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Abstract- Let Adenote the class of functions of the form

oo
f(x)=2-> anz" (an >0,n€N),
n=2

which are analytic in the open unit disk U = {z : || < 1}. In this paper, the new subclasses @n.c (v, k, ), Hu,c(7, k, B; 1),
Q% (v, k,B8) and HZ .(v,k,B; u) of Awhich are defined by using generalized Bessel Function are introduced.

Certain properties of neighborhood for functions belonging to these classes are studied.
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[. INTRODUCTION

Let A denote the class of functions of the form:
f(z)=2=> anz" (a,>0,n€N).
n=2

which are analytic in the open unit disk U = {z : |z| < 1}.
For any function f(z) € A, z € U and n > 0,we define

Nonf(z) = {g cEA:glz)=2— anz” and Zn|an —by| < 77} , (1.2)
n=2 n=2

which is the (n,n)—neighborhood of f(z).
For e(z) = z, we see that

Ny ne(z) = {g €EA:gz)=2— anz" and Zn [bn] < 77} . (1.3)
n=2 n=2

The concept of neighborhoods was first introduced by Goodman [3] .

In this paper, we discuss certain properties of (n,n)—neighborhood results for

functions in the classes Q¢ (7, k, 8), Hyo(7, K, B5 1), Qo (7, b, B) and Hyy (7, k, B; 1)
of A.

The subclass S (7)[4] of A, is the class of functions of complex order ~y satisfying

Re{1+}/ <ZJ{£S) - 1)} >0 (z€UnyeC\{0}).
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The subclass K,,(7)[4] of A, is the class of functions of complex order v satisfying

Re {1+IZ]{,/;())} >0 (zeUn~eC\{o}).

The Hadamard product of two power series

f() 7z+2anz and g(z 7z+sz
n=2 n=2
is defined as (f * g)(2) =2+ Yoy Apby2"
we recall here a generalized Bessel function w(z) of the first kind of order -,
defined in [2] and given by

_ > (_C)n Z\2n 107
W) =D s (G (e )

where stands for I'— Euler function. Which is the particular solution of the second
- order homogeneous differential equation (see [5])

220" (2) + baw'(2) + [ez® — 7% + (1 — b)y] w(z) = 0,
where z € U. Now we consider the function ¢(z) defined by

o, ()= 2T+ 5 (7).

By using the well-know Pochhammer symbol (z),, defined for z,x € U and in the
terms of the Euler gamma function, by

() :F(x—i-n){ 1 (p=0)
" I () z(x+1)..(z+n—-1) (e N=1{1,2,3,...})

we can express ¢, (2) = ¢, .(2) as

(" b+1
_ 4 n+1 k=
e Z+Z PWCES) (ki=y+——¢2)
where zp = {0,-1,-2,...}.

Now, by using idea of Dziok and Srivastava [1], and we introduced the Bjf
operator as follows:

n

BEf(z) = p(2) # f(z) = 2 — Z T 1 nz_ o (1.4)

Definition 1. The subclass Qn . (v,k,3) of A is defined as the class of functions

f such that
‘}y <W1>‘<5 (15)

where , v € C\{0},0<B<1,c€ Ny and z € U.

Definition 2. Let the subclass Hy, (v, k,B;u) of A is defined as the class of
functions f such that

1 BSf(z

2= B s sy -1 < 6 (16)

where , v € C\{0},0<8<1,0<u<1,c€ Ny and zeU.
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Notes

[I. NEIGHBORHOOD FOR CLASSES Quo(%; & ) and Huo(v, k ;1)

In this section, we obtain inclusion relations involving N, , for functions in the
classes Qn.c (7,k,8) and H, (v, k, B; p).

Lemma 1. A function f(z) € Qn.c (7, k,B) if and only if

> ey - 1+ A hllen <81l (2.1)

n=2

Proof. Let f(z) € Qn,c (7,k,B). Then , by (1.5) we can write,

2 [Bif () }
Re{ 2BV 1t > 3 zeU). 2.2
{2 bl Gev) (2.2
Using (1.1) and (1.4), we have,
- EZO: # [n - 1] anz"
Re s >—Bhl, (eU).  (23)

J— —_— n
2=y T 1(k),_1(n—1)1In?

