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−∆u + A(x)u
A(x ( Rk×k ∂u

∂ν
+g(u) = h(x (

∂Ω g ∈ C(Rk,Rk)

Let Rk be real k−dimensional space, if w ∈ Rk, then |w|E denotes the Euclidean
norm of w. Let Ω ⊂ RN , N ≥ 2 is a bounded domain with boundary ∂Ω of class
C∞. Let g ∈ C1(Rk,Rk), h ∈ C(∂Ω,Rk), and the matrix

A(x) =


a11(x) a12(x) · · · a1k(x)
a21(x) a22(x) · · · a2k(x)

...
...

. . .
...

ak1(x) ak2(x) · · · akk(x)

 .
Verifies the following conditions:

(A1) The functions aij : Ω→ R, ∀ i, j ∈ {1, · · · , k}.
(A2) A(x) is positive semidefinite matrix on Rk×k, almost everywhere x ∈ Ω, and

A(x) is positive definite on a set of positive measure with aij ∈ Lp(Ω) ∀ i, j ∈
{1, · · · , k} for p > N

2 when N ≥ 3, and p > 1 when N = 2.
We will study the solvability of

−∆u+A(x)u = 0 in Ω,
∂u

∂ν
+ g(u) = h(x) on ∂Ω.

(1.1)

The interest in this problem is the resonance case at the boundary with a bounded
nonlinearity, we will assume that g a bounded function, and there is a constant
R > 0 such that

|g(w(x))|E ≤ R ∀ w ∈ Rk & x ∈ ∂Ω. (1.2)

Our assumptions allow that g is not only bounded, but also may be vanish at
infinity i.e.;

lim
|w|E→∞

g(w) = 0 ∈ Rk. (1.3)

Condition (1.3) is not required by our assumptions, but allowing for it is the main
result of this paper.
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In case of the scalar equation i.e.; k = 1 and g doesn’t satisfy condition (1.3) but
satisfying the Landesman-Lazer condition

g− < h̄ < g+

where lim
w→−∞

g(w) = g−, h̄ = 1
|∂Ω|

∫
∂Ω h dx, lim

w→∞
g(w) = g+,

and A(x) = 0 ∈ Rk×k. Then it is well know that there is a solution for (1.1).
The first results when the nonlinearity in the equation in scalar case was done by
Landesman and Lazaer [1] in 1970. Their work led to great interest and activity
on boundary value problems at resonance which continuous to this day. A particu-
larly interesting extension of Landesman and Lazer’s work to systems was done by
Nirenberg [2], [3] in case of system and the nonlinearity in the equation was done
by Ortega and Ward [4], in the scalar case without Landesman-Lazer condition
was done by Iannacci and Nkashama [5], Ortega and Sánchez [6], more completely
the case for periodic solutions of the system of ordinary differential equations with
bounded nonlinear g satisfying Nirenberg’s condition. They studied periodic so
solutions

u′′ + cu′ + g(u) = p(t),
for u ∈ Rk.
In case c = 0 was done by Mawhin [7]. In case the nonlinear terms vanish at infinity,
as in (1.3), the Landesman-Lazer conditions fail. We would like to know what we
can do in this case, and what conditions on a bounded nonlinearity that vanishes
at infinity might replace that ones of the Landesman-Lazer type. Several authors
have considered the case when the nonlinearity g : ∂Ω×R→ R is a scalar function
satisfies Carathéodory conditions i,e.;

i: g(., u) is measurable on ∂Ω, for each u ∈ R,
ii: g(x, .) is continuous on R, for a.e.x ∈ ∂Ω,
iii: for any constant r > 0, there exists a function
γr ∈ L2(∂Ω), such that

|g(x, u)| ≤ γr(x), (1.4)

for a.e.x ∈ Ω, and all u ∈ R with |u| ≤ r,
was done by Fadlallah [8] and the others have considered the case when the non-
linearity does not decay to zero very rapidly. For example in case the nonlinearity
in the equation if g = g(t) is a scalar function, the condition

lim
|t|→∞

tg(t) > 0. (1.5)

and related ones were assumed in [9], [10], [11], [12], [13], [14], [15], [16], [17]. These
papers all considered scalar problem, but also considered the Dirichlet (Neumann)
problem at resonance (non-resonance) at higher eigenvalues (Steklov-eigenproblems).
The work in some of these papers makes use of Leray-Schauder degree arguments,
and the others using critical point theory both the growth restrictions like (1.5)
and Lipschitz conditions have been removed (see [15], [17]). In this paper we study
systems of elliptic boundary value problems with nonlinear boundary conditions
Neumann type and the nonlinearities at boundary vanishing at the infinity. We do
not require the problem to be in variational from.
Let Sk−1 be the unit sphere in Rk. We will assume that Sk−1 ∩ ∂Ω 6= ∅ and Let
S = Sk−1 ∩ ∂Ω.
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Linear Elliptic Systems with Nonlinear Boundary Conditions without Landesman-Lazer Conditions

G1: g ∈ C1(Rk,Rk) and g is bounded with g(w) 6= 0 for |w|E large.

