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Abstract-

 

In this research, The exact traveling wave solutions of the generalized Hirota-Satsuma couple KdV system is 
obtained as the first time in the framework of the extended

 

exp( ))-expansion method. When these parameters are 
taken special values, the solitary wave solutions are derived from the exact traveling wave solutions. It is shown that the

 

extended exp( ))-expansion method give a wide range of solutions and it provides an effective and a more powerful 
mathematical tool for solving nonlinear evolution equations in

 

mathematical physics. Comparison between our results 
and the well-known results will be

 

presented.

 

Keywords: the generalized hirota-satsuma coupled KdV system, the extended exp( )- expansion method, 
traveling wave solutions, solitary wave solutions, kink and anti kink soliton solutions.
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No one can deny the important role which played by the nonlinear partial differential equations
in the description of many and a wide variety of phenomena not only in physical phenomena,
but also in plasma, fluid mechanics, optical fibers, solid state physics, chemical kinetics and
geochemistry phenomena. So that, during the past five decades, a lot of method was discovered
by a diverse group of scientists to solve the nonlinear partial differential equations. For examples
tanh - sech method [12],[16] and [18], extended tanh - method [13], [6] and [20], sine - cosine
method [19], [17] and [22], homogeneous balance method [4], the exp(−ϕ (ξ))-expansion Method
[11], Jacobi elliptic function method [3], [5], [14] and [24], F-expansion method [2], [21] and [9],

exp-function method [8] and [7], trigonometric function series method [32], (G
′

G )− expansion

method [10], [15], [29] and [26], the modified simple equation method [1], [27], [30], [28], [31] and
[25] and so on.

The objective of this article is to apply the extended exp(−ϕ(ξ))-expansion method for finding
the exact traveling wave solution of the generalized Hirota-Satsuma coupled KdV system [23],
which play an important role in mathematical physics.

The rest of this paper is organized as follows: In section 2, we give the description of the e
exp(−ϕ(ξ))-expansion method. In section 3, we use this method to find the exact solutions of
the nonlinear evolution equations pointed out above. In section 4, conclusions are given.
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Consider the following nonlinear evolution equation

F (u, ut, ux, utt, uxx, ....) = 0, (2.1)

where F is a polynomial in u(x, t) and its partial derivatives in which the highest order derivatives
and nonlinear terms are involved. In the following,we give the main steps of this method
Step 1. We use the wave transformation

u(x, t) = u(ξ), ξ = x− ct, (2.2)

where c is a positive constant, to reduce Eq.(2.1)to the following ODE:

P (u, u′, u′′, u′′′, .....) = 0, (2.3)

where P is a polynomial in u(ξ) and its total derivatives,while u′ = du
dξ .

Step 2. Suppose that the solution of ODE (2.3) can be expressed by a polynomial in exp(−ϕ(ξ))
as follows

u(ξ) =
m∑

i=−m
ai (exp (−ϕ (ξ)))i , (2.4)

Since am (0 ≤ m ≤ n) are constants to be determined, such that (am or a−m) 6= 0.
the positive integer m can be determined by considering the homogenous balance between the
highest order derivatives and nonlinear terms appearing in Eq.(2.3). Moreover precisely, we
define the degree of u (ξ) as D (u (ξ)) = m, which gives rise to degree of other expression as
follows:

D

(
dqu

dξq

)
= n+ q, D

(
up
(
dqu

dξq

)s)
= np+ s (n+ q) .

Therefore, we can find the value of m in Eq.(2.3), where ϕ = ϕ(ξ) satisfies the ODE in the form

ϕ′(ξ) = exp (−ϕ (ξ)) + µexp (ϕ (ξ)) + λ, (2.5)

the solutions of ODE (2.3) are
when λ2 − 4µ > 0, µ 6= 0,

ϕ(ξ) = ln

−
√
λ2 − 4µ tanh

(√
λ2−4µ
2 (ξ + C1)

)
− λ

2µ

 , (2.6)

and

ϕ(ξ) = ln

−
√
λ2 − 4µ coth

(√
λ2−4µ
2 (ξ + C1)

)
− λ

2µ

 , (2.7)

when λ2 − 4µ > 0, µ = 0,

ϕ(ξ) = −ln
(

λ

exp (λ (ξ + C1))− 1

)
, (2.8)

when λ2 − 4µ = 0, µ 6= 0, λ 6= 0,

ϕ(ξ) = ln

(
−2 (λ (ξ + C1) + 2)

λ2 (ξ + C1)

)
, (2.9)

II. Description of Method
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when λ2 − 4µ = 0, µ = 0, λ = 0,
ϕ(ξ) = ln (ξ + C1) , (2.10)

when λ2 − 4µ < 0,

ϕ(ξ) = ln


√

4µ− λ2 tan
(√

4µ−λ2
2 (ξ + C1)

)
− λ

2µ

 , (2.11)

and

ϕ(ξ) = ln


√

4µ− λ2 cot
(√

4µ−λ2
2 (ξ + C1)

)
− λ

2µ

 , (2.12)

where am, . . . . . . , λ, µ are constants to be determined later,
Step 3. After we determine the index parameter m, we substitute Eq.(2.4) along Eq.(2.5) into
Eq.(2.3) and collecting all the terms of the same power exp (−mϕ(ξ)), m = 0, 1, 2, 3, .... and
equating them to zero, we obtain a system of algebraic equations, which can be solved by Maple
or Mathematica to get the values of ai.
Step 4. substituting these values and the solutions of Eq.(2.5) into Eq.(2.3) we obtain the exact
solutions of Eq.(2.3).

