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H. R. Ghate α & Sanjay A. Salve σ

Some Dust Cosmological Models with Time 
Dependent Λ(t ) in Creation Field Cosmology

Abstract- We have studied the Hoyle-Narlikar’s Creation-field 
cosmology for LRS Bianchi type-II, LRS Bianchi type-VI0, Plane 
Symmetric and Kantowski-Sachs universes with time 
dependent cosmological constant )(tΛ , when the universe is 
filled with dust distribution. To get deterministic model of the 
universe, a relation between shear )(σ and expansion )(θ is 
assumed. The physical aspects of the models are also 
discussed.
Keywords: Creation-field cosmology, Cosmological 
constant )(tΛ .

I. Introduction

osmology is the scientific study of origin, 
evolution, large scale structures & dynamics of 
the universe. It involves the formation of theories 

or hypothesis about the universe which makes specific 
predictions for phenomenon. These predictions can be 
tested with observations.  Einstein’s theory of general 
relativity is a very successful gravitational theory in 
describing the gravitational phenomena which also 
served as a basis for the models of the universe. All the 
investigations dealing with physical process are 
successfully explained by Einstein’s field equations 
based big-bang model. The phenomenon of expanding 
universe, Primordial nucleo synthesis & the observed 
isotropy of Comic Microwave Background Radiations 
(CMBR) are important observations in astronomy which 
were successfully explained the big-bang model. This 
model is described by FRW line element and a matter 
density source which obeys equation of state p3=ρ , 
where p and ρ are the fluid pressure and matter 
density respectively. But this model has various 
problems like; singularity in the past and may possibly in 
the future; no remarkable predictions in the big-bang 
model that explain the origin, evolution and 
characteristic of structures in the universe ; the 
conservation of the energy is violated; the flatness and 
horizon problem explanations given from big-bang 
model of the universe. 

However Smoot et al. [1] revealed that the 
astronomical predictions of the FRW type of models do 
not always exactly meet our expectations. The 

theoretical explanations given from big -bang type model
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were contradicted by some puzzling results
regarding the red-shifts from extra-galactic objects. 
The gravitational collapse of massive objects is an 
unavoidable consequence of general relativity [2-3]. 
Also CMBR discovery did not prove it to be an outcome 
of big-bang theory. Therefore alternative theories of 
gravitation were proposed time to time to overcome the 
drawbacks of big-bang model. Bondi & Gold [4] 
proposed a steady state theory in which the universe 
does not have any singular beginning or an end on the 
cosmic time scale where the matter density is 
throughout constant. Also they state that the statistical 
properties of the large scale features of the universe do 
not change. Further the constancy of mass density has 
been accounted by continuous creation of matter going 
on in contrast to the one time infinite and explosive 
creation of matter at   0=t as in earlier standard model. 
But the principle of conservation of matter was violated 
in this formalism. This difficulty was overcome by Hoyle 
& Narlikar [5-7] by adopting a field theoretical approach 
and introducing a massless & chargeless scalar field C 
in the Einstein-Hilbert action to explain creation of 
matter. In Hoyle-Narlikar C-field theory there is no big-
bang type singularity as in steady state theory by Bondi 
& Gold. Narlikar [8] has shown that the matter creation 
is accomplished at the expense of negative energy C-
field in which he solves horizon and flatness problem 
faced by big-bang model. Narlikar & Padmanabhan [9] 
have obtained a solution of Einstein field equations 
admitting radiation with a negative energy massless 
scalar field C. In fact Narlikar et al. [10] have proved the 
possibilities of non-relic interpretation of CMBR. 
Chatterjee & Banerjee [11] have investigated higher 
dimensional cosmology in C-field theory. Singh & 
Chaubey [12] have studied Bianchi type I, III, V, VI0 and 
Kantowski-Sachs universes in C-field Cosmology. Adhav 
et al. [13-14] have investigated higher dimensional 
Bianchi Type VI0 and Bianchi type-I string cosmological 
models in Creation field cosmology. Katore [15] has 
studied plane symmetric universe in C-field cosmology. 
Recently Patil et al. [16] have obtained Bianchi type-IX 
dust filled universe with ideal fluid distribution in Creation 
field theory. 

