Global Journal of Science Frontier Research: F

Quasi-Hadamard Product of Certain Starlike and Convex Functions

By H. E. Darwish, A. Y. Lashin \& A. N. Alnayyef
Mansoura University Mansoura, Egypt

Abstract- In this paper, we establish certain results concerning the quasi-Hadmard product for two classes related to starlike and convex univalent functions with respect to symmetric points.

Keywords: starlike and convex functions with respect to symmetric points, quasi-hadamard product.

GJSFR-F Classification : MSC 2010: 30C45

Strictly as per the compliance and regulations of :

Quasi-Hadamard Product of Certain Starlike and Convex Functions

H. E. Darwish ${ }^{\alpha}$, A. Y. Lashin ${ }^{\circ}$ \& A. N. Alnayyef ${ }^{\rho}$

Abstract- In this paper, we establish certain results concerning the quasi-Hadmard product for two classes related to starlike and convex univalent functions with respect to symmetric points.
Keywords: starlike and convex functions with respect to symmetric points, quasi-hadamard product.

I. Introduction

Throughout this paper, let S denote of the functions of the form :

$$
\begin{array}{cl}
\mathcal{F}(z)=a_{1} z-\sum_{k=2}^{\infty} a_{k} z^{k} & \left(a_{1}>0, a_{k} \geq 0\right), \\
\mathcal{F}_{r}(z)=a_{1, r} z-\sum_{k=2}^{\infty} a_{k, r} z^{k} & \left(r \in \mathbb{N}, a_{1, r}>0, a_{k, r} \geq 0\right), \\
\breve{g}(z)=b_{1} z-\sum_{k=2}^{\infty} b_{k} z^{k} & \left(b_{1}>0, b_{k} \geq 0\right) \tag{1.3}
\end{array}
$$

and

$$
\begin{equation*}
\breve{g}_{j}(z)=b_{1, j} z-\sum_{k=2}^{\infty} b_{k, j} z^{k} \quad\left(j \in \mathbb{N}, b_{1, j}>0, b_{k, j} \geq 0\right) \tag{1.4}
\end{equation*}
$$

which are analytic in the unit disc $U=\{z:|z|<1\}$.
Let S^{\star} be the subclass of functions S consisting of starlike functions in U. It is well known that $\mathcal{F} \in S^{*}$ if and only if

$$
\begin{equation*}
\operatorname{Re}\left\{\frac{z \mathcal{F}^{\prime}(z)}{\mathcal{F}(z)}\right\}>0, \quad(z \in U) \tag{1.5}
\end{equation*}
$$

[^0]and C^{\star} be the subclass of functions S consisting of convex functions in U. It is well known that $\mathcal{F} \in C^{\star}$ if and only if
\[

$$
\begin{equation*}
\operatorname{Re}\left\{1+\frac{z \mathcal{F}^{\prime \prime}(z)}{\mathcal{F}^{\prime}(z)}\right\}>0, \quad(z \in U) \tag{1.6}
\end{equation*}
$$

\]

Let S_{s}^{\star} be the subclass of S consisting of functions of the form (1.1) satisfying

$$
\begin{equation*}
\operatorname{Re}\left\{\frac{z \mathcal{F}^{\prime}(z)}{\mathcal{F}(z)-\mathcal{F}(-z)}\right\}>0, \quad(z \in U) . \tag{1.7}
\end{equation*}
$$

These functions are called starlike with respect to symmetric points and were introduced by Sakaguchi [10] (see also Robertson [9] , Stankiewics [12] Wu [14] and Owa et al. [5]).

In [13], Sudharsan et al. introduced the class $S_{s}^{\star}(\alpha, \beta)$ consisting of functions of the form (1.1) and satisfying the following condition (see also [11])

$$
\begin{equation*}
\left|\frac{z \mathcal{F}^{\prime}(z)}{\mathcal{F}(z)-\mathcal{F}(-z)}-1\right|<\beta\left|\alpha \frac{z \mathcal{F}^{\prime}(z)}{\mathcal{F}(z)-\mathcal{F}(-z)}+1\right| \tag{1.8}
\end{equation*}
$$

for some $0 \leq \alpha \leq 1,0<\beta \leq 1$ and $z \in U$.
Let $S_{c}^{\star}(\alpha, \beta)$ denote the class of function $\mathcal{F}(z)$ of the from (1.1) for which $z \mathcal{F}^{\prime} \in S_{s}^{\star}(\alpha, \beta)$.