Here, we will apply the extended exp(−ϕ(ξ))-expansion method described in Sec.2 to find the
exact traveling wave solutions and the solitary wave solutions of the generalized Hirota-Satsuma
coupled KdV system[23]. We consider the generalized Hirota-Satsuma couple KdV system

ut = 1
4uxxx + 3uux + 3

(
−v2 + w

)
x
,

vt = −1
2vxxx − 3uvx,

wt = −1
2wxxx − 3uwx.

(3.1)

When w = 0, Eq.(3.1) reduce to be the well known Hirota-Satsuma couple KdV equation. Using
the wave transformation u(x, t) = u(ξ), v(x, t) = v(ξ), w(x, t) = w(ξ), ξ = k(x−λ1t) carries the
partial differential equation (3.1) into the ordinary differential equation −λ1 k u

′ = 1
4k

3u′′′ + 3 k uu′ + 3 k
(
−v2 + w

)′
,

−λ1 k v′ = −1
2k

3v′′′ − 3 k u v′,
−λ1 k w′ = −1

2k
3w′′′ − 3 k uw′.

(3.2)

Suppose we have the relations between (u and v) and (w and v) ⇒
(
u = αv2 + βv + γ

)
and

(w = Av +B) where α, β, γ, A and B are arbitrary constants. Substituting this relations into
second and third equations of Eq.(3.2) and integrating them , we get the same equation and
integrate it once again we obtain

k2v′2 = −2αv4 − 2βv3 + 2 (λ1 − 3γ) v2 + 2c1v + c2, (3.3)

where c1 and c2 is the arbitrary constants of integration, and hence, we obtain

k2u′′ = 2αk2v′2 + k2 (2αv + β) v′′

= 2α
[
−αv4 − 2βv3 + 2 (λ1 − 3γ) v2 + 2c1v + c2

]
+ (2αv + β)

[
−2αv3 − 3βv2 + 2 (λ1 − 3γ) v + c1

]
.

(3.4)

III. Application
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So that, we have
P ′′ + lP −mP 3 = 0. (3.5)

Where

c1 =
1

2α2 (β2 + 2λ1αβ − 6αβγ)
, v(ξ) = aP (ξ)− β

2α
, α =

β2 − 4

4 (γ − λ1)
, A =

4β (λ1 − γ)

β2 − 4
,

B =
1

6 (−γ + λ1) (β2 − 4)2
(16c3λ1β

2 − 2c3λ1β
4 − 16c3γβ

2 + 3c3γβ
4 + 56λ21γβ

2

− 48γ2λ1β
2 − 16c2 + c2β

6 − 12c2β
4 + 12c2β

2 − 16γ2λ1 − 32λ21γ − 8λ31β
2 + β4γ3

− 2β4λ31 + 32c3γ − 32c3λ1 + 48γ3 + β4γ2λ1),

l =
−a
k2

(
3β2

2α
+ 2λ1 − 6γ

)
, m =

−2αa3

k2
.

Balancing between the highest order derivatives and nonlinear terms appearing in P ′′ and P 3

⇒ (N + 2 = 3N) ⇒ (N = 1). So that, by using Eq.(2.4) we get the formal solution of Eq.(3.5)

P (ξ) = a−1exp(ϕ(ξ)) + a0 + a1exp(−ϕ(ξ)). (3.6)

Substituting Eq.(3.6) and its derivative into Eq.(3.5) and collecting all term with the same power
of [exp(−3ϕ(ξ)), exp(−2ϕ(ξ)), ..., exp(+3ϕ(ξ))] we obtained:

2 a1 +ma1
3 = 0, (3.7)

3λ a1 + 3ma0a1
2 = 0, (3.8)

2µa1 + λ2a1 + la1 + 3ma−1a1
2 + 3ma0

2a1 = 0, (3.9)

λ a−1 + µλa1 + la0 + 6ma−1a0a1 +ma0
3 = 0, (3.10)

2µa−1 + λ2a−1 + la−1 + 3ma−1
2a1 + 3ma−1a0

2 = 0, (3.11)

3µλa−1 + 3ma−1
2a0 = 0, (3.12)

2µ2a−1 +ma−1
3 = 0. (3.13)

Solving above system by using maple 16, we get:

Case 1.

l = 4µ, m =
−2

a1−2
, λ = 0, a−1 = µa1, a0 = 0, a1 = a1.

Case 2.

l = −8µ, m =
−2

a1−2
, λ = 0, a−1 = −µa1, a0 = 0, a1 = a1.

