of the soaps (Lux® and Premier® soaps) into eight different petri dishes and allowed to solidify. Four of the petri-dishes contained 1ml each of the several dilutions (10mg/ml, 5mg/ml, 2.5mg/ml and 1.25mg/ml) of one soap (Premier®) plus 19ml each of the sterilized Muller Hinton agar while the other four petri-dishes contained 1ml each of several dilutions (10mg/ml, 5mg/ml, 2.5mg/ml and 1.25mg/ml) of the other soap (Lux®) plus 19mls each of the sterilized Muller Hinton agar. Therefore, the test organism were streaked onto the different properly labelled plates seeded with the soap solutions using a blunted wire loop. The plates were packed with a Masking tape and incubated at a temperature of 37°C for 24 hours. After 24 hours incubation, the least concentrations of each of the soaps that inhibited the test organisms were taken as the minimum inhibitory concentration.

 For the alcohol-based hand sanitizers, different volumes of the hand sanitizers were tested to know if increased volumes of hand sanitizers enhance their effectiveness. Firstly, 19.8ml, 19.5ml, 19ml, 18.5ml and 18ml of sterilized Muller Hinton agar was poured with 0.2ml, 0.5ml, 1ml, 1.5ml and 2ml respectively of the two different alcohol-based hand sanitizers being tested into ten different petri-dishes. Five of the petri-dishes contained different volumes (0.2ml, 0.5ml, 1ml, 1.5ml and 2ml) of one alcohol based hand sanitizer (Dettol®) plus corresponding volumes of sterilized Muller Hinton agar while the other five petri-dishes contained different volumes (0.2ml, 0.5ml, 1ml, 1.5ml and 2ml) of one alcohol based hand sanitizer (Dettol®) plus corresponding volumes of the sterilized Muller Hinton agar. The mixture on each of the petri dishes was swirled gently and allowed to solidify. Thereafter, the test organisms were aseptically streaked onto the different prepared plates seeded with the alcohol based hand sanitizers using a flamed wire loop and then incubated at 37°C for 24 hours. After 24 hours of incubation, the least volume the hand sanitizers that inhibited the growth of the test organisms was observed and tabulated.
IV. Result and Discussion

Table 3: Effect of hand sanitizers and soaps against bacterial isolates

<table>
<thead>
<tr>
<th>Test organism</th>
<th>Dettol®</th>
<th>Lovillea®</th>
<th>Lux® 10mg/ml</th>
<th>Premier® 10mg/ml</th>
<th>Dettol® antiseptic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Staph. aureus</td>
<td>5</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>35</td>
</tr>
<tr>
<td>Staph. Epidemidis</td>
<td>5</td>
<td>4</td>
<td>5</td>
<td>2</td>
<td>50</td>
</tr>
<tr>
<td>Streptococcus spp.</td>
<td>2</td>
<td>5</td>
<td>6</td>
<td>5</td>
<td>45</td>
</tr>
<tr>
<td>Shigella specie</td>
<td>3</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>36</td>
</tr>
</tbody>
</table>

Key: Zone of inhibition in millimeter (mm)
(-) sign represents no visible zone of inhibition

Table 4: Minimum inhibitory concentrations (MIC) of the hand sanitizers and soaps

Table 4a: MIC of Dettol® hand sanitizer

<table>
<thead>
<tr>
<th>Test organisms</th>
<th>0.2ml</th>
<th>0.5ml</th>
<th>1ml</th>
<th>1.5ml</th>
<th>2ml</th>
</tr>
</thead>
<tbody>
<tr>
<td>Staph. aureus</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>Staph. epidermidis</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Streptococcus spp.</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>Shigella specie</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
</tr>
</tbody>
</table>

Table 4b: MIC of Lovillea® Hand Sanitizer

<table>
<thead>
<tr>
<th>Test organisms</th>
<th>0.2ml</th>
<th>0.5ml</th>
<th>1ml</th>
<th>1.5ml</th>
<th>2ml</th>
</tr>
</thead>
<tbody>
<tr>
<td>Staph. aureus</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>Staph. epidermidis</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Streptococcus spp.</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>Shigella specie</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
</tr>
</tbody>
</table>

Table 4c: MIC of Lux® Soap

<table>
<thead>
<tr>
<th>Test organisms</th>
<th>10mg/ml</th>
<th>5mg/ml</th>
<th>2.5mg/ml</th>
<th>1.25mg/ml</th>
</tr>
</thead>
<tbody>
<tr>
<td>Staph. aureus</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Staph. epidermidis</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Streptococcus spp.</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Shigella specie</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>

Table 4d: MIC of Premier® Soap

<table>
<thead>
<tr>
<th>Test organisms</th>
<th>10mg/ml</th>
<th>5mg/ml</th>
<th>2.5mg/ml</th>
<th>1.25mg/ml</th>
</tr>
</thead>
<tbody>
<tr>
<td>Staph. aureus</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Staph. epidermidis</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Streptococcus spp.</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Shigella specie</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>

Key: (-) sign indicates no growth (inhibition)
(+) sign indicates growth (no inhibition)
V. Discussion

