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I. Introduction

  

  
  

{Tn(z)}n≥0

D(R) = (0 ,1)
{Tn(z)}n≥0

{Tn(z)}n≥0

The basic sets of polynomials continue to be at the core of many investigations [1]-

[19] since the work of Whittaker [12]. The properties of series of the form C0P0(z) +

C1P1(z)+· · ·+ where P0(z), P1(z) · · · are prescribed polynomials differ widely according

to the particular polynomials choosen. For example, the region of convergence may be a

circle (Taylor Series), an ellipse (series of Legendre polynomials), a half-plane (Newton’s

interpolation series) etc. Whittaker [12], in his attempt to find common properties

exhibited by all these polynomials, introduced the subject of basic sets of polynomials.

In his work, he gave the definition of basic set, basic series and effectiveness of basic

sets. Cannon [13] obtained the necessary and sufficient conditions for the effectiveness

of basic sets for classes of functions of finite radii of regularity and of entire functions.

Nassif and Adepoju [18] investigated the zeros of polynomials belonging to simple sets.

Wakid and Maker [2] also contributed to the investigations of the zeros of polynomials

belonging to simple sets. Initially, the subject has been approached through the classical

treatment. Then Newns [19] laid down the treatment of the subject based on functional

analysis consideration. Over the years, this approach has received further advancement

through the works of Falgas [16], Adepoju [3] and Kishka and El-Sayed Ahmed [1].

[1] A sequence {Pn(z)}n≥0 of polynomials is said to form a basic set if

and only if polynomial Pi(z), i = 0, 1, · · · admits a unique finite linear combination of

the polynomials of the set:

P (z) =

n∑
k=0

CkPk(z), where n <∞. (1.1)

Indeed, the polynomials {Pn(z)}n≥0 are linearly independent, i.e.,

Definition 1.1
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implies

C0 = C1 = C2 = · · · = Cn = 0.

The set of Polynomials {zn}n≥0 has a unique representation of the form

zn =

n∑
k=0

πn,kPk(z), where πn,k = Cnk

so that

1 =
0∑

k=0

π0,kPk(z), z =
1∑

k=0

π1,kPk(z), z
2 =

2∑
k=0

π2,kPk(z), · · · , zn =
n∑
k=0

πn,kPk(z). (1.2)

In general, any polynomial of the form

P (z) =
k∑
i=0

Piz
i

can be written

P (z) =

k∑
i=0

Piz
i =

k∑
i=0

 i∑
j=0

πi,jPj(z)

 (1.3)

=
k∑
i=0

Pi (πi,0P0(z) + πi,1P1(z) + · · ·) (1.4)

=
k∑
i=0

Piπi,0P0(z) +
k∑
i=0

Piπi,1P1(z) + · · · (1.5)

=
∑
n

CnPn(z), (1.6)

so that the representation is unique.

To every basic set there corresponds an associated basic series. So, if {Pn(z)}n≥0 forms

a basic set, then the corresponding basic series can be written as

f(z) =
∞∑
n=0

anz
n =

∞∑
n=0

an

n∑
k=0

πn,kPk(z)

)

=

∞∑
n=0

an (πn,0P0(z) + πn,1P1(z) + · · ·)

=
∞∑
n=0

πnf(0)Pn(z), (1.7)

where

πnf(0) = a0π0,n + a1π1,n + a2π2,n + · · · =
∞∑
k=0

akπk,n.

{(

n∑
k=0

CkPk(z) = 0

© 2015    Global Journals Inc.  (US)
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Substituting ak ≡ fk(0)/k!, we have

πnf(0) =
∞∑
k=0

f
(k)

(0)

k!
πk,n =

∞∑
k=0

1

k!
πk,n

dkf(0)

dzk
(1.8)

so that the corresponding basic series takes the form

f(z) =

∞∑
n=0

πnf(0)Pn(z), (1.9)

where πj , j = 1, 2, · · · , n can be regarded as the elements of the set of operators of the

basic set, {πn}n≥0, given by

πn =
∞∑
k=0

1

k!
πn,k

dk

dzk
. (1.10)

This set is called a basic set of operators if these operators are associated with a basic

set of polynomals {Pn(z)}n≥0. Prior to the definition of the effectiveness of basic sets,

we recall that in the complex plane, a domain is an open connected set. A regular closed

curve is usually denoted by D(C), the domain interior to C; its closure is denoted by

D̄(C) and the class of functions regular in D(C) is written as H(C). When C is a circle

of radius |z| = r, the above entities are referred to as D(r), D̄(r) and H(r), respectively.

