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Optimization Control SK Box Manoeuvres for 
GEO Satellites using Electric Thrusters 

(OCSKBOX) 
Louardi Beroual α & Djamel Benatia σ 

Abstract- The study presented in this paper deals with an 
optimization control station keeping box manoeuvers for 
geostationary satellites equipped with electric propulsion. 

The station keeping box (SKBOX) represented the 
maximum permitted values of the excursion of the satellite in 
longitude and latitude. It can be represented as a pyramidal 
solid angle, whose vertex is at the centre of the earth, within 
which the satellite must remain at all times. In this work, the 
station keeping box is defined by the two half angles at the 
vertex, one within the plan of the equator (E-W width), and the 
other in the plan of the satellite meridian (N-S width). 

A number of different techniques are available for the 
numerical solution of the station keeping box problem. In this 
work we will consider the direct method for solution of 
continuous optimal control problem. Simulation results have 
demonstrated that the spacecraft can be tightly controlled 
within station keeping box.  
Keywords: geostationary satellites, SKBOX, box-limit, 
electric propulsion, specific impulse, quadratic 
programming. 

Introduction 

n astrodynamics orbital station-keeping is the 
orbital maneuvers made by thruster burns that are 
needed to keep a spacecraft in a particular 

assigned orbit. 
For many Earth satellites the effects of the non-

Keplerian forces, i.e. the deviations of the gravitational 
force of the Earth from that of a homogeneous sphere, 
gravitational forces from Sun/Moon, solar radiation 
pressure and air-drag must be counteracted. 

The deviation of Earth's gravity field from that of 
a homogeneous sphere and gravitational forces from 
Sun/Moon will in general perturb the orbital plane [1]. 
For geostationary spacecraft the inclination change 
caused by the gravitational forces of Sun/Moon must be 
counteracted to a rather large expense of fuel, as the 
inclination should be kept sufficiently small for the 
spacecraft to be tracked by a non-steerable antenna 
[1,2]. 

Solar radiation pressure will in general perturb 
the eccentricity (i.e. the eccentricity vector) [3]. For 
some missions this must be actively counter-acted     
with    manoeuvers,   for   geostationary   spacecraft  the  
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eccentricity must be kept sufficiently small for a 
spacecraft to be tracked with a non-steerable antenna. 
Also for Earth observation spacecraft for which a very 
repetitive orbit with a fixed ground track is desirable, the 
eccentricity vector should be kept as fixed as possible. 
A large part of this compensation can be done by using 
a frozen orbit design, but for the fine control 
manoeuvres with thrusters are needed [4]. 

Electric propulsion engines are more efficient 
then chemical ones: they require significantly less 
propellant to produce the same overall effect, for 
example a specific increase in spacecraft velocity. The 
propellant is ejected up to 20 times faster than from 
chemically-based thrusters, and, thus the same 
propelling force is obtained with a log less propellant,  
the forces EP produces can be applied continuously for 
very long periods-months or even years. 

To maintain the satellite within box, orbit 
corrections are achieved by applying velocity impulses 
to the satellite at a point in the orbit. These impulses are 
generated by activating the thrusters that are mounted 
on the satellite as part of the propulsion subsystem.  

The tool developed in the frame of this paper is 
based on numerical optimization techniques and uses a 
thrusters-based model of the satellite to take directly into 
account the activity of each thruster used for the control 
of the satellite on the optimization process. This paper 
presents the tool design and the main principle of the 
optimization algorithm. Usually, control strategies 
consider satellites as a point. The present work includes 
the mathematical definition and the satellite model that 
allow considering it as a system. The results of some 
simulations and their practical applications are 
presented. 

 Mathematical Modeling 

a) Coordinate Frames  

The coordinate system used in this work for 
describing the perturbing forces is the satellite based 
Radial Tangent Normal (RTN) coordinate system with 
orthonormal basis 𝑅𝑅�⃗ 𝑇𝑇�⃗ 𝑁𝑁��⃗ , The 𝑅𝑅�⃗  axis is defined as always 
pointing from the Earth’s center along the radius vector 
toward the satellite, The 𝑁𝑁��⃗  axis is normal to the orbit 
plane with direction of the satellite angular momentum 
vector, The 𝑇𝑇���⃗ axis is perpendicular to R in the orbit plane 
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and with the direction toward the satellite movement. It 
completes, with the unit vectors R and N, a right-handed 
orthogonal basis (see Figure 1). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1 : Coordinate frames 