Letting z — 1,through the real values, the inequality (2.3) yields the desired con-
dition (2.1).
Conversely, by applying the hypothesis (2.1) and letting |z| = 1,we obtain,

1

2By 1‘ S e - ane”
Bif(2) 2= s 44n—1§;;)c73,1(n—1)!a"2n
I Cel0 LY AR | P
< n=2 47=1(k),_1(n—1)! n
- o) —c)t
L= 0t iy, i 9n
< Bhl.
Hence, by the maximum modulus theorem, we have f(z) € Qn(7,k, ), which
establishes the required result. ([

On similar lines , we have the following Lemma.

Lemma 2. A function f(z) € Hy.(7, k, B; 1) if and only if

> sy - Dlan < 61 (2.4

n=2

Theorem 1. Let ¢ < 0. if

28 1l
n=———_———- ([<1), (2.5)
A1+ ]

then Qn,c(r% kv B) C Nn,r/ (6) .
Proof. Let f(2) € Qn (7, k, ). By Lemma 1, we have,

(=¢)
()

L+ B an < B,

n=2

S
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which implies,

S B
N S EP— (2.6)
,; L+ 8]

Using (2.1) and (2.6) , we have,

(-0 « (=0 -
4(/{:);nan < 5|V|+@[1—5h’”n§2%
280 _
- +BNhl
That is,
S 28|
nap < —x—— - =1
; L +8hl

Thus, by the definition given by (1.3), f(2) € Ny, (e), which completes the proof.

O
Theorem 2. Let ¢ < 0. If
281l
=TT (o (v <1), (2.7)
I+ 1)1

then Hp,c(v, k,B; ) C Nis (e) .
Proof. Let f(z) € Hy (7, k, B; ). Then, by Lemma 2, we have,

9 (141 Y an < 1

4(/€) P n X ;
which gives the following coefficient inequality,

Using (2.4) and (2.8), we also have,

(—0) ENGORS
H ) ;nan < B+ (u 1)4(k) ;an
That is,
S e 2800 _
,;2 TS

Thus, by the definition given by (1.3), f(2) € N,,,, (¢), which completes the proof.
U

© 2015 Global Journals Inc. (US)

Notes



Notes

[1I. NEIGHBORHOOD FOR CLASSES Q5. (¥ & B)and H,'. (v, k ;1)

In this section, we define the subclasses Q5 .(v,k,8) and HZ (v, k, 3; 1) of A
and neighborhoods of these classes are obtained.

For 0 < a < 1land z € U, a function f(z2) € Q5 (7, k, B) if there exists a function
g(2) € Qn.c(7, k, B) such that

‘f(z)—1’<1—a. (3.1)
9(2)

For 0 < a < 1land z € U, a function f(2) € H7 (v, k, B; i) if there exists a function
g(z) € Hy (7, k, B; 1) such that the inequality (3.1) holds true.

Theorem 3. If g(z) € Qu.c(7,k,B) and

' 1+ B 1]
2|53 L+ 81l —5|7|]7 (32)

a=1-—

then Nnm(g) C Q%,C(Va kaﬂ)
Proof. Let f(z) € Ny (9) . Then,

oo

Z nla, —bn| <, (3.3)

n=2

which yields the coefficient inequality,
= U
Z|an—bn\§§, (n €N). (3.4)
n=2

Since ¢(z) € Qn.c(7, k, B) by (2.6), we have ,

Z b, < (76)&7 (3.5)
n=2 i L+ 81
so that,
20y < gk
9(z) 1 - 22022 bn
_on_ i +shl
2CA0+By) -8
= 1l—-oa.
Thus, by definition, f(z) € Q5 (v, k, B) for a given by (3.2) , which establishes the
desired result. O

On similar lines, we can prove the following theorem .

Theorem 4. If g(z) € Hy, (7, k, B; 1) and

i (1+ )

then Ny 5(9) C HyY (7, K, B; ).
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