Let f(z) be a function regular in the domain D(R). The basic series
∞∑
n=0

πnf(0)Pn(z) of (1.7) is said to represent f(z) in the domain if it converges uniformly

to f(z) in D(R). If the domain is a circle, we simply state that the basic set {Pn(z)}n≥0
represents f(z) in |z| ≤ R. We write this as

f(z) ∼
∞∑
n=0

πnf(0)Pn(z) (1.11)

[3] A basic series (or a basic set) {Pn(z)}n≥0 is effective in a domain

D(R) if every function f(z) regular in D(R) is represented by the basic series.

The following is relevant for the effectiveness in closed circle. Suppose the set {Pn(z)}n≥0
is basic. We denote by

Mk(R) = max
|z|=r
|Pk(z)| (1.12)

the maximum value of Pk(z) ∈ {Pn(z)}n≥0 over |z| = R. The Cannon sum [13] Wn(R)

of the basic set {Pn(z)}n≥0 is defined by

Wn(R) =
∞∑
k=0

|πn,k|Mk(R), (1.13)

and the Cannon function is denoted by

λ(R) = limn→∞ {Wn(R)}
1
n = lim

n→∞
sup {Wn(R)}

1
n . (1.14)

Definition 1.2

Definition 1.3
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This definition is satisfied in both open and closed circles with the notation < and ≤
respectively. Let us now define the Cannon condition.

[3] A set {Pn(z)}n≥0 of polynomials in which the polynomial Pn(z) is

of degree n, is necessarly basic and is called a simple set. Let {Pn(z)}n≥0 be a basic

set of polynomials. Then the number V(n) is defined as the number of polynomials of

the set whose degree is less than n. The polynomials of the set {Pn(z)}n≥0 are linearly

independent if V(n) ≤ n for n ≥ 1. The number Dn is also defined as the degree of

polynomials of the highest degree in the representation (1.1).

For

zn =
n∑
k=0

πn,kPk(z), we have Dn ≥ n.

[1] [3] Let Nn be the number of non-zero terms in the representation.

Then the basic set {Pn(z)}n≥0 is called the Cannon set if N
1/n

n −→ 1 as n −→∞. This

condition is called the Cannon condition.

In this paper, we are interested in the investigation of properties of the Chebychev basic

set. In Section 2, we prove that the set of Chebychev polynomials {Tn(z)}n≥0 is a basic

set. In Section 3, we provide the corresponding associated basic series. In section 4, we

show the effectiveness of the basic set. In section 5, we prove that {Tn(z)}n≥0 forms

a Cannon set. Finally, in section 6, we infer that the Chebychev basic set gives better

improvement for the Whittaker constant than the other sets of classical polynomials.

II. Basic Set of Chebychev Polynomials

Let us prove the following

The set of Chebychev polynomials {Tn(z)}n≥0 is a basic set.

(i) We first show that the representation

Tn(z) =

[n/2]∑
k=0

n

2k

)
zn−2k

(
z2 − 1

)k
is unique. (2.1)

Since

T0(z) = 1 =
0∑

k=0

0

2k

)
z
0−2(0) (

z2 − 1
)0

= 1

T1(z) =

0∑
k=0

1

2k

)
z
1−2(0) (

z2 − 1
)0

= z

T2(z) =
1∑

k=0

2

2k

)
z
2−2(k)

(z2 − 1)k = 2z2 − 1

...

Tn(z) =

[n/2]∑
k=0

n

2k

)
zn−2k(z2 − 1)k.