In the flowing, a generic acceleration vector 𝑢𝑢�⃗  
induced from propulsive force acting on the satellite will 
be expressed as 

                          𝑢𝑢�⃗ = 𝑢𝑢𝑅𝑅𝑅𝑅�⃗ + 𝑢𝑢𝑇𝑇𝑇𝑇�⃗ + 𝑢𝑢𝑁𝑁𝑁𝑁��⃗           (1) 

Where 𝒖𝒖𝑹𝑹,𝒖𝒖𝑻𝑻,𝒖𝒖𝑵𝑵 are the acceleration 
components along the radial, tangential and normal 
directions. 

b) Orbit elements 
A total of six independent parameters are 

required to describe the motion of a satellite around the 
earth [3,4].Two of these elements, semi-major axis a 

and eccentricity e describe the form of the orbit, one 
element the mean anomaly M defines the position of 
satellite along the orbit, the three others, the right 
ascension Ω, inclination i and argument of perigee ω 
define the orientation of the orbit in space. Given these 
six elements, it is always possible to uniquely calculate 
the position and velocity vector (see figure. 2). 

In many application, satellite orbits are chosen 
to be near-circular, to provide a constant distance from 
the surface of the Earth or a constant relative velocity. 
Typical examples are low-altitude remote sensing 
satellite or geostationary satellite. 

While there is no inherent difficulty in calculating 
position and velocity from known orbital elements with e 
and i close to zero, the reverse task may cause practical 
and numerical problems. These problems are due to 
singularities arising from the definition of some of the 
classical orbital elements. The argument of perigee ω, 
for example, is not a meaningful orbital element for small 
eccentricities, since the perigee itself is not well defined 
for an almost circular orbit. Similar consideration apply 
to small inclination i where the line of node is no longer 
well defined and where the equations for Ω become 
singular. Several attempts have therefore been made to 
substitute other parameter for the classical keplerian 
elements. These elements are usually referred to as 
non-singular, regular or equinoctial elements [4]. 

The satellite orbit plane is defined thanks to the 
component of the inclination vectors (with modulus 
tan(i⁄2)) direct alone the line of nodes and pointing 
towards the ascending node. 

                                  𝑖𝑖 = [𝓅𝓅  𝓆𝓆]𝑇𝑇 =      2tan(𝑖𝑖
2
)[ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐  𝑐𝑐𝑖𝑖𝑠𝑠𝑐𝑐]𝑇𝑇 ≅ [ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐  𝑐𝑐𝑖𝑖𝑠𝑠𝑐𝑐]𝑇𝑇 , 𝑖𝑖 → 0                                     (2) 

The satellite trajectory on its orbit is defined to 
the semi major axis a, and supposing the parameters Ω 
and ω in the same plane, to the component of the 

eccentricity vector directed alone the line of apsis and 
pointing towards the perigee.  

                                  𝑒𝑒 == [𝒽𝒽  𝓀𝓀]𝑇𝑇 =     𝑒𝑒[ 𝑐𝑐𝑐𝑐𝑐𝑐(𝑐𝑐 + 𝜔𝜔)  𝑐𝑐𝑖𝑖𝑠𝑠(𝑐𝑐 + 𝜔𝜔)]𝑇𝑇 = 𝑒𝑒[
 
𝑐𝑐𝑐𝑐𝑐𝑐𝜔𝜔�

 
𝑐𝑐𝑖𝑖𝑠𝑠𝜔𝜔�]𝑇𝑇                        (3)

 

 
 
 
 
 
 
 

 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 2 :  Orbit elements  

 
 

 

Perigee
 Ascending

 

node  
e 

i 

Ω λ 

ω 
M 

Y 

X 
Vernal Equinox

 

ORBITAL 
PLAN LINE OF 

NODES 

𝑹𝑹��⃗  𝑵𝑵��⃗  
𝑻𝑻��⃗  𝒁𝒁 ���⃗  

NORTH 

𝑿𝑿��⃗  𝒀𝒀��⃗  

EQUATO
RIAL 

 

SATELLITE 

© 2015    Global Journals Inc.  (US)

8

G
lo
ba

l
Jo

ur
na

l
of

Sc
ie
nc

e
Fr

on
tie

r
R
es
ea

rc
h 

  
  