Einstein's basic cosmological model was a 
static, homogeneous with spherical geometry. Since at 
that time universe was not known to be expanding, it is 
considered as the gravitational effect of matter caused 
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Here ρ is the energy density of massive 
particles and p is the pressure. iv are co-moving four 

acceleration in the model. In 1917, Einstein introduced a 
cosmological constant Λ in his equation as the 
universal repulsion or anti-gravity effect to make the 
universe static in accordance with generally accepted 
picture of that time. Hubble showed that the universe 
was expanding by his study about nearby galaxies. 
Then Einstein regretted modifying his elegant theory and 
viewed the cosmological constant as his greatest 
mistake. Recent cosmological observations by the High-
Z Supernovae Team and Supernovae Cosmological 
Project [17-25] suggest the existence of a positive 
cosmological constant Λ with the magnitude 

1233 10)/( −≈Λ cG . Zel’dovich [26] has tried to 
visualize the meaning of cosmological constant from the 
theory of elementary particles. Bergmann [27] has 
interpreted the cosmological constant Λ in terms of 
Higgs scalar field. In quantum field theory, the 
cosmological constant is considered as the vacuum 
energy density. Linde [28] had shown that the 
cosmological term arises from spontaneous symmetry 
breaking and also suggested that the cosmological term 
is not a constant but a function of temperature. Dolgo 
has [29-30] focused that cosmological constant remains 
constant in the absence of any interaction with matter 
and radiation. Pavon [31] have studied model with 
cosmological constant problem as the discrepancy
between the negligible value for the present universe. 

Glashow-Salam-Weinberg model [33] expected 5010
larger value whereas grand unified theory [34] expected 

10710 larger value whereas of cosmological constant.
Bertolami [35] was the first who consider cosmological 
models with a variable cosmological constant of the 
form 2~ −Λ t . Berman and Som [36] have shown that 

2~ −Λ t plays a very important role in cosmology. Chen 
and Wu [37] have also solved the problem by 

considering 2~ −Λ R , where R is the scale factor in 
the Robertson-Walker space time. Carvalho et al. [38] 
generalized the proposed model of Chen and Wu by 

including a term proportional to 
2H on the time 

dependence ofΛ . Overduin [39] considered the 

assumptions 2~ −Λ t and 2~ −Λ H in FRW models 
and shows there compability with various observations. 
At the same time cosmologist viz. Olson et al. [40], 
Gasperini [41], Pebbles & Ratra [42], Abdel Rahman 
[43], Maia et al. [44], Silveira et al. [45], Moffat [46], 
Torres et al. [47], Abdussattar & Vishwakarma [48], 
Hoyle et al. [49], Podariu et al. [50] and many other 
authors had shown that cosmological term decays with 
time. Carmeli & Kuzmenko [51] have shown that 
cosmological relativistic theory predicts the value of 
cosmological constant 23510934.1 −−×=Λ s . Recent 

observations indicate that 25610~ −−Λ cm but the 

theory of physics of elementary particles predicts that 
the value of Λ must have been 12010 times larger in 
the past. It is worth noting that cosmological models 
based on Einstein field equations with a time-dependent 
cosmological constant Λ had been the subject of 
numerous papers in recent years. Several attempts have 
made by many researchers viz. Lui & Wesson [52], 
Cunha et al. [53], Carneiro et al. [54], Pradhan et al. 
[55], Singh et al. [56], Katore et al. [57], Tiwari et al.[58], 
Dwivedi [59] and Amirhashchi & Mohamadian [60] in 
the favor of time dependent 2~ −Λ t in different 
contexts. Bali et al. [61-62] have investigated Bianchi 
type III & FRW cosmological models with varying Λ in 
Creation field cosmology. Rahman & Ansari [63] 
obtained some new LRS Bianchi type-I bulk viscous 
cosmological models with decaying Λ -term. Recently 
Ghate et al. [64-66] have studied cosmological models 
with varying )(tΛ in creation field theory of gravitation.