Definition 1.4

Definition 1.5

Theorem 2.1

© 2015    Global Journals Inc.  (US)
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In general, given any polynomial

Tn(z) =

[n/2]∑
i=0

tiTi(z) (2.2)

and using Tn(z) representation, we can write

Tn(z) =

[n/2]∑
i=0

ti

[i/2]∑
j=0

i

2j

)
zi−2j(z2 − 1)j


=

[n/2]∑
i=0

ti

{(
i

0

)
zi +

i

2

)
zi−2(1)(z2 − 1) +

i

4

)
z
i−2(2)

(z2 − 1)2 + · · ·

}

=

[n/2]∑
i=0

ti
i

0

)
zi +

[n/2]∑
i=0

ti
i

2

)
zi−2(z2 − 1) +

[n/2]∑
i=0

ti
i

4

)
z
i−2(2)

(z2 − 1)2 + · · ·

=

[n/2]∑
k=0

tk
n

2k

)
zn−2k(z2 − 1). (2.3)

Hence, the set{Tn(z)}n≥0 is well represented. To complete the proof, we state the

following

The sequence {Tn(z)}n≥0 of Chebychev polynomials in which Tn(z) is of

degree n is basic.

We have T0(z) = 1T0, since T0(z) is a polynomial of degree zero. Dividing through by T0,

we have 1 =
1

T0
T0(z) = π0,0T0(z) with π0,0 =

0

0

)
= 1. Let also T1(z) = T1,0 + T1,1z

where T1,1 6= 0. Dividing through by T1,1, we have 1
T1,1

T1(z) =
T1,0
T1,1

· 1 + z so that

z = −T1,0
T1,1

· 1 +
1

T1,1
T1(z) =

−T1,0
T1,1

· π0,0T0(z) +
1

T1,1
T1(z) = −π1,0T0(z) + π1,1T1(z).

Hence the representation is true for n = 0, 1. Suppose it is true for 2, 3, · · ·n−1 and let

T ∗n(z) = Tn,0 + Tn,1z + Tn,2(2z
2 − 1) + Tn,3(4z

2 − 3z) + · · ·

+Tn,n−1

 [n/2]∑
k=n−1

n− 1

2k

)
zn−2k(z2 − 1)k



+Tn,n

[n/2]∑
k=n

n

2k

)
z
n−2k

(z2 − 1)k

where Tn,n 6= 0. Then

T ∗n(z) = Tn,0
0

0

)
z0 + Tn,1

{(
1

0

)
z1−0(z2 − 1)0

}

+Tn,2

{(
2

0

)
z2−0(z2 − 1)0 +

2

2

)
(z2 − 1)

}
+ · · ·

Lemma 2.2
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+Tn,n−1


[n/2]∑
k=n−1

n− 1

2k

)
z2(z2 − 1)k


+Tn,n


[n/2]∑
k=n

n

2k

)
zn−2k(z2 − 1)k

 , (2.4)

what we can write in a compact form as

T ∗n(z) = Tn,0 + Tn,1z + Tn,2(2z
2 − 1) + Tn,3(4z

3 − 3z) + · · ·

+Tn,n


[n/2]∑
k=n

n

2k

)
zn−2k(z2 − 1)k

 . (2.5)

Let Tn,j = αj . Then we get

Tn,0 = α0, Tn,1 = α1, · · · , Tn,n = αn,

so that

T ∗n(z) = α0T0(z) + α1T1(z) + α2T2(z) + · · ·+ αnTn(z)

where

T0(z) = 1, T1(z) = z, T2(z) = (2z2 − 1), · · · .

Consequently,

Tn,n


[n/2]∑
k=n

n

2k

)
zn−2k(z2 − 1)k

 = T ∗n(z)− {α0T0(z)

+α1T1(z) + · · ·+ αn−1Tn−1(z)}

from which we get on dividing by Tn,n:

[n/2]∑
k=n

n

2k

)
zn−2k(z2 − 1)k =

T ∗n(z)

Tn,n
− 1

Tn,n
{α0T0(z) + α1T1(z) + · · ·+ αnTn(z)} . (2.6)

The right hand side can be denoted by T̃ ?n(z). Hence, we obtain

T̃ ?n(z) =

[n/2]∑
k=n

n

2k

)
zn−2k(z2 − 1)k. (2.7)

For 0 < k < n, we have

T̃ ?n(z) =

[n/2]∑
k=0

n

2k

)
zn−2k(z2 − 1)k. (2.8)

By unique representation T ?n(z) = Tn(z). Furthermore, the polynomials are linearly

independent. Indeed, one can immediately prove that

© 2015    Global Journals Inc.  (US)
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a0T0(z) + a1T1(z) + · · ·+ anTn(z) = a01 + a1z + a2(2z
2 − 1) + a3(4z

3 − 3z)

+a4(8z
4 − 8z2 + 1)

+ · · ·+ an

[n/2]∑
k=0

n

2k

)
zn−2k(z2 − 1)k

= 0 (2.9)

leads to ai = 0 for i = 0, 1, 2, · · · , n. Thus, the set {Tn(z)}n≥0 of Chebychev polynomials

is basic.