  
 V

ol
um

e
Y
ea

r
20

15
  

 
A

)

)

X
V

 I
ss
ue

  
  
  
er

sio
n 

I
V

V
II

Optimization Control SK Box Manoeuvres for GEO Satellites using Electric Thrusters (OCSKBOX)



 

 
 

Finally, the position of the satellite along its orbit 
is represented by the mean longitude 

                               𝑙𝑙 = 𝜔𝜔� + 𝑀𝑀 − 𝛩𝛩(𝑡𝑡)          (4) 

Where Θ is the Greenwich sidereal angle. 

c) Dynamics for a GEO satellite 
The motion of GEO satellite can be described 

by the rat of change of the equinoctial orbital 
parameters under the influence of the forces acting on 
the satellite. The geostationary dynamics results in the 
flowing nonlinear time varying system  

�̇�𝑥(𝑡𝑡) = 𝒦𝒦(𝑥𝑥(𝑡𝑡)) + 𝔏𝔏(𝑡𝑡, 𝑥𝑥(𝑡𝑡)) + 𝒢𝒢(𝑡𝑡, 𝑥𝑥(𝑡𝑡))𝑢𝑢(𝑡𝑡)    (5) 

Where 

     𝑥𝑥 = [𝑎𝑎   𝓅𝓅  𝓆𝓆  𝒽𝒽  𝓀𝓀   𝑙𝑙  ]𝑇𝑇   (6) 

           𝑢𝑢 = [𝑢𝑢𝑅𝑅   𝑢𝑢𝑇𝑇   𝑢𝑢𝑁𝑁   ]𝑇𝑇   (7) 

And the functions, 𝓚𝓚,𝕷𝕷 and 𝓖𝓖 are the variation 
contribution to the equinoctial elements coming 
respectively from the Kipler's, Lagrange's and Gausse 
planetary equations [6] and [7].  

𝓚𝓚: Describes the satellite motion under the effect of 
the gravitational attraction of the earth considered with 
takes into account the effect of the natural perturbing 
forces. 

𝕷𝕷 : Take into account the effect of the natural 
perturbing forces. 

𝓖𝓖 : Given by the acceleration by thrusts. 
The translation of nonlinear model (equation 5) 

into the linear model we use the Taylor series up to first 
order around the nominal operating points 

                              𝑥𝑥0 = [𝑎𝑎0  0  0 0  0 𝑙𝑙0 ]𝑇𝑇         (8) 

                                   𝑢𝑢0 = [0  0  0 ]𝑇𝑇                            (9) 

We obtain  

                 �̇�𝔵(𝑡𝑡) = 𝒜𝒜(𝑡𝑡)𝔵𝔵(𝑡𝑡) + ℬ(𝑡𝑡)𝓊𝓊(𝑡𝑡) + 𝒟𝒟(𝑡𝑡)        (10) 

Where 

                        𝔵𝔵 = 𝑥𝑥 − 𝑥𝑥0  and  𝓊𝓊 = 𝑢𝑢 − 𝑢𝑢0  (11) 

The 𝓐𝓐(𝑡𝑡) and 𝓓𝓓(𝑡𝑡) matrices turn out to be time 
varying because of the presence of periodic terms with 
periods equal to multiples of the periodicities of the 
earth, sun and Moon motion relative to the satellite. 

The matrix 𝓑𝓑(𝑡𝑡) is a periodic function with 
period equal to 24 hours. 

                  

ℬ(𝑡𝑡) =





























−

−

002
0cos2sin
0sin2cos

cos
2
100

sin
2
100

020

1

00

00

0

0

0

0

ψψ
ψψ

ψ

ψ

a

v
  (12)

 

Where 

 

v0

 

station keeping velocity equal to �
µ

𝑎𝑎0

 

, µ

 

is the earth 

gravitational coefficient.