By using the same technique of Sudharsan et al. [13] and Aouf et al. [1], we get the following theorem.
Theorem 1. Let the function $\mathcal{F}(z)$ defined by (1.1). Then
(i) $\mathcal{F}(z) \in S_{s}^{\star}(\alpha, \beta)$ if and only if

$$
\begin{equation*}
\sum_{k=2}^{\infty}\left[(1+\alpha \beta) k+(\beta-1)\left[1-(-1)^{k}\right] a_{k, r}\right] \leq[\beta(2+\alpha)-1] a_{1, r} \tag{1.9}
\end{equation*}
$$

where $0 \leq \alpha \leq 1,0<\beta \leq 1,0 \leq \frac{2(1-\beta)}{1+\alpha \beta}<1$ and $z \in U$.
(ii) $\mathcal{F}(z) \in S_{c}^{\star}(\alpha, \beta)$ if and only if

$$
\begin{equation*}
\sum_{k=2}^{\infty} k\left[(1+\alpha \beta) k+(\beta-1)\left[1-(-1)^{k}\right] a_{k, r}\right] \leq[\beta(2+\alpha)-1] a_{1, r} \tag{1.10}
\end{equation*}
$$

where $0 \leq \alpha \leq 1,0<\beta \leq 1,0 \leq \frac{2(1-\beta)}{1+\alpha \beta}<1$ and $z \in U$.
(iii) $\mathcal{F}(z) \in S_{s, h}^{\star}(\alpha, \beta)$ if and only if

$$
\begin{equation*}
\sum_{k=2}^{\infty} k^{h}\left\{(1+\alpha \beta) k+(\beta-1)\left[1-(-1)^{k}\right]\right\} a_{k, r} \leq[\beta(2+\alpha)-1] a_{1, r} \tag{1.11}
\end{equation*}
$$

where $0 \leq \alpha \leq 1,0<\beta \leq 1,0 \leq \frac{-}{1+\alpha \beta}<1$ and $z \in U$. Where h is an nonnegative real number.

We note that for every nonnegative real number h, the class $S_{s, h}^{\star}(\alpha, \beta)$ is nonempty as the functions of the from

$$
\begin{equation*}
\mathcal{F}(z)=a_{1} z-\sum_{k=2}^{\infty} \frac{\beta(2+\alpha)-1}{k^{h}\left[(1+\alpha \beta) k+(\beta-1)\left[1-(-1)^{k}\right]\right]} a_{1} \lambda_{k} z^{k} \tag{1.12}
\end{equation*}
$$

where $a_{1}>0, \lambda_{k} \geq 0$, and $\sum_{k=2}^{\infty} \lambda_{k} \leq 0$, satisfy the inequality (1.12). It is evident that $S_{1}^{\star}(\alpha, \beta) \equiv S_{c}^{\star}(\alpha, \beta)$ and, for $c=0, S_{c}^{\star}(\alpha, \beta)$ is identical to $S_{0}^{\star}(\alpha, \beta)$. Further, $S_{c}^{\star}(\alpha, \beta) \subset S_{k}^{\star}(\alpha, \beta)$ if $c>k$, the containment being proper. Hence, for any positive integer c, the inclusion relation

$$
S_{c}^{\star}(\alpha, \beta) \subset S_{c-1}^{\star}(\alpha, \beta) \subset \ldots \subset S_{2}^{\star}(\alpha, \beta) \subset S_{c}^{\star}(\alpha, \beta) \subset S_{s}^{\star}(\alpha, \beta)
$$

The quasi-Hadamard product of two or more functions has recently been defined and used by Owa $[6,7,8]$, Kumar $[2,3,4]$ and others. Accordingly, the quasi-Hadamard product of two functions $\mathcal{F}(z)$ and $\breve{g}(z)$ is given by

$$
\mathcal{F} * \breve{g}(z)=a_{1} b_{1} z-\sum_{k=2}^{\infty} a_{k} b_{k} z^{k}
$$

iI. The Main Theorems

Theorem 2. A functions $\mathcal{F}_{i}(z)$ defined by (1.2) in the class $S_{c}^{\star}(\alpha, \beta)$ for each $r=1,2, \ldots, u$.Then we get the quasi-Hadamard product $\mathcal{F}_{1} *$

$$
\mathcal{F}_{2} * \ldots * \mathcal{F} u(z) \in S_{2(u-1)+1}^{\star}(\alpha, \beta) .
$$