In this paper, we have investigated LRS Bianchi 
type-II (LRS B-II), LRS Bianchi type-VI0 (LRS B-VI0), Plane 
Symmetric (PS) and Kantowsaki-Sachs (K-S) space-
times with varying cosmological constant )(tΛ in 
creation field theory of gravitation. To obtain solution, a 
relation between shear )(σ and expansion )(θ is 
assumed. This work is organized as follows. In Section 
2, Hoyle-Narlikar creation field theory is briefly 
discussed. An exact solution of field equations for LRS 
B-II, LRS B-VI0, PS & K-S spaces-times have been 
obtained in section 3, 4, 5 & 6 respectively. The physical 
aspects of the anisotropic models have been discussed 
in section 7, while in Section 8, concluding remarks have 
been expressed.

II. Hoyle-Narlikar Theory

Hoyle and Narlikar [5-7] have modified Einstein 
field equations through the introduction of a massless 
scalar field usually called Creation field viz. C-field. The 
modified field equations are
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has negative value (i.e. 000 <T ), the C-
field has negative energy density producing repulsive 
gravitational field which causes the expansion of the 
universe. Thus the energy conservation law reduces to
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i.e.

 

the matter creation through a non-zero left hand side 
is possible while conserving the overall energy and 
momentum.

 

The above equation is identical with 
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which

 

indicates the 4-momentum of the created particle 
is compensated by 4-momentum of the C-field. In order 
to maintain the balance, the C-field must have negative 
energy. 

 

Further the C-field satisfies the source equation
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ρ   is the homogeneous mass density.

 

The conservation equation for C-field is given by
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where H

 

is Hubble parameter.

 
III.

 

LRS

 

Bianchi

 

Type-

 

Model

 
We consider homogeneous LRS Bianchi-II 

metric in the form of
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where metric potentials A , B are functions of  time t only
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It is assumed that Creation field C

 

is a function 
of time t only
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The Hoyle-Narlikar field equations (2.1) with the 

help of equations (2.2) and (2.3) for the metric (3.1) 
given by
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 where overhead dot )(. denotes differentiation with 
respect to time t . 

The conservation equation (2.7) leads to
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being isotropic pressure.

 
Following Hoyle and Narlikar, we have taken

0=p , for the dust distribution. The source equation of 

C-field
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for large r. Thus
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& 1=C , equations (3.3)-(3.5) lead to
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The field equations (3.7)-(3.9) is a system of 

three equations with four unknown parameters A , B , ρ
 and Λ . To find the deterministic solution of the field 

equations, we need one extra condition. We assume 
that the shear scalar )(σ is

 
proportional to expansion 

scalar )(θ which leads to (Collins et al. [67])
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where n is arbitrary constant.
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)

)

velocities which obeys the relation 1=jivv , 0=αv , 

3,2,1=α . 0>f is the coupling constant between 

matter and creation field and ii dx
dCC = .

The physical quantities in cosmology are the 
mean anisotropy parameter )(∆ and the deceleration 
parameter )(q are defined as

II
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From equations (3.8) and (3.9), we get 
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.                (3.11)

Using equations (3.10) and (3.11), we have
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To get the deterministic value of A , Let )(AFA = .

which implies FFA ′= , where
dA
dFF =′ .              (3.13)

With the help of equation (3.13), equation (3.12) 
reduces to
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Integrating equation (3.14), we get
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The constant of integration has taken to be zero 
for simplicity.

Using )(AFA = and solving equation (3.15), we get
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where 2C is a constant of integration.
Simplifying equation (3.16), we get 
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Using equation (3.17), equation (3.10) leads to
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Substituting equations (3.17) & (3.18) in 
equation (3.9), we have
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where  kGf =π4 .

Using equations (3.17), (3.18) and (3.19) in 
equation (3.7), we get
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Thus using equations (3.17) & (3.18) in metric 
(3.1), the cosmological model is given by
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Using equations (3.17), (3.18), (3.19) and (3.20) 
in equation (3.6), we have
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On integration, equation (3.22) reduces to

                                      1=C ,              (3.23)

which leads to

                                     1btC += ,                        (3.24)

where  1b is a constant of integration. 

The value 1=C , So obtained agrees with the 
value used in the source equation. Thus Creation field 
C is proportional to time t .