 

And                                  

 

                                   𝜓𝜓0 = 𝑙𝑙0 + 𝛩𝛩(𝑡𝑡)                          (13)

 

The GEO

 

orbits are characterized by very small 
values of eccentricity e

 

and inclination i. the longitude 
and latitude can be defined

 

                 𝜆𝜆 = 𝑙𝑙 + 2 𝒽𝒽

 

𝑐𝑐𝑖𝑖𝑠𝑠(𝑙𝑙 + 𝛩𝛩) − 2𝓀𝓀

 

𝑐𝑐𝑐𝑐𝑐𝑐(𝑙𝑙+Θ

  

     

 

(14)

 

           𝜑𝜑 = 2𝓅𝓅

 

𝑐𝑐𝑖𝑖𝑠𝑠(𝜆𝜆 + 𝛩𝛩) − 2𝓆𝓆

 

𝑐𝑐𝑐𝑐𝑐𝑐(𝜆𝜆+Θ   (15)

 

We denote y

 

the spacecraft position vector, 
which can be considered as the output variable of the 
nonlinear model                       

 

                                      𝑦𝑦 = 𝑓𝑓(𝑥𝑥, 𝑡𝑡)                       

 

(16)

 

The output equation into its Taylor series up to 
the first order around x0

 

[8], we get the output equation 
of the linear time varying system (eq.10)

 

                                𝑦𝑦 = 𝐶𝐶(𝑡𝑡)𝔵𝔵                               (17)

 

Where

 

                               𝑦𝑦 = [𝜆𝜆 − 𝑙𝑙0    𝜑𝜑 ]𝑇𝑇                          (18)

 

And 

𝐶𝐶(𝑡𝑡)=
















−
−

−−

00

0

0000

sin2cos20000
100sin2cos21
000sincos0

ψψ
ψψ
ψψ aa

 

(19)

 

 

Station Keeping Box Problem 
Formulation

 

The station keeping box represents the 
maximum permitted values of the excursion of satellite in 
longitude λ

 

and latitude 𝜑𝜑. The SK

 

box can be 
considered as pyramidal solid angle, whose vertex is at 
centre of the earth. 

 

Is defined by the two half angles of vertex, one 
within plan of equator E-W

 

width 2λmax

 

and other in the 
plan satellite meridian N-S

 

width 2𝜑𝜑max

 

(see Figure. 3).

 
 

 
 

         

        

9

G
lo
ba

l
Jo

ur
na

l
of

Sc
ie
nc

e
Fr

on
tie

r
R
es
ea

rc
h 

  
  
  
 V

ol
um

e
X
V

 I
ss
ue

  
  
  
er

sio
n 

I
V

V
II

Y
ea

r
20

15

© 2015    Global Journals Inc.  (US)

  
 

A
)

)
Optimization Control SK Box Manoeuvres for GEO Satellites using Electric Thrusters (OCSKBOX)

III.



 

 
 

 
 
 
 
 
 
 
 
 
 

Figure 3 :

 

Station keeping box

 

The station keeping problem can be formulated 
as constrained linear quadratic continuous time optimal 
control problem [9]. Given the linear model equation 
(10) and equation (17) with initial condition

 

𝑿𝑿�(𝑡𝑡𝑖𝑖) = 𝑿𝑿�𝑖𝑖 , 
the problem is to find the control optimal 𝒖𝒖�𝑐𝑐𝑜𝑜𝑡𝑡 (𝑡𝑡)

 

over a 
finite time horizon tf-ti

 

the minimize the criterion

 

    𝐽𝐽 = 1
2 ∫ (𝑦𝑦𝑇𝑇(𝑡𝑡)

 

𝑄𝑄(𝑡𝑡)

 

𝑦𝑦(𝑡𝑡) + 𝓊𝓊𝑇𝑇(𝑡𝑡)

 

𝑅𝑅(𝑡𝑡)

 

𝓊𝓊(𝑡𝑡)

 

)𝑡𝑡𝑓𝑓
𝑡𝑡𝑖𝑖 𝑑𝑑𝑡𝑡

 

  

 

(20)

 

Subject to the conditions

 

                                 −𝑦𝑦𝑚𝑚𝑎𝑎𝑥𝑥 ≤

 

𝑦𝑦 ≤ 𝑦𝑦𝑚𝑚𝑎𝑎𝑥𝑥     

 

(21)

 

Where 

 

                              𝑦𝑦𝑚𝑚𝑎𝑎𝑥𝑥 = [𝜆𝜆𝑚𝑚𝑎𝑎𝑥𝑥     𝜑𝜑𝑚𝑚𝑎𝑎𝑥𝑥 ]                     (22)

 

The thruster accelerations are defined as 
control laws in the optimization problems. These control 
variables can thus take at any time any value comprised 
between zero and the maximum thruster acceleration, in 
general with j

 

thruster, we can write the control vectors in 
RTN fram as

 