III. Associated Basic Series of {Tn(z)}n≥0

In this section, we are interested in the investigation of existence of basic series associated

with the basic set {Tn(z)}n≥0.

The set {Tn(z)}n≥0 has an associated basic series.

Consider the function

f(z) =
∞∑
k=0

anTn(z). (3.1)

Expanding it, we get

f(z) =
∞∑
n=0

an

[n/2]∑
k=0

n

2k

)
zn−2k

(
z2 − 1

)k
=

∞∑
n=0

an

{(
n

0

)
zn +

n

2

)
zn−2(z2 − 1) + · · ·+

n

2j

)
zn−2j(z2 − 1)j + · · ·

}

=

∞∑
n=0

an

{(
n

0

)
Q0(z) +

n

2

)
Q1(z) + · · ·+

n

2j

)
Qj(z) + · · ·

}
, (3.2)

where

Q0(z) = zn, Q1(z) = zn−2(z2 − 1), Q2(z) = zn−4(z2 − 1)2

..

.

Qj(z) = zn−2j(z2 − 1)j . (3.3)

Then, we can write

f(z) =
∞∑
n=0

{
an

n

0

)
Q0(z) + an

n

2

)
Q1(z) + · · ·+ an

n

2j

)
Qj(z) + · · ·

}

= a0
0

0

)
Q0(z) + a1

1

0

)
Q0(z) + · · ·+ an

n

0

)
Q0(z)

+ a0
0

2

)
Q1(z) + a1

1

2

)
Q1(z) + · · ·+ an

n

2

)
Q1(z)

+a0
0

4

)
Q2(z) + a1

1

4

)
Q2(z) + · · ·+ an

n

4

)
Q2(z) + · · ·

Theorem 3.1

Proof:
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=
∞∑
k=0

ak
k

2n

)
Qn(z) ≡

∞∑
n=0

πnf(0)Qn(z),

where πnf(0) = ak
k

2n

)
. Hence, the basic series associated with the basic set

{Tn(z)}n≥0 is f(z) =

∞∑
k=0

ak
k

2n

)
Qn(z), where {Qn(z)}n≥0 forms a basis for {Tn(z)}n≥0

IV. Effectiveness of Chebychev Polynomials  orD(R) D+(r)

In this section, we investigate the effectiveness of {Tn(z)}n≥0 in the domain D(R) or

D+(r).

Let {Tn(z)}n≥0 be a basic set of polynomials and suppose that, for any

value R > 0, λ(R) = σ ≥ R, then the basic series is effective in D̃(R) for the class

H̄(σ).

Let f(z) =
∞∑
n=0

anTn(z) be any function regular in |z| < σ. Then

∞∑
n=0

anTn(z) converges

and lim
n→∞

anz
n−2k(z2−1)k = 0. So, we can choose n large enough so that |anzn−2k(z2−

1)k| → 0 as n→∞. Hence,

lim
n→∞

|anzn−2k(z2 − 1)k| ≤ lim
n→∞

|an|σn < 1

This implies that

lim
n→∞

|an|1/n <
1

σ
. (4.1)

Now, consider the series

∞∑
n=0

an

[n/2]∑
k=0

πn,2kQk(z).

We have, for |z| ≤ R, ∣∣∣∣∣∣∣∣∣an [n/2]∑
k=0

πn,2kQk(z)

∣∣∣∣∣∣∣∣∣ ≤ |an|Wn(R).

By (4.1)

limn→∞ {|an|Wn(R)}
1
n ≤ limn→∞|an|

1
n · λ(R) <

σ

σ
= 1.