Proof. To prove the theorem, we need to show that

$$
\begin{equation*}
\sum_{k=2}^{\infty} k^{2(u-1)+1}\left\{(1+\alpha \beta) k+(\beta-1)\left[1-(-1)^{k}\right]\right\} \Pi_{r=1}^{m} a_{k, r} \leq[\beta(2+\alpha)-1] a_{1, r} \tag{2.1}
\end{equation*}
$$

Since $\mathcal{F}_{r}(z) \in S_{c}^{\star}(\alpha, \beta)$, we have

$$
\begin{equation*}
\sum_{k=2}^{\infty} k\left\{(1+\alpha \beta) k+(\beta-1)\left[1-(-1)^{k}\right]\right\} a_{k, r} \leq[\beta(2+\alpha)-1] a_{1, r} \tag{2.2}
\end{equation*}
$$

for each $r=1,2, \ldots, u$. Therefore,

$$
k\left\{(1+\alpha \beta) k+(\beta-1)\left[1-(-1)^{k}\right] a_{k, r}\right\} \leq[\beta(2+\alpha)-1] a_{1, r}
$$

or

$$
a_{k, r} \leq\left\{\frac{[\beta(2+\alpha)-1]}{k\left((1+\alpha \beta) k+(\beta-1)\left[1-(-1)^{k}\right]\right)}\right\} a_{1, r}
$$

for each $r=1,2, \ldots, u$. The right-hand expression of this last inequality is not greater then $k^{-2} a_{1, r .}$. Hence

$$
\begin{equation*}
a_{k, r} \leq k^{-2} a_{1, r} \tag{2.3}
\end{equation*}
$$

for each $r=1,2, \ldots, u$.
By (2.3) for each $r=1,2, \ldots, u-1$, and (2.2) for $r=u$, we get

$$
\begin{gathered}
\sum_{k=2}^{\infty} k^{2(u-1)+1}\left\{(1+\alpha \beta) k+(\beta-1)\left[1-(-1)^{k}\right]\right\} \Pi_{r=1}^{u} a_{k, r} \\
\leq\left\{k^{2(u-1)+1}\left[(1+\alpha \beta) k+(\beta-1)\left[1-(-1)^{k}\right] k^{-2(u-1)} \Pi_{r=1}^{u-1} a_{1, r}\right] a_{k, u}\right\}
\end{gathered}
$$

$$
\begin{aligned}
& =\left[\Pi_{r=1}^{u-1} a_{1, r}\right] \sum_{k=2}^{\infty}\left\{k\left[(1+\alpha \beta) k+(\beta-1)\left[1-(-1)^{k}\right] a_{k, u}\right]\right\} \\
& \leq[\beta(2+\alpha)-1]\left[\Pi_{r=1}^{u} a_{1, r}\right]
\end{aligned}
$$

Hence $\mathcal{F}_{1} * \mathcal{F}_{2} * \ldots * \mathcal{F}_{u}(z) \in S_{2(u-1)+1}^{\star}(\alpha, \beta)$. This completes the proof of Theorem 2.

Theorem 3. A functions $\mathcal{F}_{r}(z)$ defined by (1.2) in the class $S_{s}^{\star}(\alpha, \beta)$ for each $r=1,2, \ldots, u$. Then we get the quasi-Hadamard product $\mathcal{F}_{1} *$

$$
\mathcal{F}_{2} * \ldots * \mathcal{F}_{u}(z) \in S_{(u-1)}^{\star}(\alpha, \beta) .
$$

Proof. Using $\mathcal{F}_{r}(z) \in S_{s}^{\star}(\alpha, \beta)$, we have

$$
\begin{equation*}
\sum_{k=2}^{\infty}\left[(1+\alpha \beta) k+(\beta-1)\left[1-(-1)^{k}\right] a_{k, r}\right] \leq[\beta(2+\alpha)-1] a_{1, r} \tag{2.4}
\end{equation*}
$$

for each $r=1,2, \ldots, u$. Therefore,

$$
a_{k, r} \leq\left\{\frac{[\beta(2+\alpha)-1]}{(1+\alpha \beta) k+(\beta-1)\left[1-(-1)^{k}\right]}\right\} a_{1, r}
$$

