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Abstract- In this research, The exact traveling wave solutions of the generalized Hirota-Satsuma couple KdV system is
obtained as the first time in the framework of the extended exp(—y(&))-expansion method. When these parameters are
taken special values, the solitary wave solutions are derived from the exact traveling wave solutions. It is shown that the
extended exp(—¢(&))-expansion method give a wide range of solutions and it provides an effective and a more powerful
mathematical tool for solving nonlinear evolution equations in mathematical physics. Comparison between our results
and the well-known results will be presented.
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[. INTRODUCTION

No one can deny the important role which played by the nonlinear partial differential equations
in the description of many and a wide variety of phenomena not only in physical phenomena,
but also in plasma, fluid mechanics, optical fibers, solid state physics, chemical kinetics and
geochemistry phenomena. So that, during the past five decades, a lot of method was discovered
by a diverse group of scientists to solve the nonlinear partial differential equations. For examples
tanh - sech method [12],[16] and [18], extended tanh - method [13], [6] and [20], sine - cosine
method [19], [17] and [22], homogeneous balance method [4], the exp(—¢ (£))-expansion Method
[11], Jacobi elliptic function method [3], [5], [14] and [24], F-expansion method [2], [21] and [9],

/

exp-function method [8] and [7], trigonometric function series method [32], (% )— expansion
method [10], [15], [29] and [26], the modified simple equation method [1], [27], [30], [28], [31] and
[25] and so on.

The objective of this article is to apply the extended exp(—¢(§))-expansion method for finding
the exact traveling wave solution of the generalized Hirota-Satsuma coupled KdV system [23],
which play an important role in mathematical physics.

The rest of this paper is organized as follows: In section 2, we give the description of the e
exp(—p(§))-expansion method. In section 3, we use this method to find the exact solutions of
the nonlinear evolution equations pointed out above. In section 4, conclusions are given.

12. Malfliet, W. Solitary wave solutions of nonlinear wave equation. Am. J. Phys. 60
(1992), 650-654.
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[I. DESCRIPTION OF METHOD

Consider the following nonlinear evolution equation
F(U,Ut,ux,lttt,uxx,....) - 07 (21)

where F is a polynomial in u(x, t) and its partial derivatives in which the highest order derivatives
and nonlinear terms are involved. In the following,we give the main steps of this method
Step 1. We use the wave transformation

u(z,t) = u(§), E=x—ct, (2.2)

where c is a positive constant, to reduce Eq.(2.1)to the following ODE:

where P is a polynomial in u(§) and its total derivatives,while v’ = z—g.
Step 2. Suppose that the solution of ODE (2.3) can be expressed by a polynomial in exp(—¢(€))

as follows .

u(€) = Y ai(exp(—¢ (€)', (2.4)

i=—m

Since a,, (0 < m < n) are constants to be determined, such that (a,, or a_y,) # 0.

the positive integer m can be determined by considering the homogenous balance between the
highest order derivatives and nonlinear terms appearing in Eq.(2.3). Moreover precisely, we
define the degree of u (§) as D (u(£)) = m, which gives rise to degree of other expression as

follows:
diu diu\ ®
— P —
D<d§f1> n+q,D<u (d§q>> np+s(n+q).

Therefore, we can find the value of m in Eq.(2.3), where ¢ = (&) satisfies the ODE in the form

@' (&) = exp (=p (€)) + pexp (¢ () + A, (2.5)

the solutions of ODE (2.3) are
when A2 —4p > 0, 4 # 0,

—/A2 — 4y tanh ( v /\2274“ &+ Cl)) - A

p(§) =In

and

(2.7)

e(§) = —In ( A ) , (2.8)

(2.9)
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when A2 — 4y =0,u=0,A=0,
e(§) =In(§+Ch), (2.10)

when \? — 4 < 0,

dp — N2 tan < 4‘;7)‘2 €+ Cl)> - A

= 2.11
p(§) =In 2 : (2.11)
and
Ap—\2
VA — N2 cot< 4’; (f—i—Cl)) - A
=1 2.12
p(§) = In % ; (2.12)
where ap,, ... ... , A, 4 are constants to be determined later,

Step 3. After we determine the index parameter m, we substitute Eq.(2.4) along Eq.(2.5) into
Eq.(2.3) and collecting all the terms of the same power exp (—me(£)), m = 0,1,2,3,.... and
equating them to zero, we obtain a system of algebraic equations, which can be solved by Maple
or Mathematica to get the values of a;.