                                     𝓊𝓊𝑗𝑗 = 1
𝑚𝑚
𝛤𝛤𝐹𝐹𝑗𝑗                              (23)

 

 

Where m
 
is the spacecraft and 𝛤𝛤

 
is the thruster 

system configuration matrix can be defined for a satellite 
equipped with four electric thrusters as

 

                                              
𝛤𝛤 = �

−𝑐𝑐𝑖𝑖𝑠𝑠𝑠𝑠 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 −𝑐𝑐𝑖𝑖𝑠𝑠𝑠𝑠 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 −𝑐𝑐𝑖𝑖𝑠𝑠𝑠𝑠 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 −𝑐𝑐𝑖𝑖𝑠𝑠𝑠𝑠 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
𝑐𝑐𝑖𝑖𝑠𝑠𝑠𝑠 𝑐𝑐𝑖𝑖𝑠𝑠𝑐𝑐 𝑐𝑐𝑖𝑖𝑠𝑠𝑠𝑠 𝑐𝑐𝑖𝑖𝑠𝑠𝑐𝑐 𝑐𝑐𝑖𝑖𝑠𝑠𝑠𝑠 𝑐𝑐𝑖𝑖𝑠𝑠𝑐𝑐 𝑐𝑐𝑖𝑖𝑠𝑠𝑠𝑠 𝑐𝑐𝑖𝑖𝑠𝑠𝑐𝑐−𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠 −𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠  𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠             𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠

�                                                (24) 

 And F is the thrust vector of the thruster system  

                                  0 ≤ 𝐹𝐹 ≤  𝐹𝐹𝑚𝑚𝑎𝑎𝑥𝑥                             (25) 

We defined the constraints on the control variable by  

                        −𝐹𝐹𝑚𝑚𝑎𝑎𝑥𝑥
𝑚𝑚

≤ 𝛤𝛤(𝛤𝛤𝛤𝛤𝑇𝑇)−1𝓊𝓊 ≤  𝐹𝐹𝑚𝑚𝑎𝑎𝑥𝑥
𝑚𝑚

                (26) 

 Numerical Solution of the Problem 

A number of different techniques are available 
for the numerical solution of the station keeping box 
problem. In this work we will consider the direct method 
for solution of continuous optimal control problem, the 
idea behind direct method is to discrete the control time 
history and/or stat variable history [10,11].  

In this technique, the control inputs have to be 
written explicitly as function of the stat and its rate of 
change so that bounds on the control variables have 
translated in bunds on the attainable rates of change of 
the state variable [12].  

The linear model (equation 10) can be written in 
different form, characterized by matrix B. to this 
purpose, we can use the Lyapunov transformation 
[9,13], in the stat space defined as 

                                      𝔵𝔵� = ℒ(𝑡𝑡)𝔵𝔵                        (27) 

Where  

                                            ℒ(𝑡𝑡) =



























−

−−
−−

−

−

−

0cos2
sin20
00
0cos2

2
3sin2
1sin2

sin2
0
0

sin2
cos2
cos2

002
cos2sin20
sin2cos20

002
3

000
000

0

0

0

0

0

0

0

0

0

00

00
0

0

ψ
ψ

ψ
ψ
ψ

ψ

ψ
ψ
ψ

ψψ
ψψ

a

av

                                     

(28) 

The linear system (equation 10) can be written 
in the new state variables 𝖝𝖝�  as 

              𝔵𝔵�̇(𝑡𝑡) = �̃�𝐴(𝑡𝑡)𝔵𝔵�(𝑡𝑡) + 𝐵𝐵�(𝑡𝑡)𝓊𝓊(𝑡𝑡) + 𝐷𝐷�(𝑡𝑡)               (29)
 

And we can write the control variable of the 
linear dynamics as a function of the state variable, so

 

            𝓊𝓊(𝑡𝑡) = 𝐵𝐵�−1𝔵𝔵�̇(𝑡𝑡) − 𝐵𝐵�−1�̃�𝐴(𝑡𝑡)𝔵𝔵�(𝑡𝑡) − 𝐵𝐵�−1𝐷𝐷�(𝑡𝑡)      (30)
 

Where 
 

                                        𝐵𝐵�−1 = [ℒ(𝑡𝑡)𝐵𝐵(𝑡𝑡)]−1          (31) 

We obtained 

              𝓊𝓊(𝑡𝑡) = 𝑀𝑀𝔵𝔵�̇(𝑡𝑡) −𝑀𝑀�̃�𝐴(𝑡𝑡)𝔵𝔵�(𝑡𝑡) −𝑀𝑀𝐷𝐷�(𝑡𝑡)            (32)
 

Where 
 

                 𝑀𝑀 = 𝐵𝐵�−1 = �
0 0 1
0 0 0
0 0 0

   
0 0 0
1 0 0
0 1 0

�
 

  (33)
 

2λmax

 

2𝜑𝜑max

 
(l0,0)

 
𝑍𝑍

 

�⃗�𝑋

 
𝑌𝑌�⃗
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IV.