Thus, the series
∞∑
n=0

|an|Wn(R)

Theorem 4.1

Proof:

© 2015    Global Journals Inc.  (US)
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is convergent and since

|
∞∑
n=0

an

[n/2]∑
k=0

πn,2kQk(z)| ≤
∞∑
n=0

|an|Wn(R),

then by Weierstrass-M-test, the series

∞∑
n=0

an

[n/2]∑
k=0

πn,2kQk(z)

is uniformly and absolutely convergent in |z| ≤ R. Re-arranging the terms of the series,

we conclude that the resulting basic series

∞∑
n=0

πnf(0)Qn(z)

converges uniformly to f(z) in |z| ≥ R. Thus, the basic series represents f(z) in |z| ≤ R.

If for any value of R > 0, λ(R) = R, then the basic set {Tn(z)}n≥0 will

be effective in |z| ≤ R.

If R > 0 and λ(R) = R, from Theorem 4.1, the basic series represents in |z| ≤ R
every function regular in |z| ≤ R. That is to say, the basic series (or the basic set) will

be effective in |z| ≤ R. Thus the condition that λ(R) = R is a sufficient condition for

effectiveness in |z| ≤ R.

The necessary and sufficient condition for the set {Tn(z)}n≥0 to be ef-

fective in |z| ≥ R is that λ(R) = R.

If the set {Tn(z)}n≥0 is effective in |z| ≤ R, then λ(R) = R. If on the

contrary, λ(R) > R, then for any number ρ for which R < ρ < λ(R), there exists a

function f(z) of radius of regularity ρ, that is f(z) is regular in |z| ≤ R and that the

basic series cannot represent in |z| ≤ R. Thus, the set will not be effective in |z| ≤ R.

This follows directly from Corollary 4.2 since for any value of R >

0, λ(R) = R. Then the basic set {Tn(z)}n≥0 will be effective in |z| ≤ R. Since,

{Tn(z)}n≥0 is effective in D(R) (or D+(r)), then it is represented in D(R) (or D+(r))

by a basic series of the form

f(z) =

∞∑
n=0

πnf(0)Qn(z),

where f(z) belongs to H(R) (or H(r)), the class of all holomorphic functions. Hence,

there exists f(z) ∈ H(R) (or H(r)) denoted by f(z) =
∑∞

n=0 πnf(0)Qn(z), representing

the {Tn(z)}n≥0 in D(R) (or D+(r)). Hence, {Tn(z)}n≥0 is effective in D(R) (or D+(r)).

Suppose by definition

Corollary 4.2

Proof:

Theorem 4.3

Proof:

Necessity: 

Sufficienty:
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Mn(R) = max
|z|=R

|Tk(z)| = max
|z|=R

∣∣∣zn−2k(z2 − 1)k
∣∣∣ ≤ Rn−2k(R2 − 1)k ≤ Rn(R2 − 1)k.

Then

Wn(R) =

[n/2]∑
k=0

|πn,2k|Mn(R) <

[n/2]∑
k=0

|πn,2k|Rn(R2 − 1)k

and the Cannon function λ(R) is

λ(R) = limn→∞ {Wn(R)}1/n .

This implies that

λ(R) ≤ limn→∞


[n/2]∑
k=0

|πn,2k|


1/n

{Rn}1/n (R2 − 1)k/n = R.

Since λ(R) is non-negative, i.e. λ(R) > 0, we have that λ(R) = R. Then the domain of

effectiveness D(R) = (0, 1) is a disc.

V. Cannon Condition

In this section, we investigate the condition for the set {Tn(z)}n≥0 to be a Cannon set.

This can be stated in the following result.

The set {Tn(z)}n≥0 forms a Cannon set.

It suffices to show that if Nn = Cn2k is the number of non-zero terms in the

unique representation of {Tn(z)}n≥0, N1/n −→ 1 as n −→ ∞. Using Stirling formula,

i.e. n! =
√

2πnn e−n, we have

Nn =
n!

(2k)!(n− 2k)!
=

√
2πnne−n√

2π(2k)2k e−2k
×
(√

2π(n− 2k)(n−2k) e−(n−2k)
)−1

.

As n approaches infinity, we have that , N
1/n
n −→ 1. Hence {Tn(z)}n≥0 is a Cannon set.

