Global Journal of Science Frontier Research: F MATHEMATICS AND DECISION SCIENCES
Volume 15 Issue 6 Version 1.0 Year 2015
Type : Double Blind Peer Reviewed International Research Journal
Publisher: Global Journals Inc. (USA)
Online ISSN: 2249-4626 \& Print ISSN: 0975-5896

Existence of Solution of First order Differential Balance Equation in Interpolation

By Ms. K. Vijaya
Kgisl Institute of Technology, India

Abstract- In this paper I derive the formula from the first order differential balance equation. In Numerical methods we are finding the missing values and derivativs from the available data by using different formula. One can solve problem directly using balance equation.

Keywords: dependent variable, interpolation.
GJSFR-F Classification : FOR Code : MSC 2010: 31B35, 03C40

Strictly as per the compliance and regulations of :

[^0]

Existence of Solution of First order Differential Balance Equation in Interpolation

Ms. K. Vijaya

Abstract- In this paper I derive the formula from the first order differential balance equation. In Numerical methods we are finding the missing values and derivativs from the available data by using different formula. One can solve problem directly using balance equation.
Keywords: dependent variable, interpolation.

I. Introduction

Interpolation is one of the concept in mathematics. In Numerical methods we are finding the missing values and derivatives from the available data by using different formula.

Here I have derived three formulae from the first order balance equation. The first two formulae denotes the process of computing the values of a function for any value of the Independent variable and also the value of a Independent variable for any value of a function either within an interval values from the available data.

Numerical differentiation is the process of computing the value of the derivatives for some particular value, from given data, when the actual relationship between X and Y is not known. The balance derivative formula to be used depends as usual on the particular value of X at which the value of first derivative is required.

iI. Balance Differential Equation and an Application

The balance differential equation is $d p=k \sqrt{p} d t----$-(I)
This is a seperable equation whose solution can be developed as follows. Integrating (I), we get

$$
\begin{equation*}
2 \sqrt{p}=k t+c \tag{i}
\end{equation*}
$$

where c is constant
When $p=p_{1}, t=t_{1}$, (i) becomes

$$
\begin{equation*}
2 \sqrt{p_{1}}=k t_{1}+c \tag{ii}
\end{equation*}
$$

When $=p_{2}, t=t_{2}$, (i) becomes

[^1]\[

$$
\begin{equation*}
2 \sqrt{p_{2}}=k t_{2}+c \tag{iii}
\end{equation*}
$$

\]

(iii)-(ii) gives $k=\frac{2\left(\sqrt{p_{2}}-\sqrt{p_{1}}\right)}{t_{2}-t_{1}}$

From (ii) $\quad c=2 \sqrt{p_{1}}-\frac{2\left(\sqrt{p_{2}}-\sqrt{p_{1}}\right)}{\left(t_{2}-t_{1}\right)} t_{1}$
Substituting ' k ' and ' c ' in (i), we get

$$
P=\left\{\frac{\left(\sqrt{p_{2}}-\sqrt{p_{1}}\right)\left(t-t_{1}\right)}{\left(t_{2}-t_{1}\right)}+\sqrt{p_{1}}\right\}^{2}
$$

From this formula we can find the dependent variable for any value of the independent variable. The other formula is as follows

$$
t=\frac{\left(\sqrt{p}-\sqrt{p_{1}}\right)\left(t_{2}-t_{1}\right)}{\left(\sqrt{p_{2}}-\sqrt{p_{1}}\right)}+t_{1}
$$

From this formula we can calculate the independent variable for any value of the dependent variable.

III. Applications

The following are data from the steam table

Temperature(t)	140	150	160	170	180
Pressure(p)	3.685	4.854	6.302	8.076	10.225

The solution is as follows

t_{1}	t_{2}	p_{1}	p_{2}	t	p
140	160	3.685	6.302	When $\mathrm{t}=150$	$\mathrm{P}=4.9$ app
140	160	3.685	6.302	$\mathrm{t}=150$ app	When $\mathrm{p}=4.854$

Now, we consider the unequal interval data

t	5	6	9	11
p	12	13	14	16

The solution is as follows

t_{1}	t_{2}	p_{1}	p_{2}	t	p
5	9	12	14	When $\mathrm{t}=6$	$\mathrm{P}=12.48 \mathrm{app}$
5	9	12	14	$\mathrm{t}=6$ app	When $\mathrm{p}=13$
5	11	12	16	When $\mathrm{t}=9$	$\mathrm{P}=14 \mathrm{app}$

IV. Balance Difference Formula to Compute the Derivatives

Consider

$$
\begin{gathered}
P=\left\{\frac{\left(\sqrt{p_{2}}-\sqrt{p_{1}}\right)\left(t-t_{1}\right)}{\left(t_{2}-t_{1}\right)}+\sqrt{p_{1}}\right\}^{2} \\
\dot{P}=\frac{2 \sqrt{p}\left(\sqrt{p_{2}}-\sqrt{p_{1}}\right)}{t_{2}-t_{1}}
\end{gathered}
$$

Consider the table of values

t	1.00	1.05	1.10	1.15
p	1.00	1.02470	1.04881	1.07238

Here, when $p_{1}=1.00 \quad t=1.00 \quad p_{2}=1.04881 \quad t_{2}=1.10 \quad \mathrm{P}=1.02470$ (ṕ) at $t=1.05=$?
By using the above formula $\dot{p}=0.447$

V. Conclusion

These formulae we have used are to find out the values of both equal and unequal intervals. This can be applied for all types of data.

References Références Referencias

1. C. H. Edwards Jr and David E. Penny-Differential equations and Boundary value problems.
2. R. W. Hamming -Numerical methods for scientists and Engineers.
3. Dr. M. K. Venkatraman-Numerical methods in Science and Engineering.
10

[^0]: © 2015. Ms. K. Vijaya. This is a research/review paper, distributed under the terms of the Creative Commons AttributionNoncommercial 3.0 Unported License http://creativecommons.org/licenses/by-nc/3.0/), permitting all non commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

[^1]: Author: M. Sc., M. Phil., Assistant professor in Mathematics, Kgis/ Institute of Technology, Coimbatore, Tamil Nadu, India.
 e-mail: vijayakirubai@gmail.com