 

 
 

And can be write the state variable as 

                    𝔵𝔵�̇(𝑡𝑡) = �̃�𝐴(𝑡𝑡)𝔵𝔵�(𝑡𝑡) + 𝐷𝐷�(𝑡𝑡)                           (34) 

 And the output equation given by   

                              𝑦𝑦(𝑡𝑡) = �̃�𝐶(𝑡𝑡)𝔵𝔵�(𝑡𝑡)                          (35) 

Where   

                               �̃�𝐶(𝑡𝑡) = 𝐶𝐶(𝑡𝑡)ℒ−1(𝑡𝑡)                        (36) 

The station keeping problem formulated in the 
previous section as a constrained continuous time 
optimal control problem can be translated in a quadratic 
programming problem with constraint only on the state 
variables. 

Above a finite time horizon tf-ti discretized in N 

intervals of length equal h each. The control optimal 
𝓾𝓾𝑐𝑐𝑜𝑜𝑡𝑡 (𝑡𝑡) is taken constant equal to 

        
 𝓊𝓊𝑘𝑘

𝑐𝑐𝑜𝑜𝑡𝑡              With k=0,1,…,N-1                          (37) 

The problem is consist in finding the optimal 
sequence 𝖝𝖝�𝑘𝑘

𝑐𝑐𝑜𝑜𝑡𝑡  
that minimized the criterion 

 

                 𝐽𝐽 = 1
2
∑ 𝑦𝑦𝑘𝑘𝑇𝑇

 
𝑄𝑄𝑘𝑘

 
𝑦𝑦𝑘𝑘𝑁𝑁

𝑘𝑘=1 + 1
2
∑ 𝓊𝓊𝑘𝑘

𝑇𝑇
 
𝑅𝑅𝑘𝑘

 
𝓊𝓊𝑘𝑘

𝑁𝑁−1
𝑘𝑘=0   

 
(38)

 

With
 

                                        𝑦𝑦𝑘𝑘 = �̃�𝐶𝑘𝑘𝔵𝔵�𝑘𝑘                              (39) 

          𝓊𝓊𝑘𝑘 = 𝑀𝑀 𝔵𝔵�𝑘𝑘+1−𝔵𝔵�𝑘𝑘
ℎ

− 𝑀𝑀�̃�𝐴𝑘𝑘
𝔵𝔵�𝑘𝑘+1−𝔵𝔵�𝑘𝑘

2
−𝑀𝑀𝐷𝐷�𝑘𝑘                 (40)

 

 
Subject

 

•
 

The output variable y(t)
 

                                −𝑦𝑦𝑚𝑚𝑎𝑎𝑥𝑥 ≤
 
𝑦𝑦𝑘𝑘 ≤ 𝑦𝑦𝑚𝑚𝑎𝑎𝑥𝑥      

 
   (41)

 

•
 

The control variable 𝓊𝓊
 
(t)

 

                          
−𝐹𝐹𝑚𝑚𝑎𝑎𝑥𝑥
𝑚𝑚

≤ 𝛤𝛤(𝛤𝛤𝛤𝛤𝑇𝑇)−1𝓊𝓊𝑘𝑘 ≤
 
𝐹𝐹𝑚𝑚𝑎𝑎𝑥𝑥
𝑚𝑚

  

 

  (42)

 

•

 

The auxiliary  state variable

 

𝔵𝔵�(𝑡𝑡)
 

                               
𝔵𝔵�𝑘𝑘+1−𝔵𝔵�𝑘𝑘

ℎ
= �̃�𝐴𝑘𝑘

𝔵𝔵�𝑘𝑘+1+𝔵𝔵�𝑘𝑘
2

+ 𝐷𝐷�𝑘𝑘

 

              (43)

 

A step-by-step walkthrough of the algorithm is 
as follows:

 

Step1:

 

Formulation of SKBOX problem

 



 

Fixed the finite time horizon tf-ti=1 day.