and hence

$$
\begin{equation*}
a_{k, r} \leq k^{-1} a_{1, r} \tag{2.5}
\end{equation*}
$$

for every $r=1,2, \ldots, u$.
By (2.5) for $r=1,2, \ldots, u-1$, and (2.4) for $r=u$, we get

$$
\sum_{k=2}^{\infty}\left\{k^{(u-1)}\left[(1+\alpha \beta) k+(\beta-1)\left[1-(-1)^{k}\right] \Pi_{r=1}^{u} a_{k, r}\right]\right\}
$$

$$
\begin{aligned}
\leq \sum_{k=2}^{\infty} & \left\{k^{(u-1)}\left[(1+\alpha \beta) k+(\beta-1)\left[1-(-1)^{k}\right]\left[k^{-(u-1)} \Pi_{r=1}^{u-1} a_{1, i}\right]\right] a_{k, u}\right\} \\
& =\left[\prod_{r=1}^{u-1} a_{1, r}\right] \sum_{k=2}^{\infty}\left\{\left[(1+\alpha \beta) k+(\beta-1)\left[1-(-1)^{k}\right]\right] a_{k, u}\right\} \\
& \leq[\beta(2+\alpha)-1]\left[\prod_{r=1}^{u} a_{1, r}\right]
\end{aligned}
$$

Hence $\mathcal{F}_{1} * \mathcal{F}_{2} * \ldots * \mathcal{F}_{u}(z) \in S_{(u-1)}^{\star}(\alpha, \beta)$. This completes the proof of Theorem 3.

Theorem 4. A functions $\mathcal{F} r(z)$ defined by (1.2) in the class $S_{c}^{\star}(\alpha, \beta)$ for each $r=1,2, \ldots, u$; and the functions $\breve{g}_{j}(z)$ in the class $S_{s}^{\star}(\alpha, \beta)$ for every $j=1,2, \ldots, q$. Then we get the Hadamard product $\mathcal{F}_{1} * \mathcal{F}_{2} * \ldots *$ $\mathcal{F}_{u} * \breve{g}_{1} * \breve{g}_{2} * \ldots * \breve{g}_{q}(z) \in S_{2 u+q-1}^{\star}(\alpha, \beta)$.

Proof. We denote the quasi-Hadamard product $\mathcal{F}_{1} * \mathcal{F}_{2} * \ldots * \mathcal{F}_{u} * \breve{g}_{1} *$ $\breve{g}_{2} * \ldots * \breve{g}_{q}(z)$ by the function $h(z)$, for the sake of the convenience.

Clearly,

$$
h(z)=\left[\Pi_{r=1}^{u} a_{1, i} \cdot \Pi_{j=1}^{q} b_{1, j}\right] z-\sum_{k=2}^{\infty}\left[\Pi_{r=1}^{u} a_{k, r} . \Pi_{j=1}^{q} b_{k, j}\right] z^{k} .
$$

To prove the theorem, we need to show that

$$
\begin{gather*}
\sum_{k=2}^{\infty}\left\{(k)^{2 u+q-1}\left[(1+\alpha \beta) k+(\beta-1)\left(1-(-1)^{k}\right)\right]\left[\Pi_{r=1}^{u} a_{k, r} \cdot \Pi_{j=1}^{q} b_{k, j}\right]\right\} \\
\leq[\beta(2+\alpha)-1]\left(\Pi_{r=1}^{u} a_{1, r} \cdot \Pi_{j=1}^{q} b_{1, j}\right) \tag{2.6}
\end{gather*}
$$

Since $\mathcal{F}_{r}(z) \in S_{c}^{\star}(\alpha, \beta)$, the inequalities (2.2) and (2.3) hold for every $r=1,2, \ldots, u$. Further, since $\breve{g}_{j}(z) \in S_{s}^{\star}(\alpha, \beta)$, we have

$$
\begin{equation*}
\sum_{k=2}^{\infty}\left[(1+\alpha \beta) k+(\beta-1)\left[1-(-1)^{k}\right] b_{k, r}\right] \leq[\beta(2+\alpha)-1] b_{1, r} \tag{2.7}
\end{equation*}
$$

for each $j=1,2, \ldots, q$. Whence we obtain

$$
\begin{equation*}
b_{k, j} \leq k^{-1} b_{1, j} \tag{2.8}
\end{equation*}
$$

for each $j=1,2, \ldots, q$.
By (2.3) for $r=1,2, \ldots, u,(2.8)$ for $j=1,2, \ldots, q-1$, and (2.7) for $j=q$, we get