VI. Improved Whittaker's Constant using Chebychev Polynomials of
the First Kind

a) Generalities

Over the years there has been intensive investigation [3]-[12] [18], on the best approxi-

mation of the so called Whittaker’s constant noted W . This constant was introduced by

Whittaker in his work [12] on interpolation of function. The problem is the following:

given a function f(z) in a complex plane C, what is the upper bound for which this

function is entire and is of exponential type c such that in a domain D(R) which could

be a disc, one has f(z) = f ′(z) = f ′′(z) = · · · = f (n)(z) = 0. In other words, what

range does the constant W lie? Ever since there remains the question of the range

which best approximates this constant. To this question tackle many others since the

Theorem 5.1

Proof:

© 2015    Global Journals Inc.  (US)
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be 0.7259 ≤ W ≤ 0.7380. In this section, we state this range can be improved using

Chebychev polynomials of the first kind instead of the other classical polynomials. The

Chebychev polynomials are of considerable interest in interpolation theory [12]. The

degree of accuracy of the interpolation result obtained depends on the bound which can

be found for these polynomials. With |zk| ≤ 1 k = 0, 1, · · · the maximum value of

these polynomials will be denoted by Mn as follows:

Mn = |Tn(z, z0, z1, · · · , zn)|.

We claim that for n ≥ 1, there exists r such that

Mn < rn+1, (6.1)

where r is some positive number, r > 0. This leads to an improved value of the

Whittaker’s constant W defined as the least upper bound of a number c such that

the function f(z) is an entire function of exponential type c and if f(z) and each of its

derivatives have at least one zero in the unit circle, then f(z) = f ′(z) = · · · = f (n)(z) = 0

or equivalently f(z) ≡ 0. Let now the set {Tn(z)}n≥0 be a basic set of Chebychev

polynomial, effective in the circle |z| ≤ 1. Then {Tn(z)}n≥0 is said to be of order 1 if

its zeros lie in |z| ≤ 1. In this case, the polynomial {Tn(z)}n≥0 can be expanded in the

power series

Tn(z) =
∞∑
k=0

eπik/2
zk

k!
.

Let Wj be the Whittaker’s constant, 0.7259 ≤ W ≤ 0.7380 with j = 0, 1, 2, · · · , n and

W1 6= W2 6= · · · 6= Wn. Then the polynomial corresponding to Wj is of the type σ = 1
Wj

,

where Wj is the modulos of the zeros of {Tn(z)}n≥0. Assume f(z) be an entire function

exponential type c. Then if

f(z) =

∞∑
n=0

anz
n

n!
,

historical work by Whittaker. Up till now, to our best knowledge of the literature, the

best range is obtained using Goncharov polynomials and this has been computed to

it follows that an = O(c+ε)n, ε > 0. That is, for any b > c, it follows that for sufficiently

large n

|an| < bn. (6.2)

Denote by {zk, k = 0, 1, · · · , n} the points, inside the unit circle where f(z) and its

derivative vanish. Then {Tn(z)}n≥0 will be represented by the power series

f(z) =

∞∑
k=0

an+k
k!

Tk(z).

For large n and |z| ≤ 1, we get from (6.1) and (6.2)

|f(z)| ≤ bn+krn+k+1 =
(br)nr

(1− br)
.
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Thus as n −→∞ we obtain

|f(z)| ≤ r

1− br
.

In this case the Whittaker’s constant W >
1

r
.

b) Main result

Here, we aim at proving that the Levinson method [9] applied to Chebychev polynomials

instead of Goncharov one’s, provides a better approximation of the range of the Whit-

taker’s constant. Furthermore, the Chebychev polynomials reveal to be the best set

for the computation of the closest boundary value of this range than the other classical

polynomials (Lagauerre, Legendry, Jacobi, Bessel etc.) commonly used in Mathematical

Physics. Following Levinson method, we get the following statement.

For an entire function Tn(z) of Chebychev polynomials, there exists a

positive number r such that |Tn(z)| = Mn < rn+1. Then, for Chebychev polynomials of

the first kind, the Whittaker’s constant has an upper bound not exceeding 0.7380 and a

lower bound not exceeding 0.73778.