G2: For each z ∈ S the lim
r→∞

g(rz)
|g(rz)|E

= ϕ(z) exists, and the limits is uniform

for z ∈ S. It follows that ϕ ∈ C(S, S) and the topological degree of ϕ is
defined.

G3: deg(ϕ) 6= 0

1.1.  Assumptions
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• Let 〈., .〉L2 denote the inner product in L2 := L2(Ω,Rk) where L2 is Lebesgue
space
• Let 〈., .〉E denote the standard inner product in Rk
• Assume that ((A1)-(A2)) holds, then define

E(u, v) :=
k∑
i=1
〈5ui,5vi〉L2 + 〈aij(x)ui, vi〉L2 , j = 1, . . . , k,

for u, v ∈ H1 = H1(Ω,Rk) where H1 the Sobolev space.
We note that it follows from the assumptions G1 : - G3 : that on large balls

B(R) := {y : |y|E ≤ R},

the deg(g,B(R), 0) 6= 0 see [18],[19].
We modify the Lemma 1 and Theorem 1 in [4] to fit our problem.

Assume that G1 : and G2 : hold and C > 0 is a given constant. Then
there exists R > 0 such that ∫

∂Ω
g(u(x)) dx 6= 0,

for each function u ∈ C(∂Ω,Rk) (we can write u = ū+ũ where ū =
∫
∂Ω u(x)dx = 0,

and ū⊥ũ) with |ū|E ≥ R and ||u− ū||L∞(∂Ω) ≤ C

Proof. By the way of contradiction. Assume that for some C > 0 there is exist a
sequence of functions {un}∞n=1 ∈ C(Ω̄,Rk), with

|ūn|E →∞, ||un − ūn||L∞(∂Ω) ≤ C
and ∫

∂Ω
g(un(x)) dx = 0. (1.6)

We constructed a subsequence of un one can assume that z̄n = ūn

|ūn|E converges to
some point z ∈ S. The uniform bound on un− ūn implies that also un

|un|E converges
to z and this convergence is uniform with respect to x ∈ Ω̄. It follows from the
assumption G2 : that

lim
n→∞

g(un(x)
|g(un(x))|E

= ϕ(z)

uniformly in Ω̄. Since ϕ(z) is in the unit sphere one can find an integer n0 such
that if n ≥ n0 and x ∈ Ω̄, then

〈 g(un(x)
|g(un(x))|E

, ϕ(z)〉E ≥
1
4
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Define
γn(x) = |g(un(x))|E .

By G1 : clearly γn > 0 everywhere. For n ≥ n0

〈
∫
∂Ω
g(un(x)) dx, ϕ(z)〉E =

∫
∂Ω
〈g(un(x)), ϕ(z)〉E dx

=
∫
∂Ω
γn(x)〈g(un(x))

γn(x) , ϕ(z)〉E dx ≥
1
4

∫
∂Ω
γn(x) dx > 0

Therefore,
∫
∂Ω
g(un(x)) dx > 0. Now we have contradiction with (1.6)

The proof completely of the lemma. �

1.2. Notations

Lemma 1.1.
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Let
Qu = Nu. (2.1)

Be linear elliptic equation with nonlinear boundary condition. Suppose N is con-
tinuous and bounded (i.e.; |Nu|E ≤ C for all u). If Q has a compact inverse Q−1

then by Leray-Schauder theory (2.1) has a solution. On the other hand if Q is
not invertible the existence of a solution depends on the behavior of N and its
interaction with the null space of Q see [19].

Suppose g ∈ C1(Rk,Rk) satisfies G1 :, G2 :, and G3 :. If h ∈
C(∂Ω,Rk), satisfies h̄ = 0. Then, (1.1) has at least one solution.
Proof. Define

J : H1(Ω)→ R

be continuous map in H1(Ω) with the L2(Ω) norm

J(v) = E(u, v)

Define
Dom(L) := {u ∈ H1(Ω) : −∆u+A(x)u = 0}

Define an operator L on L2 = L2(Ω,Rk) for u ∈ Dom(L) and each v ∈ H1(Ω) by

E(u, v) =< Lu, v >L2(Ω),

we use the embedding theorem see [20] since you know that H1(Ω) ↪→ L2(Ω) and
the trace theorem (H1 → L2(∂Ω)). Thus, L : Dom(L) ⊂ L2(∂Ω) → L2(∂Ω) then
the equation

E(u, v) =< h, v >L2(∂Ω) ∀ v ∈ H1(∂Ω),

if and only if
Lu = h.

The latter equation is solvable if and only if

Ph := 1
|∂Ω|

∫
∂Ω
h = 0.