$$
\sum_{k=2}^{\infty}\left\{k^{2 u+q-1}[(1+\alpha \beta) k+(\beta-1)]\left[1-(-1)^{k}\right]\left[\Pi_{r=1}^{u} a_{k, r} . \Pi_{j=1}^{q} b_{k, j}\right]\right\}
$$

$$
\begin{aligned}
\leq & \sum_{k=2}^{\infty}\left\{k^{2 u+q-1}\left[(1+\alpha \beta) k+(\beta-1)\left(1-(-1)^{k}\right)\right]\right\} \\
& \times k^{-u(2)}\left(\Pi_{r=1}^{u} a_{1, r} \cdot \Pi_{j=1}^{q} b_{k, j}\right) \\
\leq & \sum_{k=2}^{\infty}\left\{k^{-2 u-(q-1)}\left[(1+\alpha \beta) k+(\beta-1)\left(1-(-1)^{k}\right)\right]\right\} \\
& \times\left[k^{-2 u} \cdot k^{-(q-1)} \Pi_{r=1}^{u} a_{1, r} \cdot \Pi_{j=1}^{q-1} b_{1, j}\right] b_{k, q} \\
= & {\left[\Pi_{r=1}^{u} a_{1, r} \cdot \Pi_{j=1}^{q-1} b_{1, j}\right] \sum_{k=2}^{\infty}\left[(1+\alpha \beta) k+(\beta-1)\left(1-(-1)^{k}\right)\right] b_{k, q} } \\
\leq & {[\beta(2+\alpha)-1]\left[\Pi_{r=1}^{u} a_{1, r} . \Pi_{j=1}^{q-1} b_{1, j}\right] . }
\end{aligned}
$$

Hence $h(z) \in S_{2 u+q-1}^{\star}(\alpha, \beta)$. This completes the proof of Theorem 4.

References Références Referencias

1. M. K. Aouf, R. M. El-Ashwah and S. M. El-Deeb, Certain classes of univalent functions with negative coeff cients and n-starlike with respect to certain points; Math. vesnik. 62 (3) (2010), 215-226.
2. V. Kumar, Hadamard product of certain starlike functions, J. Math. Anal. Appl. 110 (1985), 425-428.
3. V. Kumar, Hadamard product of certain starlike functions II, J. Math. Anal. Appl. 113 (1986) 230-234.
4. V. Kumar, Quasi-Hadamard product of certain univalent function, J. Math. Anal. Appl. 126 (1987) 70-77.
5. S. Owa, Z. Wu and F. Ren, A note on certain subclass of Sakaguchin functions, Bull. Soc. Roy. Liege 57 (1988), 143-150.
6. S. Owa, On the classes of univalent functions with negative coeffcients, Math. Japon. 27(4) (1982) 409-416.
7. S. Owa, On the starlike functions of order α and type β, Math. Japon. 27 (6) (1982)723-735.
8. S. Owa, On the Hadamard product of univalent functions, Tamkang J. Math. 14 (1983)15-21.
9. M. S. Robertson, Applications of the subordination principle to univalent functions, Pacific J. Math. 11(1961), 315-324.
10. K. Sakaguchi, On certain univalent mapping, J. Math. Soc. Japen. 11 (1959),72-75.
11. J. Sokol, Some remarks on the class of functtions starlike with respect to symmetric points, Folia Scient. Univ. Tech. Resoviensis 73 (1990), 79-89.
12. J. Stankiewicz, Some remarks on functions starlike with respect to symmetric points, Ann. Univ. Marie Curie Sklodowska 19 (1965), 53-59.
13. T. V. Sudharsan, P. Balasubrahmmanayam and K. G. Subramanian, On functions starlike with respect to symmetric and conjugate points, Taiwanese J. Math. 2 (1998), 57-68.
14. Z. Wu, On class of Sakaguchi functions and Hadamard products, Sci. Sinica Ser. A 30 (1987), 128-135.

[^0]: Author $\alpha \sigma \rho$: Department of Mathematics Faculty of Science, Mansoura University Mansoura, 35516, Egypt.
 e-mails: darwish333@yahoo.com, aylashin@mans.edu.eg, ahmed.nabeel36@yahoo.com