The physical parameters such as the spatial 
volume )(V , the mean anisotropic parameter )(∆ and 

the deceleration parameter )(q are defined as

                                 

n
n

batV −
+

+= 2
2

)( ,               (3.25)

                        

2

2
12 








+
−

=∆
n
n =Constant,              (3.26)

      
)2(
)1(4

+
−

−=
n
nq =Constant, where  10 << n .    (3.27)

Here  0>q , for 10 << n .

IV. LRS Bianchi Type-VI0 Model

We consider the LRS Bianchi type VI0 metric in 
the form of

      ( )222222222 dzedyeBdxAdtds xx +−−= −              (4.1)

where metric potentials A , B are functions of  time t only 

and
2ABg =− .

It is assumed that Creation field C is a function 
of time t only

i.e. )(),( tCtxC = and  ),,,( pppdiagT i
j

m −−−= ρ (4.2)
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The Hoyle-Narlikar field equations (2.1), with the 
help of equations (2.2) and (2.3) for the metric (4.1) 
given by
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where overhead do t )(. denotes differentiation with 
respect to time t .
The conservation equation (2.7) leads to
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where p being isotropic pressure.

Following Hoyle and Narlikar, we have taken

0=p , for the dust distribution. The source equation of 

C-field 
f
nC j

i =; leads to tC = for large r. Thus 1=C .

Using 0=p & 1=C , equations (4.3)-(4.5) lead to
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The field equations (4.7)-(4.9) is a system of 
three equations with four unknown parameters A , B , ρ
and Λ . To find the deterministic solution of the field 
equations, we need one extra condition. We assume 
that the shear scalar )(σ is proportional to expansion 

scalar )(θ which leads to (Collins et al. [67])

                                     
nBA = ,              (4.10)

where n is arbitrary constant.
From equations (4.8) and (4.9), we get
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Using equations (4.10) and (4.11), we have
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To get the deterministic value ofB , Let )(BFB = ,

which implies FFB ′= , where
dB
dFF =′ . (4.13)

With the help of equation (4.13), equation (4.12) 
reduces to
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Integrating equation (4.14), we get
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The constant of integration has taken to be zero 
for simplicity.
Using )(BFB = and solving equation (4.15), we get
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where 2C is constant of integration.
Simplifying equation (4.16), we get 
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1−

=
n
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Using equation (4.17), equation (4.10) leads to
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equation (4.8), we have

                       

k
batn
nnaa

−
+

+−
=Λ 22

222

)(
23

,               (4.19)

where kGf =π4 .
Using equations (4.17), (4.18) and (4.19) in 

equation (4.7), we get

          
k

batn
nnaaG 2

)(
2428 22

222
+

+
−+−

=ρπ .              (4.20)

as  22
111
nna

−= .

Thus using equations (4.17) & (4.18) in metric 
(4.1), the cosmological model is given by

( )2222
2

2222 )()( dzedyebatdxbatdtds xxn ++−+−= − .

              

(4.21)

Using equations (4.17), (4.18), (4.19) and (4.20) 
in equation (4.6), we have
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+






 +=
















+






 ++

bat
a

n
C

bat
a

n
C

dt
d 212212 22  . (4.22)

On integration of equation (4.22), we get

                                      1=C ,               (4.23)

which leads to

                       2btC += ,                                (4.24)

where 2b is a constant of integration.

The value 1=C , So obtained agrees with the 
value used in the source equation. Thus creation field C 
is proportional to time t .

The physical parameters such as the spatial 
volume )(V , the mean anisotropic parameter )(∆ and 

the deceleration parameter )(q are defined as

                              
nbatV
21

)(
+

+= ,                         (4.25)

                            

2

2
12 







+
−

=∆
n
n ,                 (4.26)

                         
)2(
)1(2

+
−

=
n
nq , where 1>n .            (4.27)

Here  0>q , for 1>n .

