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I.

 

Introduction

 

The impulsive differential equations  represent  a framework for mathematical 
modeling of many real  life situations in the field of engineering, biology, chemistry, 
physics, control systems, population dynamics and many more  [1].  In last two decades 
the stability analysis of these have been extensively explored [4,5,7,15-19]. In [17] the 
criteria for global exponential stability for impulsive functional differential equations is 
obtained by using Lyapunov function and Razumikhin technique. Moreover, it has been 
shown that impulses may make the system  exponentially stable even if derivative of 
Lyapunov function is not negative. It is supposed that the state variables on impulses 
are related to present state variables but it is also possible that state variables on 
impulses are related to time delay. The aim of this paper is to get global exponential 
stability criteria for impulsive functional differential equation when state variables are 
dependent on both present and past state variables.

 

This paper organized as follows. In section II, some notations and definitions are 
given. We proved some criteria of global exponential stability for impulsive functional 
differential equations in section III, At last some concluding remarks are given in 
section IV.
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II. Preliminaries

Let Rn denotes the n-dimensional real space and N denotes the set of positive 

integers. For given constant  0>τ , the linear space [ ] ),0,( nRPC τ− with norm . defined 
by 
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as k→∞
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Throughout in this paper, we assume that f, Ik, Jk, Nk ∈ satisfy all necessary 

conditions for the global existence and uniqueness of solutions for all 0tt ≥

 

[6]. For any 

)],0,([ nRPC τψ −∈ , there exists a unique solution of (1) denoted by ),,()( 0 ψttxtx = . We  

further assume that all solutions x(t) of (1) are continuous except at  Nktt k ∈= , ,at

 

which x(t) is right continuous  i.e. Nktxtx kk ∈=+ ),()(

 

and left limit i.e. )( −
ktx

 

exists. 

 

Definition 1:

 

The function V  : R+

 

×

 

𝑅𝑅𝑛𝑛

 

→  R+

 

is said to belong to the class 𝜈𝜈0

 

if the 

following conditions hold:

 

1)

 

V is continuous in each of the sets 

 

[𝑡𝑡𝑘𝑘−1, 𝑡𝑡𝑘𝑘)

 

×

 

𝑅𝑅𝑛𝑛 ,and for each x

 

∈ 𝑅𝑅𝑛𝑛 ,t 

 

[𝑡𝑡𝑘𝑘−1, 𝑡𝑡𝑘𝑘)

 

k  N, 

 

𝑙𝑙𝑙𝑙𝑙𝑙(𝑡𝑡 ,𝑤𝑤)→(𝑡𝑡𝑘𝑘
−,𝑥𝑥)V (t, w) = V (𝑡𝑡𝑘𝑘−

 

, x) exists.

 

2) V (t, x) is locally Lipschitzian in all x

 

∈ 𝑅𝑅𝑛𝑛 , and for all t ≥

 

𝑡𝑡0, V (t, 0) ≡

 

0. 

Definition 2: Given a function V : R+

 

×

 

𝑅𝑅𝑛𝑛

 

→ R+, the upper right-hand derivative of V 
with respect to system (1) is defined by

 

))]0(,()),()0(,([1suplim))0(,(
0

ϕψδϕδ
δ

ϕ
δ

tVtftVtVD −++=
+→

+

 

 for  [ ] ),,0,(),( nRPCRt τψ −×∈ + .  

Definition 3: The trivial solution of the system (1) is said to be globally exponentially 

stable if there exist some constants a >0 and M ≥1such that for any initial data ψ=
0t

x

 

0
)(

0 ,),,( 0 tteMttx tta ≥≤ −−ψψ

 

, where [ ] ),,0,(),( 0
nRPCRt τψ −×∈ + .  
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III. Main Results

Now in this section, we shall establish criteria for global exponential stability of 
impulsive functional differential equation in which state variables on impulses are 
related to time delay. We have the followings results.
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Theorem 1:

 

Assume that there exist a function V

 

∈ ν0

 

and some constants 0,,, 21 >bbbp
and bl >> λτ ,

 

such that

 

(i)

 

𝑏𝑏1‖𝑥𝑥‖𝑝𝑝 ≤ 𝑉𝑉(𝑡𝑡, 𝑥𝑥) ≤ 𝑏𝑏2‖𝑥𝑥‖𝑝𝑝 , for any +∈Rt and x

 

∈

 

𝑅𝑅𝑛𝑛

 

(ii)

 

𝐷𝐷+𝑉𝑉(𝑡𝑡, )0(ϕ ) ≤ 𝑏𝑏𝑉𝑉(𝑡𝑡, )0(ϕ ), for all t ∈

 

[𝑡𝑡𝑘𝑘−1, 𝑡𝑡𝑘𝑘)

 

k ∈N 

 

 

Whenever  ))(,())0(,( rrtVthV ϕϕ +≥   for r

 

∈ [−𝜏𝜏, 0], where λleh 2≥

 

is a constant 

 

(iii)

 

for all )];0,([ nRPC τϕ −∈

  



 ++≤++ −

−∈

− ))(,(sup))0(,())(())0(()0(,(
]0,[
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r

kkkkk ϕϕϕϕϕ
τ

,

 

where     Nkzk ∈> ,0

are constants.

 

(iv)

 

ltt kk ≤−≤ −1τ  and λτ

λλ

e
eez

kk ttl

k +
<

−−− +

1
. )( 1

  

     Then the trivial solution of (1) is globally exponentially stable.