 



 

The weighting matrices are equal to: R=I2×2 and 
Q=I2×2. 



 

Fixed the initial orbital elements vector x(ti). 
Step2:

 

Finding the optimal solution with minimized the 
criterion J with a discretization step of length h=0.01 
day. 
Step3:

 

Obtained the optimal control with equation (40).

 

Step4:

 

Finding the output variable with equation (39).

 

Step5:

 

Repeat the previous steps for 1yaer.

 
 

 Numerical Simulation 

The initial orbital elements for this simulation 
can be found in Table 1. 

Table I : Initial Orbital Elements 

 
 
 
 
 
 
 
 

The satellite is considered in this simulation is 
equipped with four thrusters mounted on its anti nadir 
face (see Figure 4).the configuration of the force vector 
is   
                                 𝐹𝐹 = [𝐹𝐹1 𝐹𝐹2 𝐹𝐹3 𝐹𝐹4]                (42) 

 

 

 

 

 

 

 
 

Figure 4 : Configuration force vector 
The characteristics for this satellite can be 

found in Table 2. 
Table II : Characteristics of Satellite 

The objective is to determine the set of 
manoeuvers to be executed in order to keep the satellite 
in a latitude and longitude box centered at the station 
longitude l0=10deg with λmax=0.01deg and 
𝜑𝜑max=0.01deg.  

Figure 5, Figure 6 and Figure 7 illustrates the 
historical time of the optimal acceleration control 
components in RTN frame for one year. 

Negative and positive values of optimal 
acceleration radial allow maintain the satellite in a 
latitude window equal to ]-0.01°, 0.01°[, positive values 
of optimal tangential acceleration fix the satellite into a 
longitude interval ]-0.01°, 0.01°[, and the variation of 

Orbital parameter  Value  
Semi major axis(km)  

Right ascension of A.N ( °)  
Eccentricity  

Inclination ( °)  
Argument of perigee ( °)  

Mean anomaly ( °)  

42166.279  
82  

0.0000778  
0.002044  

315.67725  
324.34109  

Characteristics  of satellite  Value  
Spacecraft masse (kg) 

Can angles of thruster ( °)  
Slaw angles of thruster ( °)  

Maximum force modulus (N)  
Specific impulse (s).  

4500  
50  
15  

0.17  
3800s  

N  

T  
Thruster 

1 

Thruster 
2 

Thruster 
3 

Thruster 
4 γ  

σ  

R  
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V.



 

 
 

optimal acceleration normal centered the satellite in the 
box. 

 

Figure 5 : Optimal acceleration radial control for one 
year 

 

Figure 6 : Optimal acceleration tangential control for one 
year 

 

Figure 7 : Optimal acceleration normal control for one 
year 

Figure 8 illustrates the evolution of the three 
components of propulsive force in RTN frame for one 
year with the maximum force modulus Fmax=0.17N.  

The variation in propulsive Force allows 
producing the optimal acceleration to control the 
satellite in latitude and longitude box. The thruster forces 
values are lower them maximum propulsive forces. 

 

Figure 8 :

 

Propulsive force for one year in RTN frame

 

 

Figure 9 Shows the controlled and uncontrolled 
manoeuvers time histories of the latitude for the station 
keeping box in condition ±0.01deg. In SKBox no-
controlled, the variation in latitude value is not fixing in 
the box. For this problem the SKBox controlled is used 
for fixing the variation in latitude into the box.

 

 

Figure 9 :

 

Time histories of the latitude for one year

 

Figure 10 illustrates the controlled and 
uncontrolled manoeuvers time histories of the true 
longitude for the station keeping box in condition 
±0.01deg.

 

In SKBox no-controlled, the variation in 
longitude value is not fixing in the box. For this problem 
the SKBox controlled is used for fixing the variation in 
longitude into the box.
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Figure

 

10 : Time histories of true longitude for one year
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Conclusion

 

In this paper a new method for station keeping 
box of geostationary satellite equipped with electric 
propulsion has been developed, we considered a novel 
approach based on direct method for solution of 
continues optimal control. Using this method, satellite 
position can be directly controlled based on the optimal 
acceleration for thruster, simulation results have 
demonstrated that the satellite can be tightly controlled 
in the station keeping box.
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