Two alcohol based hand sanitizers (Dettol® and Lovillea®) and two toilet soaps (Lux® and Premier® at 10mg/ml) were tested against four isolated bacterial species. Based on the data obtained from table 3, Dettol® had the highest zones of inhibition i.e. 5mm, 5mm, and 3mm against Staph. ylococcus aureus, Staph. ylococcus epidermidis and Shigella specie respectively, with a zone of inhibition (2mm) against Streptococcus specie. Lovillea® hand sanitizer had zones of inhibition (3mm, 4mm, 5mm and 2mm) against Staph. aureus, Staph. epidermidis, Streptococcus specie and Shigella specie respectively. For the soaps, Lux® soap had the highest zone of inhibition (6mm) against Streptococcus specie, with zones of inhibition; 2mm and 5mm against Staph. aureus and Staph. epidermidis respectively but there was no zone of inhibition for Shigella specie. Premier® soap had the lowest zone of inhibition i.e. 2mm against Staph. aureus and Staph. epidermidis, with a zone of 5mm against Streptococcus specie and no zone of inhibition against Shigella specie. Comparing the activity of the hand sanitizers and toilet soaps, three bacterial isolates (Staph. aureus, Staph. epidermidis and Shigella specie) were more susceptible to Dettol® hand sanitizer while Streptococcus specie was more susceptible to Lux® soap and least susceptible to Dettol®. Furthermore, Premier® soap had the least activity against Staph. aureus and Staph. epidermidis. The soaps had no effect against gram negative Shigella specie which indicates that the hand sanitizers were more effective than the toilet soaps against gram negative Shigella specie. The result also shows that Shigella specie is the most resistant amongst the isolated bacterial species, this is because it displayed the least zones of inhibition to the hand sanitizers and it was the only organism that displayed resistance to the soaps tested. Streptococcus specie and Staph. ylococcus epidermidis displayed the highest margin of susceptibility. From the data obtained from the determination of the minimum inhibitory concentration as shown in table 4 above, Shigella specie was the most resistant bacteria because it was not inhibited by any of the soaps and was only inhibited by the hand sanitizers at the highest volume of 2ml. Lux® soap had MIC value at 5mg/ml against Staph. epidermidis and Streptococcus specie while Premier® soap had MIC value at 5mg/ml against Staph. epidermidis only. Lovillea® hand sanitizer inhibited Staph. ylococcus epidermidis only at a lower volume of 1ml while all four organisms were inhibited by the two alcohol based hand sanitizers (Lovillea® and Dettol®) at a volume of 2ml. The most susceptible organism inhibited by the hand sanitizers and soaps (at lower concentrations) was Staph. ylococcus epidermidis.

VI. Conclusion

Hand washing is one of the most important steps to avoid spreading germs. Germs can live on the skin, mouth, intestines etc. and can enter the body through openings such as the nose, mouth, and also through breaks in the skin. Today, hygiene is associated with disease prevention and health promotion. Therefore, effective hand hygiene is a key intervention in disease prevention (Aiello et al., 2008). The study revealed that Staph. ylococcus aureus, Staph. ylococcus epidermidis, Streptococcus species and Shigella specie are present on the hands of humans. The result also revealed better efficacy of the alcohol based hand sanitizers in comparison to the toilet soaps because all four bacterial isolates were susceptible to them; with Dettol hand sanitizer having better activity against more bacterial isolates. Also, the soaps had no effect against Gram negative Shigella specie which makes them less efficacious. However, the activity of the hand sanitizers against the bacterial isolates was poor compared to that of the antiseptic which was used as control. Therefore, there is need to confirm the concentration of alcohol in hand sanitizers sold in order to verify the 99.9% germ killing ability of these products as claimed by the manufacturers.

The efficacy of alcohol based hand sanitizer is affected by several factors such as the type, concentration and volume of alcohol used, the contact time, (CDC, 2002), the test method (in vivo and invitro), target organisms and matrix. (Liu et al., 2010.)

VII. Recommendation

The outbreak of epidemic infections such as Ebola hemorrhagic fever (caused by the Ebola virus), HIV, Diarrhea, etc., some of which are highly infectious and can be easily transmitted through infected hands calls for the need to evaluate the effect of antimicrobials such as hand sanitizers as well as soaps commonly used for hand washing. The use soap and water only for hand hygiene can be effective if there is availability of clean water but if not, hand sanitizers are preferable because they are rinse free and as a result, do not require water. However, when hands are visibly dirty, hand sanitizers are not as effective as soap for cleansing. Hence, if hands are visibly dirty, effective hand hygiene can be achieved by first washing hands with soap and water after which hand sanitizers can be used but if not, hand sanitizers are preferably used alone. Furthermore, manufacturers and regulatory authorities should enforce stringent quality control measures during production and routine inspection to ensure the efficacy of these products. Finally, sanitation as a means of proper hygiene is essential for good health benefits for social and economic developmental purposes.
Evaluation of the Comparative Activity of Alcohol-Based Hand Sanitizers and Toilet Soaps against Some Bacterial Isolates

References Références Referencias

4. Boyce John M, Pittet Didier (October 25, 2002) “Guideline for hand hygiene in healthcare settings, Recommendations of the healthcare infection control practices advisory committee and the

47. University of Virginia caralier daily. March 26, Research shows hand sanitizers more effected against cold.