 

Proof :- Choose 1≥M such that

 

                          

pttplbttpp hbeMeeMb ψψψψ λλ
2

)()(
2

0101 ≤<< −−−−−                    (2) 

Let ),,()( 0 ψttxtx = be any solution of (1) with ψ=
0t

x and v(t) =V(t, x). We shall 

now show that 

 
                            

[ ) NkttteMtv kk
ttp

k ∈∈≤ −
−− ,,,)( 1

)( 0λψ                            (3)

 

We shall prove this by induction, so firstly we shall show that result is true for k 
= 1 i.e.

 
                                       

[ )10
)( ,,)( 01 ttteMtv ttp ∈≤ −−λψ      

 

             (4) 

From condition (i) and (2) for [ ]00 ,ttt τ−∈

 
lbttppp eeMbxbtv −−−<≤≤ )(

22
01)( λψψ

 
If (4) is not true,

 

then there exist some ( )10 ,ttt ∈
∧

 

such that 

 
  

(5) 

 
 where [ ]0,τ−∈r

 Which implies that there exist  





∈

^

0

#
,ttt such that 

 

)()( 02
)()( 0101 rtvbeeMeMtv plbttpttp +≥>>> −−−−−

∧

ψψψ λλ
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#

0
)( ,)( 01 ttteMtv ttp ≤≤−≤ −− τψ λ      (6) 

Notes



                     

 Then there exist  





∈

#

0

##
,ttt such that

 
                                       

pbtv ψ2

##
)( =  and 

###

2 ,)( tttbtv p ≤≤≥ ψ             (7) 

Then for any t 



∈

###
,tt , we got

 
  (8) 

 

And therefore from condition (ii),

 

we get 

 𝐷𝐷+𝑣𝑣(𝑡𝑡) ≤ 𝑏𝑏𝑣𝑣(𝑡𝑡), for  t 



∈

###
,tt and then we have lbetvtv −≥ )()(

###

 

i.e. 

 lbttpp eeMb −−−≥ )(
2

01λψψ

 

which contradicts (2) .Hence (4) holds that means result (3) 

is true for k=1

 
Now assume that result (3) holds for k =1,2,3,4….m

                                   i.e. [ ) mkttteMtv kk
ttp

k ,........3,2,1,,,)( 1
)( 0 =∈≤ −

−−λψ

  

(9)

 
from condition (iii) and (9) ,we get 

 
 
 
 
 
 
 
 
 
 
     

   

  

    (10) 

next we shall show that (3) holds for k = m+1  

                           
i.e.
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




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∈
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ttt m ,
*

such that  

                         

)(
*
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            (13)
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−
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Then from condition (ii), we get   𝐷𝐷+𝑣𝑣(𝑡𝑡) ≤ 𝑏𝑏𝑣𝑣(𝑡𝑡), since b>λ
 
from (13) we have 

 

)()()( )(*
01

−
−−−

−
<=≤ + tveeMeetvtv lbttpllb mλλ ψ

 
Which is contradiction

 Thus (3) also hold for k = m+1
 Hence by principle of mathematical induction (3) holds and we have

 

[ )kk
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
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Where },1max{

1

1

*
p

b
MM 








≥  

Therefore the trivial solution of system (1) is globally exponentially stable with 

rate of convergence 
p
λ  

Remark 1: If we want to remove the restriction b>λ  in above theorem then we need to 
modify conditions (ii) and (iv) as follows: 
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Theorem  2: Assume that there exist a function V  ∈ ν0  and some constants 0,,, 21 >bbbp
and τ>l  such that  

(i)   𝑏𝑏1‖𝑥𝑥‖𝑝𝑝 ≤ 𝑉𝑉(𝑡𝑡, 𝑥𝑥) ≤ 𝑏𝑏2‖𝑥𝑥‖𝑝𝑝 , for any +∈Rt and x  ∈  𝑅𝑅𝑛𝑛  

(ii)   𝐷𝐷+𝑉𝑉(𝑡𝑡, )0(ϕ ) ≤ 𝑏𝑏𝑉𝑉(𝑡𝑡, )0(ϕ ), for all t  ∈  [𝑡𝑡𝑘𝑘−1, 𝑡𝑡𝑘𝑘)  k ∈ N  

Whenever  ))(,())0(,( rrtVthV ϕϕ +≥   for r  ∈ [−𝜏𝜏, 0], where },max{ 2 lbl eeh λ≥  is a 

constant  

(iii) for all )];0,([ nRPC τϕ −∈   

            



 ++≤++ −

−∈

− ))(,(sup))0(,())(())0(()0(,(
]0,[

rrtVtVzrJItV k
r

kkkkk ϕϕϕϕϕ
τ

, where   

            Nkzk ∈> ,0 are constants .  

 (iv) ltt kk ≤−≤ −1τ  and λτ

λλ

e
eez

kk ttlb

k +
<

−−+− +

1
. )()( 1

  

Then the trivial solution of (1) is globally exponentially stable.  

Proof:- The  proof of this theorem is omitted as it is almost same as that of Theorem 1  

Remark 2:-  As we know that the derivative of the  Lyapunov function should be 
negative for a delay differential system to be stable but in these theorems derivative 
may be positive which does not ensure the stability of the differential system . So it is 
clear that the impulses can contribute to make a system exponentially stable.  

IV.  Conclusion  

In this paper, global exponential stability criteria for impulsive functional 
differential system have been extended to a system in which state variables on impulses 
are related to time delay. These results widen the scope of stability theory and are more 
general as compared to some existing results.  
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