Now if h ∈ L∞(∂Ω,Rk) and Ph = 0. Then, each solution u ∈ H1(Ω) is Hölder
continuous, so u ∈ Cγ(Ω̄,Rk) for some γ ∈ (0, 1). Since we know that there is
constant r1 > 0 such that

||u||γ ≤ r1
(
||u||L2(∂Ω) + ||h||L∞(∂Ω)

)
.

© 2015    Global Journals Inc.  (US)
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When Ph = 0 there is a unique solution Kh = ũ ∈ H1(Ω) with Pũ = 0 to

Lu = h,

and if h ∈ C(∂Ω) = C(∂Ω,Rk) then

||Kh||γ ≤ r1
(
||Kh||L2(∂Ω) + ||h||L∞(∂Ω)

)
≤ r2||h||C(∂Ω)

and K maps C(∂Ω) into itself take compact set to compact set i.e.; compactly.
Let Q be the restriction of L to L−1(C(∂Ω)) = KC(∂Ω) + Rk. We define N :
C(∂Ω)→ C(∂Ω) by

N(w)(x) := h(x)− g(w(x)) ∀w ∈ C(∂Ω)

is continuous. Now (1.1) can be written as

Qu = Nu

Theorem 2.1.

II. Main Result
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and kerQ = ImP, ImQ = kerP. The linear map Q is a Fredholm map (see [16])
and N is Q−compact (see [19]). Now we define the Homotopy equation as follows
Let λ ∈ [0, 1] such that

Qu = λNu. (2.2)
The a priori estimates (i.e.; the possible solutions of (2.2) are uniformly bounded in
C(∂Ω)). Now we show that the possible solutions of (2.2) are uniformly bounded
in C(∂Ω) independent of λ ∈ [0, 1] Since we know that u = ū + ũ where ū = Pu.
Then

||ũ||γ = ||λKNu||γ ≤ r2||Nu||C(∂Ω) ≤ R1,

where R1 is a constant (g is abounded function). It remains to show that ū ∈ Rk
is bounded, independent of λ ∈ [0, 1]. By the way of contradiction assume is
not the case (i.e.; ū unbounded). Then there are sequence {λn} ⊂ [0, 1], and
{un} ⊂ Dom(Q) with ||ũn||γ ≤ R1,

Qun = λnNun and |ūn|E →∞,
we get that

PNun = PN(ũn + ūn) = −
∫
∂Ω
g(ũn(x) + ūn(x)) dx = 0.

Now un = ũn+ ūn so ||un− ūn||L∞(∂Ω) = ||ũn||L∞(∂Ω) ≤ R1 and ||ūn||L∞(∂Ω) →∞.
It follows from Lemma1.1 that for all sufficiently large n∫

∂Ω
g(un(x)) dx 6= 0.

We have reached a contradiction, and hence all possible solutions of (2.2) are uni-
formly bounded in C(∂Ω) independent of λ ∈ [0, 1]
Let B̄(0, r) = {x : |x|E ≤ r} denote the ball in C(∂Ω,Rk). Now you can apply
Leray-Schauder degree theorem see ([18],[19]), the only thing left to show is that

deg(PN, B̄(0, r) ∩ kerQ, 0) 6= 0,

for large r > 0. So deg(PN, B̄(0, r)∩kerQ, 0) = deg(g, B̄r, 0), where B̄r is the ball in
Rk of radius r. Since for |x|E large, and deg(ϕ) 6= 0 we have that deg(g, B̄r, 0) 6= 0
for large r. Therefore deg(PN, B̄(0, r) ∩ kerQ, 0) 6= 0 By Leray-Schauder degree
theorem equation (2.2) has a solution when λ = 1. Therefore, equation (1.1) has at
least one solution. This proves the theorem. �

We will give one example.
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Let Ω ⊂ RN , N ≥ 2 is a bounded domain with boundary ∂Ω of
class C∞. Let

−∆u+A(x)u = 0 in Ω,
∂u

∂ν
+ u

1 + |u|2E
= h(x) on ∂Ω

(2.3)

where A(x) is positive semidefinite matrix on R2×2, and where u = (u1, u2) ∈ R2

and h real valued function and continuous on ∂Ω, and
∫
∂Ω h(x) dx = 0 and g(u) =

u
1+|u|2

E

lim
|u|E→∞

g(u) = lim
|u|E→∞

u

1 + |u|2E
= 0

g(u) vanishes at infinity, clearly g ∈ C1(R2,R2) and bounded with g(u) 6= 0, for
|u|E large. Therefore g satisfies G1 :.

g(ru1, ru2)
|g(ru1, ru2)| = g(ru)

|g(ru)| =
ru

1+|ru|2
E∣∣∣ ru

1+|ru|2
E

∣∣∣ = u

|u|E
= u

Example 2.1. 
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For all u in S and r > 0. Therefore G2 : holds.
And ϕ(u) = u so that deg(ϕ) 6= 0. Therefore G3 : holds. By Theorem 2.1. Then,
equation (2.3) has at least one solution.
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