Theorem 6.1

Proof: Using Chebychev polynomial representation, we obtain

∂Tn
∂zk

= −Tk(z, z1, z2, · · · , zn)Tn−k−1(zk, zk+1, · · · , zk−1)

Using Euler’s formula for homogeneous function of degree n allows us to write

nTn(z) =
z∂Tn
∂z

+
z0∂Tn
∂z0

+ · · ·+ zn−1
∂Tn
∂zn−1

nTn(z) = zTn−1(z, z1, · · · , zn−1)

−
n−1∑
k=0

zkTk(z, · · · , zk)Tn−k−1(zk, · · · , zn−1)

. (6.3)

Taking absolute value of both sides of the relation (6.3), we obtain

Mn ≤Mn−1 +

n−1∑
k=0

MkMn−k−1. (6.4)

To getMn we will make the use of the Taylor series expansion of the function Tn(z, z0, z1, · · · , zn).

First, let us define the new function Hn such that

Hn(z0, z1, · · · , zn−1) = Tn(0, z0, · · · , zn−1)

∂Hn

∂z0
= −Tn−1(z0, z1. · · · , zn−1)

∂2Hn

∂z20
= −Tn−2(z0, z2. · · · , zn−1)

(6.5)

© 2015    Global Journals Inc.  (US)
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Thus, by Taylor’s theorem, we get

Hn(z0, z1, · · · , zn−1) = −z0Hn−1(z1, · · · , zn−1)−
z20
2!
Hn−2(z2, · · · , zn−1)

− · · · − zn−10

(n− 1)!
H1(zn−1). (6.6)

so that

Tn(z, z0, z1, · · · , zn−1) = (z − z0)Hn−1(z1, z2, · · · , zn−1) +
(z − z0)2

2!
Hn−2(z2, · · · zn−1)

+ (z−z0)3
3! Hn−3(z3, z4, · · · , zn−1) + · · ·+ (z − z0)n

n!
H0, (6.7)

with

H1(z) = −z0, H2(z0, z1) = z0z1 −
z20
2!
, H3(z0, z1, z2) = −z0z1 +

z0z
2
1

2!
+
z20z1
2!
− z30

3!
.

Now, as |z| ≤ 1, assuming z = −1, z0 = 1 and using (6.4), we obtain

M1 ≤ |1− (−1)| = 2.

Similarly

M2 ≤
(

2|z − z0|
2

)
, H1(z0) = 2 sin θ.1 ≡ f(θ)

which attains its maximum at θ = π/2. Hence M2 ≤ 2. By the same way, we find

M3 ≤ 3,M4 ≤ 5.06759, etc. so that by (6.4), we get

Mn ≤ 3Mn−1 + 4Mn−2 + 4Mn−3 + 6Mn−4 + 10.13518Mn−5.

Then, assuming the existence of a number r0 such that Mk < rk+1
0 , we obtain

Mn ≤ 3rn + 4rn−1 + 4rn−2 + 6rn−3 + 10.13518rn−4 · · · (6.8)

As the right side of (6.8) is not greater than nrn+1, for r0 < r, we have

nrn+1 > Mn

so that for n = 10

10r11 > 3r10 + 4r9 + 4r8 + 6r7 + 10.13518r6 · · · (6.9)

Dividing by r6, (6.9) gives four complex roots with one real root stated below

(i) − 0.75884− 0.49888895i; (ii) − 0.75884 + 0.49888895i;

(iii) 0.231357− 0.923815i; (iv) 0.231357 + 0.923815i;

(v) 1.35497 ∼= 1.3550.

(6.10)

The inverse of the real root gives the Whittaker’s constant W such that

W >
1

r
=

1

1.3550
= 0.7380. (6.11)
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By Newton Ralpson iteration there exists r∗ such that

1.354967 ≤ r∗ ≤ 1.35542 and
1

1.354967
≥ 1

r∗
≥ 1

1.35542

which gives

0.7380 ≥W ≥ 0.73778.

So taking into account (6.11), we obtain the Whittaker constant W = 0.7380 which

improves the earlier known result by Levinson [9] and Macintyre [6]. So, the new range

of the Whittaker’s constant becomes

0.73778 ≤W ≤ 0.7380. (6.12)

Let {Tn(z)} be the set of Chebychev polynomials associated with the

points αβn where α and β are complex numbers. If β > 1, the set will be of infinite

order and if β = 1, the set will be of order 1 and type σ =
|α|
τ

where τ is the modulo of

a zero of the function

f(θ) =

∞∑
t=0

β
tπi/2

θt/t!

of the least modulo.