Step 4. substituting these values and the solutions of Eq.(2.5) into Eq.(2.3) we obtain the exact
solutions of Eq.(2.3).

I11. APPLICATION

Here, we will apply the extended exp(—¢(&))-expansion method described in Sec.2 to find the
exact traveling wave solutions and the solitary wave solutions of the generalized Hirota-Satsuma
coupled KdV system|[23]. We consider the generalized Hirota-Satsuma couple KdV system

1
Ut = JUzze + Uy + 3 (—112 + w)x ,
1
Vp = —5Vpgz — UV, (3.1)
1
W = —5Wgzy — SUWy.

When w = 0, Eq.(3.1) reduce to be the well known Hirota-Satsuma couple KdV equation. Using
the wave transformation u(x,t) = u(), v(x,t) = v(§), w(x,t) = w(§), £ = k(x — A\t) carries the
partial differential equation (3.1) into the ordinary differential equation

M ku = %k:i)’u’”—l—?)kuu’ + 3k (—v2+w)/,
—A kv =—=3k3" — 3kuv/, (3.2)
~Mkuw' = —%k"?w”’ —3kuw'.

Suppose we have the relations between (uandv) and (wandv) =(u = av? + fv + ) and

(w = Av + B) where «, 3, 7, A and B are arbitrary constants. Substituting this relations into
second and third equations of Eq.(3.2) and integrating them , we get the same equation and
integrate it once again we obtain

k0" = —2av* — 2603 + 2 (A1 — 37) v* 4 210 + ¢2, (3.3)
where ¢; and ¢y is the arbitrary constants of integration, and hence, we obtain
" = 20k*0"? + k? (2av 4 B) 0"
=2a [—av! = 2Bv® + 2 (A — 37) v + 2c10 + ¢2] (3.4)
+ (200 + B) [-2a0® = 3802 +2(\ = 3Y) v+ 1] .
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So that, we have

P’ +1P —mP3?=0. (3.5)
Where
o = 1 v(f):aP(g)—ﬁ a:ﬂ P10 ko))
202 (82 + 2\ a8 — 6ay)’ 200 4(y—=A1)’ B2 —4
1
B = (16¢3M18% — 2e3A1 8% — 1637582 + 3e37 8t + 5602752

6 (— + A1) (82 — 4)°
— A8\ 5% — 16¢y 4 285 — 12¢2 8" + 12¢28% — 167201 — 3203~ — 8332 + 143
—28\3 4 32¢37 — 32e3)1 + 4847 + 544201),
—a (362 —2aa®
=— ([ 42\ — =,
k2<2a+ ! 67)’7” k2

Balancing between the highest order derivatives and nonlinear terms appearing in P” and P3
= (N+2=3N) = (N =1). So that, by using Eq.(2.4) we get the formal solution of Eq.(3.5)

P(§) = a—1exp(p(§)) + ao + arezp(—¢(§)). (3.6)

Substituting Eq.(3.6) and its derivative into Eq.(3.5) and collecting all term with the same power
of [exp(=3¢(£)), exp(—2¢(E)), .., exp(+3p(£))] we obtained:

Global Journal of Science Frontier Research (F) Volume XV Issue VII Version I E Year 2015