V. Plane Symmetric Universe

We consider the plane symmetric metric in the form of

             ( ) 2222222 dzBdydxAdtds −+−= ,              (5.1)

where metric potentials A , B are functions  of time t only

and BAg 2=− .
It is assumed that creation field C is a function 

of time t only i.e. )(),( tCtxC = and 

                       ),,,( pppdiagT ij
m −−−= ρ

.                   (5.2)

The Hoyle-Narlikar field equations (2.1), with the 
help of equations (2.2) and (2.3) for the metric (5.1) 
given by

         
Λ+






 −=+ 2

2

2

2
182 Cfg

AB
BA

A
A 


ρπ ,              (5.3)

         Λ+





 +−=++ 2

2
18 CfpG

AB
BA

B
B

A
A 


π ,    (5.4)

            Λ+





 +−=+ 2

2

2

2
182 CfpG

A
A

A
A 


π ,               (5.5)

where overhead dot )(. denotes differentiation with 
respect to time t .
The conservation equation (2.7) leads to

GfB
B

A
A

ff
C

B
B

A
AC

dt
d

π
ρρ

4
22222 22 Λ

+







++=








++




 ,(5.6)

             
where p being isotropic pressure.

Following Hoyle and Narlikar, we have taken

0=p , for the dust distribution. The source equation of 

C-field 
f
nC j

i =; leads to tC = for large r. Thus 1=C .

Using 0=p & 1=C , equations (5.3)-(5.5) lead to 

                 

Λ+−=+ GfG
AB
BA

A
A πρπ 4822

2 
,    (5.7)

                 

Λ+=++ Gf
AB
BA

B
B

A
A π4


,               (5.8)

                   
Λ+=+ Gf

A
A

A
A π42 2


.    (5.9)

The field equations (5.7)-(5.9) is a system of 
three equations with four unknown parameters A , B , ρ
and Λ . To find the deterministic solution of the field 
equations, we need one extra condition. We assume 
that the shear scalar )(σ is proportional to expansion 

scalar )(θ which leads to (Collins et al. [67])

                                       
nAB = ,                (5.10)

wheren is a arbitrary constant.
From equations (5.8) and (5.9), we get

                   
02

2
=−+−

A
A

AB
BA

A
A

B
B 

. (5.11)

Using equations (5.10) and (5.11), we have

                       
( ) 0122

2
=++

A
AnA


 . (5.12)

To get the deterministic value of A , Let )(AFA = ,

which implies FFA ′= , where
dA
dFF =′ . (5.13)

With the help of equation (5.13), equation (5.12) 
reduces to

                        

( ) 012 2
2

=
+

+ F
A
n

dA
dF

. (5.14)

Integrating equation (5.14), we get
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 A
)

)

           

2

)1(2

2
12 






== + dt
dA

A
kF n ,           (5.15)

where 2
1k is the constant of integration.

Using )(AFA = and solving equation (5.15), we get

               ( )( )[ ] 2
1

212 +++= nktknA , (5.16)

where 2k is constant of integration.
Simplifying equation (5.16), we get 

                          
( ) 2

1
++= nbatA ,        (5.17)

where ( ) 12 kna += , ( ) 22 knb += and 0>n & 
1≠n .

Using equation (5.17), equation (5.10) leads to

                
2)( ++= n
n

batB .               (5.18)

Substituting equations (5.17) & (5.18) in 
equation (5.9), we have

                     

( )
( )

k
batn

an
−

++
+

−=Λ 22

2

)(2
12 , (5.19)

where kGf =π4 .
Using equations (5.17), (5.18) and (5.19) in 

equation (5.7), we get

             

( )
( )

k
batn
anG 2

)(2
2)12(8 22

2
+

++
+

=ρπ .              (5.20)

Thus, using equations (5.17) & (5.18) in metric 
(5.1), the cosmological model is given by

( ) ( ) ( ) 22
2

222
2

22 dzbatdydxbatdtds n
n

n ++ +−++−= . (5.21)

Using equations (5.17), (5.18), (5.19) and (5.20) 
in equation (5.6), we have

      
















+
=
















+
+

bat
aC

bat
aC

dt
d 22 22  .              (5.22)

On integration, equation (5.22) reduces to

                                               1=C ,    (5.23)

which leads to

                                       3btC += ,              (5.24)

where 3b is a constant of integration.

The value 1=C , So obtained agrees with the 
value used in the source equation. Thus creation field C
is proportional to time t .