The Chebychev polynomial of the first kind can be written as

f(z) = cos(n cos−1(z)).

Let cos−1(z) = θ so that

f(θ) = cos(nθ) =
∞∑
n=0

(−1)nθ2n

(2n)!

or equivalently, putting t = 2n and replacing the exponential function e by β,

f(θ) =

∞∑
t=0

β
πit/2 θt

t!
.

Hence, the Chebychev polynomial is of order 1. Suppose f(θ) has no zero on the finite

plane −1 ≤ θ ≤ 1. Then f(θ) is constant. It follows that τ is the modulo of a zero of

f(θ) nearest to the origin. Thus there should exist a function h(θ) = 1
f(θ) regular on

the |θ| < τ , where

h(θ) =
∞∑
t=0

β
−πit/2

t!θ−t,

which can be written as

h(θ) =

∞∑
t=0

ctθ
−r, (6.13)

Theorem 6.2

Proof:

© 2015    Global Journals Inc.  (US)
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with ct = t!β
−πit/2

. We assume that

lim
t→∞
{ct}

1
t =

1

τ
> 0.

Suppose now there exist a number q <
1

τ
and a positive integer m such that

ct > qm; 0 ≤ m ≤ t. (6.14)

The Cannon function λ(h(θ) : [r]) is defined as

λ(h(θ) : [r]) = lim
t→∞
{Wt(h(θ) : [r])}

1
t
,

where Wt(h(θ) : [r]) is the Cannon sum expressed as

Wt(h(θ) : [r]) =

∞∑
t=0

∣∣∣t!β−tπi/2
∣∣∣Mt(θ) =

∞∑
t=0

|ct|Mt(θ),

where

Mt(θ) = max
|θ|=r
|θt|.

Hence

Wt(h(θ) : [r]) ≥ |qm| r−t,

that ensures that the order of the set {Tn(z)}n≥0 is infinite in the case β > 1.

Now, let us examine the case β = 1. Then, by similar arguments, an integral function

defined by

f(θ) =
∞∑
t=0

θt

t!

is of order 1.

By analogy, following step by step the previous development, the case |α| = 1 and β → 1

as n→∞ leads to the same conclusion as above. Therefore, the order and type of the

Chebychev set of polynomials are well defined.

To complete the full analysis regarding the better approximation of the lower and upper

bounds of the Whittaker’s constant, we achieve the computation of range on which lies

this constant for all classical commonly used polynomials in Mathematical Physics i.e.

Laguerre, Jacobi and Bessel polynomials. These sets of polynomials can be categorised

into two groups: A-basic set and B-basic set. A-basic set contains those polynomials of

the form

n∑
k=0

akz
k, (e.g. monomials (zn), Laguerre polynomials

n∑
k=0

(−n)kz
k

(k!)2

)
, etc),

while B-basic set is the set of the polynomials of the form

[n/2]∑
k=0

akz
k (such as Chebychev

polynomials of the first kind, Hermite, Legendre Jacobi, Gaugenbauer polynomials, etc).

Hence, the polynomials belonging to B-basic set have a better Whittaker’s constant than

those polynomials of A-basic set. See data provided in the table.
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Range of Order Type

Polynomials Whittaker’s

constant

A-basic set 0.7220 ≤W ≤ 0.7378 1 if of the form 1.35538 ≤ σ ≤ 1.3589
∞∑
t=0

βπit/2θt

t!

or otherwise ∞.

B-basic set 0.7230 ≤W ≤ 0.7380 1 if ultraspherical or 1.35542 ≤ σ ≤ 1.38408

the form
∞∑
t=0

βπit/2θt

t!

or otherwise ∞

VII. Concluding Remarks
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Notes

 

In this paper, we have shown that the set of Chebychev polynomials of the first 
kind         forms a basic sets and provides the best improved Whittaker's 
constant than other classical basic sets. The classical basic sets can be splited into two 
classes denoted, respectively, A-basic sets and B-basic sets of polynomials. In general, 
the Whittaker's constant is best improved upon by the B-basic sets.
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