2a; +ma® =0, (3.7)
3\ai +3magar® =0, (3.8)
2par + Nay + lay + 3ma_ia1% + 3mag?a; = 0, (3.9)
Na_1 + pAa + lag + 6 ma_iapar + mag® = 0, (3.10)
2ua_i +Na_i +la_i +3ma_i2a; +3ma_1a9’ =0, (3.11)
3pula_y +3ma_i%ag =0, (3.12)
2p2a_1 +ma_1® = 0. (3.13)
Solving above system by using maple 16, we get:
Case 1.
l:4u,m:$,)\:0, a_1=pai, ag =0, a1 = ai.
Case 2.
l:—SM,mzﬁ,)\zo, a_1=—par, a9 =0, a; =aj.
Thus the solution is
[ For Case 1.
p(§) = parexp(p(§)) + arexp(—¢(§)). (3.14)

For Case 2.
p(§) = —parexp(p(§)) + arexp(—p(§)). (3.15)
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Let us now discuss the following cases:
For Case 1. When A2 — 4y > 0,1 # 0,

—VA2—4u tcmh< & (§+C'1)) -
P(§) = par o
(3.16)
Notes +ap 24
—V/A tcmh(”)‘ 4“({4—0)) A
and
—/A ,ucoth(” & (§+C’1)) - A
P§)=pa 2
(3.17)
24
+ a1
— /N2 — 44 coth (VA —4u (g+01)> A
When A2 — 4 > 0,0 = 0,
exp(A(§+Ch)) -1 A
PO = o ) v (oEray ) (3.18)
When A2 — 4 =0, # 0, # 0,
_ 2(M(E+C1) +2) M (E+C)
o =wa (25 ) o (Caner o 1) (319
When A2 — 4 =0, =0,\ =0,
PE) = pan (€4 C) + a1 . (3.20)
When A2 — 4 < 0,
4p — A2 tan < ¥ 4’;_>\2 €+ C1)) - A
P(§) =pa 2%
(3.21)
21
+ a1
4y — N2 tan (”4/;)‘2 (€ + Cl)> -
and
VA — A% cot <” (§+Cl)> -
P(€) =pa (3.22)

20
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2p
V4 — A2 cot ( v 4’;_>‘2 &+ C’1)> - A
For Case 2. When \? — 4y > 0,4 # 0,

—VA2—4u tanh( ”/\22_4“ (§—|—Cl)> - N
otes

2p

+ ay

P(§) = —pay

(3.23)

DO

7

— /22— 4y tanh (V XA e+ 01)> )\

+ a1

and

—/ A2 —4u coth ( Y )‘22_4“ &+ C'l)> -

P(§) = —pa o
(3.24)
2p
+ a1 -
—/ A2 —4u coth < ¥ /\2_4“ &+ 01)) - A
When A2 — 45 > 0, = 0,
_ exp(A(£+Ch)) — 1 A
P& = —nar ( X > o <exp NE+Cn) - 1) - B
When A2 — 4 =0, # 0, A\ #0,
_ 2(A(E+C1) +2) N (€+C1) )
P&)=—pay (— N (4 Ch) > + a1 <_2(/\(E+C1) ) (3.26)
When A2 — 4 =0,0=0,A=0,
PE) = —par (6+C) + ey o (3.27)
When A2 —4u < 0,
4 — N2 tan < 4’;_)‘2 (€ + C’l)) -
P(§) = —pay 2%
(3.28)
+ay 2u

4 — N2 tan ( v 4;;—)@ €+ C1)> -
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and

Vap — A2 cot < ¥ 4‘;_/\2 &+ C1)> - A

P(§) =-pa 2%

(3.29)

2p
VA — A2 cot (“4%_)‘2 €+ C'1)> - A

+ a1

V. CONCLUSION

The extended exp(—¢(£))-expansion method has been successfully used to find the the wide
range of exact and solitary traveling wave solutions for the generalized Hirota-Satsuma couple
KdV system. Let us compare between our results obtained in the present article with the well-
known results obtained by other authors using different methods as follows: Our results of the
generalized Hirota-Satsuma couple KdV system are new and different from those obtained in [23].
It can be concluded that this method is reliable and propose a variety of exact solutions NPDEs.
The performance of this method is effective and can be applied to many other nonlinear evolution
equations. The solutions represent the solitary traveling wave solution for the generalized Hirota-
Satsuma couple KdV system.
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