The physical parameters such as the spatial 
volume )(V , the mean anisotropic parameter )(∆ and 

the deceleration parameter )(q are defined as

                       )( batV += ,       (5.25)

2

2
12 







+
−

=∆
n
n

=Constant, where 1&0 ≠> nn     (5.26)

                               
2=q .           (5.27)

VI. Kantoski-Sachs Universe

We consider the Kantowski-Sachs metric in the 
form of

  ( )22222222 sin φθθ ddBdrAdtds +−−= ,         (6.1)

where metric potentials A , B are functions of  time t
only and θsin2ABg =− .

It is assumed that creation field C is a function 
of time t only 

i.e. )(),( tCtrC =   and  ),,,( pppdiagT i
j

m −−−= ρ .     (6.2)

The Hoyle-Narlikar field equations (2.1) with the 
help of equations (2.2) and (2.3) for the metric (6.1) 
given by

Λ+





 −=++ 2

22

2

2
1812 CfG

BAB
BA

B
B 


ρπ ,          (6.3)

Λ+





 +−=++ 2

22

2

2
1812 CfpG

BB
B

B
B 


π ,          (6.4)

Λ+





 +−=++ 2

2
18 CfpG

AB
BA

B
B

A
A 


π ,    (6.5)

where overhead dot )(. denotes differentiation with 
respect to time t .

The conservation equation (2.7) leads to

GfB
B

A
A

ff
C

B
B

A
AC

dt
d

π
ρρ

4
22222 22 Λ

+







++=








++




 (6.6)

where p being iotropic pressure.

Following Hoyle and Narlikar, we have taken
0=p , for the dust distribution. The source equation of 

C-field 
f
nC j

i =; leads to tC = for large r. Thus 1=C .

Using 0=p & 1=C , equations (6.3)-(6.5) lead to

           
Λ+−=++ GfG

BAB
BA

B
B πρπ 4812 22

2 
,             (6.7)
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Λ+=++ Gf

BB
B

B
B π412 22

2
,                (6.8)

Λ+=++ Gf
AB
BA

B
B

A
A π4


.                 (6.9)

The field equations (6.7)-(6.9) is a system of
three equations with four unknown parameters A , B , ρ

and Λ . To find the deterministic solution of the field 
equations, we need one extra condition. We assume 

that the shear scalar )(σ is proportional to expansion 

scalar )(θ which leads to (Collins et al. [67])

                                      
nBA =   ,              (6.10)

where n is arbitrary constant.
From equations (6.8) and (6.9), we get

          
01

22

2
=−−+−

BB
B

AB
BA

B
B

A
A 

.              (6.11)

Using equations (6.10) and (6.11), we have

              
( ) ( )BnB

BnB
1

2122
2

−
=++


 .               (6.12)

To get the deterministic value ofB , Let )(BFB = ,

which implies FFB ′= , where
dB
dFF =′ . (6.13)

With the help of equation (6.13), equation (6.12) 
reduces to

                  

( )
( )Bn

F
B
n

dB
dF

1
212 2

2

−
=

+
+ .             (6.14)

Integrating equation (6.14), we get

                  

2

2
2

1
1







=

−
=

dt
dB

n
F .                      (6.15)

The constant of integration has taken to be zero 
for simplicity.

Using )(BFB = and solving equation (6.15), we get

                          

bt
n

B +
−

=
1

1
2

,                      (6.16)

where b is a constant of integration.
Simplifying equation (6.16), we get 

                       )( batB += ,                           (6.17)

Where 
1

1
2 −

=
n

a and .1>n

  Using equation (6.17), equation (6.10) leads to

                     
nbatA )( += .               (6.18)

Substituting equations (6.17) & (6.18) in 
equation (6.8), we have

                     
k

bat
a

−
+
+

=Λ 2

2

)(
1

,               (6.19)

where kGf =π4 .

Using equations (6.17), (6.18) and (6.19) in 
equation (6.7), we get

               

k
bat

naG 2
)(

28 2

2
+

+
=ρπ ,      (6.20)

as  11 2
2 −= n
a

.

Thus using equations (6.17) & (6.18) in metric 
(6.1), the cosmological model is given by

( )22222222 sin)()( φθθ ddbatdrbatdtds n ++−+−= .
        