Thus the solution is

For Case 1.
p(ξ) = µa1exp(ϕ(ξ)) + a1exp(−ϕ(ξ)). (3.14)

For Case 2.
p(ξ) = −µa1exp(ϕ(ξ)) + a1exp(−ϕ(ξ)). (3.15)
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Let us now discuss the following cases:
For Case 1. When λ2 − 4µ > 0, µ 6= 0,

P (ξ) = µa1

−
√
λ2 − 4µ tanh

(√
λ2−4µ
2 (ξ + C1)

)
− λ

2µ



+ a1

 2µ

−
√
λ2 − 4µ tanh

(√
λ2−4µ
2 (ξ + C1)

)
− λ

 .

(3.16)

and

P (ξ) = µa1

−
√
λ2 − 4µ coth

(√
λ2−4µ
2 (ξ + C1)

)
− λ

2µ



+ a1

 2µ

−
√
λ2 − 4µ coth

(√
λ2−4µ
2 (ξ + C1)

)
− λ

 .

(3.17)

When λ2 − 4µ > 0, µ = 0,

P (ξ) = µa1

(
exp (λ (ξ + C1))− 1

λ

)
+ a1

(
λ

exp (λ (ξ + C1))− 1

)
. (3.18)

When λ2 − 4µ = 0, µ 6= 0, λ 6= 0,

P (ξ) = µa1

(
−2 (λ (ξ + C1) + 2)

λ2 (ξ + C1)

)
+ a1

(
− λ2 (ξ + C1)

2 (λ (ξ + C1) + 2)

)
. (3.19)

When λ2 − 4µ = 0, µ = 0, λ = 0,

P (ξ) = µa1 (ξ + C1) + a1
1

(ξ + C1)
. (3.20)

When λ2 − 4µ < 0,

P (ξ) = µa1


√

4µ− λ2 tan
(√

4µ−λ2
2 (ξ + C1)

)
− λ

2µ



+ a1

 2µ√
4µ− λ2 tan

(√
4µ−λ2
2 (ξ + C1)

)
− λ

 .

(3.21)

and

P (ξ) = µa1


√

4µ− λ2 cot
(√

4µ−λ2
2 (ξ + C1)

)
− λ

2µ

 (3.22)
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+ a1

 2µ√
4µ− λ2 cot

(√
4µ−λ2
2 (ξ + C1)

)
− λ

 .

For Case 2. When λ2 − 4µ > 0, µ 6= 0,

P (ξ) = −µa1

−
√
λ2 − 4µ tanh

(√
λ2−4µ
2 (ξ + C1)

)
− λ

2µ



+ a1

 2µ

−
√
λ2 − 4µ tanh

(√
λ2−4µ
2 (ξ + C1)

)
− λ

 .

(3.23)

and

P (ξ) = −µa1

−
√
λ2 − 4µ coth

(√
λ2−4µ
2 (ξ + C1)

)
− λ

2µ



+ a1

 2µ

−
√
λ2 − 4µ coth

(√
λ2−4µ
2 (ξ + C1)

)
− λ

 .

(3.24)

When λ2 − 4µ > 0, µ = 0,

P (ξ) = −µa1
(
exp (λ (ξ + C1))− 1

λ

)
+ a1

(
λ

exp (λ (ξ + C1))− 1

)
. (3.25)

When λ2 − 4µ = 0, µ 6= 0, λ 6= 0,

P (ξ) = −µa1
(
−2 (λ (ξ + C1) + 2)

λ2 (ξ + C1)

)
+ a1

(
− λ2 (ξ + C1)

2 (λ (ξ + C1) + 2)

)
. (3.26)

When λ2 − 4µ = 0, µ = 0, λ = 0,

P (ξ) = −µa1 (ξ + C1) + a1
1

(ξ + C1)
. (3.27)

When λ2 − 4µ < 0,

P (ξ) = −µa1


√

4µ− λ2 tan
(√

4µ−λ2
2 (ξ + C1)

)
− λ

2µ



+ a1

 2µ√
4µ− λ2 tan

(√
4µ−λ2
2 (ξ + C1)

)
− λ

 .

(3.28)
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and

P (ξ) = −µa1


√

4µ− λ2 cot
(√

4µ−λ2
2 (ξ + C1)

)
− λ

2µ



+ a1

 2µ√
4µ− λ2 cot

(√
4µ−λ2
2 (ξ + C1)

)
− λ

 .

(3.29)

The extended exp(−ϕ(ξ))-expansion method has been successfully used to find the the wide
range of exact and solitary traveling wave solutions for the generalized Hirota-Satsuma couple
KdV system. Let us compare between our results obtained in the present article with the well-
known results obtained by other authors using different methods as follows: Our results of the
generalized Hirota-Satsuma couple KdV system are new and different from those obtained in [23].
It can be concluded that this method is reliable and propose a variety of exact solutions NPDEs.
The performance of this method is effective and can be applied to many other nonlinear evolution
equations. The solutions represent the solitary traveling wave solution for the generalized Hirota-
Satsuma couple KdV system.
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