(6.21)

Using equations (6.17), (6.18), (6.19) and (6.20) 
in equation (6.6), we have

( ) ( ) 















+
+=
















+
++

bat
anC

bat
anC

dt
d 2222 22  (6.22)

On integration, equation (6.22) reduces to

                                1=C ,   (6.23)

which leads to

                              4btC += ,               (6.24)

where 4b is a constant of integration.

The value 1=C , So obtained agrees with the 
value used in the source equation. Thus creation field C 
is proportional to time t .

The physical parameters such as the spatial 
volume )(V , the mean anisotropic parameter )(∆ and 

the deceleration parameter )(q are defined as

                             2)( ++= nbatV ,                         (6.25)

                       

2

2
12 







+
−

=∆
n
n ,               (6.26)

)2(
)1(

+
−

−=
n
nq , where 1>n .                       (6.27)

Here 0<q , for 1>n .

VII. Discussions

a) Spatial volume )(V
In Fig. 1, the plots of spatial volume )(V

time )(t are given for LRS B-II, LRS B-VI0, PS & K-S 

versus

Some Dust Cosmological Models with Time Dependent Λ(t ) in Creation Field Cosmology
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 A
)

)

cosmological models which indicates that the models 
start evolving with finite volume at 0=t and expand 
infinitely with the increase in cosmic time t . 

Figure 1 : The plots of spatial volume )(V verses time )(t .

b) Energy density )(ρ
In Fig. 2, the dynamics of energy density )(ρ for 

cosmological models LRS B-II, LRS B-VI0, PS & K-S 
models are given. We observed that all models start with 
big-bang having infinite density and are decreasing 
functions of time which tends to positive finite value for 
large values of time )(t representing steady state.

Figure 2 : The plots of energy density )(ρ verses time
)(t .      

c) Cosmological constant )(Λ

& K-S cosmological models are given. We observed that 
the value of cosmological constant )(Λ is initially infinite 

for all models. For K-S model, it is decreasing function 
of time and approaches to small positive value almost 
closer to zero at late times which matches with the 
recent CMBR observations.

Figure 3 : The plots of cosmological constant )(Λ
verses time )(t

For LRS B-II, LRS B-VI0 & PS models, 
Cosmological constant )(Λ is negative at initial stage 
but increases very rapidly with time and approaches to 
small negative value almost closer to zero at late times. 
We observed that LRS B-II, LRS B-VI0 & PS models with 
negative cosmological constant follow the study by 
authors’ viz. Monerat et al. [68], Pedram et al. [69], 
Pradhan et al. [70] and Yadav [71] on cosmological 
models with negative cosmological constant.

d) Deceleration parameter )(q
For LRS B-II, LRS B-VI0 & PS models, the value 

of deceleration parameter 0>q indicating that the 
models are decelerating and for K-S model, the value of 
deceleration parameter 0<q indicating that the model 
is accelerating throughout the evolution of the universe.

e) Mean Anisotropy Parameter )(∆
It is also observed that for all cosmological 

models the mean anisotropy parameter )(∆ is constant. 

Hence the models are anisotropic throughout the 
evolution of the universe except at 1=n (i.e. the model 
does not approach isotropy).

VIII. Conclusion

LRS Bianchi type-II, LRS Bianchi type-VI0, Plane 
symmetric and Kantowsaki-Sachs cosmological models 
have been investigated in Hoyle-Narlikar’s creation field 
theory of gravitation. The source for energy momentum 
tensor is dust filled universe in the presence of time 

In Fig. 3, the plots of cosmological constants 
)(Λ cosmic time )(t for LRS B-II, LRS B-VI0, PS versus

Some Dust Cosmological Models with Time Dependent Λ(t ) in Creation Field Cosmology
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dependent cosmological constant )(tΛ . We conclude 
that all the models are expanding and anisotropic but 
LRS B-II, LRS B-VI0 & PS models are decelerating while 
K-S model is accelerating throughout the evolution of 
the universe. The creation field C is directly proportional 
to time t . Hence the creation of matter increases as time 
increases which follows the results as obtained by Hoyle 
and Narlikar.
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