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Abstract-
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f(z) = z �
1X
n=2

anz
n (an � 0; n 2 N) ;

U = fz : jzj < 1g Qn;c (; k; �), Hn;c(; k; �;�)

Q�n;c(; k; �)

,

H�
n;c(; k; �;�)

A

Let A denote the class of functions of the form:

(1.1)f(z) = z �
1X
n=2

anz
n (an � 0; n 2 N) :

which are analytic in the open unit disk U = fz : jzj < 1g.
For any function f(z) 2 A; z 2 U and � � 0;we de�ne

(1.2)Nn;�f(z) =

(
g 2 A : g(z) = z �

1X
n=2

bnz
n and

1X
n=2

n jan � bnj � �
)
;

which is the (n; �)�neighborhood of f(z):
For e(z) = z; we see that

(1.3)Nn;�e(z) =

(
g 2 A : g(z) = z �

1X
n=2

bnz
n and

1X
n=2

n jbnj � �
)
:

The concept of neighborhoods was �rst introduced by Goodman [3] .

In this paper, we discuss certain properties of (n; �)�neighborhood results for
functions in the classesQn;c (; k; �),Hn;c(; k; �;�); Q�n;c(; k; �) andH

�
n;c(; k; �;�)

of A :

The subclass S�n()[4] of A; is the class of functions of complex order  satisfying

Re

�
1 +

1



�
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Ref

The Hadamard product of two power series

f(z) = z +
1X
n=2

anz
n and g(z) = z +

1X
n=2

bnz
n:

is de�ned as (f � g)(z) = z +
P1

n=2 anbnz
n .

we recall here a generalized Bessel function w(z) of the �rst kind of order ;
de�ned in [2] and given by

w
;b;c

(z) =
1X
n=0

(�c)n

n!�( + n+ b+1
2 )

(
z

2
)2n+ ( z 2 U)

where stands for �� Euler function. Which is the particular solution of the second
- order homogeneous di¤erential equation (see [5])

z2w00(z) + bzw0(z) +
�
cz2 � 2 + (1� b)

�
w(z) = 0;

where z 2 U: Now we consider the function '(z) de�ned by

'
;b;c

(z) = 2�( +
b+ 1

2
)z1�


2w
�p
z
�
:

By using the well-know Pochhammer symbol (x)� de�ned for x; � 2 U and in the
terms of the Euler gamma function, by

(x)� =
� (x+ n)

� (x)

�
1 (� = 0)

x (x+ 1) ::: (x+ n� 1) (� 2 N = f1; 2; 3; :::g)

we can express '
;b;c

(z) = 'k;c(z) as

'k;c(z) = z +

1X
n=1

��c
4

�n
(k)n (n+ 1)

zn+1 (k :=  +
b+ 1

2
=2 z)

where z0 = f0;�1;�2; :::g :
Now, by using idea of Dziok and Srivastava [1], and we introduced the Bck

operator as follows:

(1.4)Bckf(z) = '(z) � f(z) = z �
1X
n=2

(�c)n�1 anzn
4n�1(k)n�1 (n� 1)!

:

The subclass Qn;c (; k; �) of A is de�ned as the class of functions
f such that

(1.5)

���� 1
�
z [Bckf(z)]

0

Bckf(z)
� 1
����� < �

where ,  2 Cn f0g ; 0 < � � 1; c 2 N0 and z 2 U:

Let the subclass Hn;c(; k; �;�) of A is de�ned as the class of
functions f such that

(1.6)

���� 1
�
(1� �)B

c
kf(z)

z
+ �(Bckf(z))

0 � 1
����� < �

where ,  2 Cn f0g ; 0 < � � 1; 0 � � � 1; c 2 N0 and z 2 U:

Re

�
1 +

1



zf 00(z)
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�
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The subclass Kn()[4] of A; is the class of functions of complex order  satisfying
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II. Neighborhood for Classes Qn,c(γ, k, β) and  Hn,c(γ, k, β µ)
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In this section, we obtain inclusion relations involving Nn;� for functions in the
classes Qn;c (; k; �) and Hn;c(; k; �;�):

A function f(z) 2 Qn;c (; k; �) if and only if

(2.1)
1X
n=2

(�c)n�1

4n�1(k)n�1(n� 1)!
[n� 1 + � jj] an � � jj :

Proof. Let f(z) 2 Qn;c (; k; �): Then , by (1:5) we can write,

(2.2)Re

�
z [Bckf(z)]

0

Bckf(z)
� 1
�
> �� jj (z 2 U):

Using (1:1) and (1:4), we have,

(2.3)Re

8<:�
P1

n=2
(�c)n�1

4n�1(k)n�1(n�1)! [n� 1] anz
n

z �
P1

n=2
(�c)n�1

4n�1(k)n�1(n�1)!anz
n

9=; > �� jj ; (z 2 U):

Letting z ! 1;through the real values, the inequality (2:3) yields the desired con-
dition (2:1).
Conversely, by applying the hypothesis (2:1) and letting jzj = 1;we obtain,

����z [Bckf(z)]0Bckf(z)
� 1
���� =

������
P1

n=2
(�c)n�1

4n�1(k)n�1(n�1)! [n� 1] anz
n

z �
P1

n=2
(�c)n�1

4n�1(k)n�1(n�1)!anz
n

������
�

P1
n=2

(�c)n�1
4n�1(k)n�1(n�1)! [n� 1] an

1�
P1

n=2
(�c)n�1

4n�1(k)n�1(n�1)!an

� � jj :

Hence, by the maximum modulus theorem, we have f(z) 2 Qn;c(; k; �); which
establishes the required result. �

On similar lines , we have the following Lemma.

A function f(z) 2 Hn:c(; k; �;�) if and only if

(2.4)
1X
n=2

(�c)n�1

4n�1(k)n�1(n� 1)!
[1 + �(n� 1)] an � � jj :

Let c < 0: if

(2.5)� =
2� jj

(�c)
4(k) [1 + � jj]

; ( jj < 1) ;

then Qn;c(; k; �) � Nn;� (e) :

Proof. Let f(z) 2 Qn;k(; k; �): By Lemma 1, we have,

(�c)
4(k)

[1 + � jj]
1X
n=2

an � � jj ;

Lemma 1.

Lemma 2.

Theorem 1.
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which implies,

(2.6)
1X
n=2

an �
� jj

(�c)
4(k) [1 + � jj]

:

Using (2:1) and (2:6) ; we have,

(�c)
4(k)

1X
n=2

nan � � jj+ (�c)
4(k)

[1� � jj]
1X
n=2

an

� 2� jj
[1 + � jj] = �:

That is,

1X
n=2

nan �
2� jj

(�c)
4(k) [1 + � jj]

= �:

Thus, by the de�nition given by (1:3) ; f(z) 2 Nn;� (e) ; which completes the proof.
�

Let c < 0: If

(2.7)� =
2� jj

(1 + �) (�c)4(k)

; (jj < 1) ;

then Hn;c(; k; �;�) � Nn;� (e) :

Proof. Let f(z) 2 Hn;c(; k; �;�): Then, by Lemma 2, we have,

(�c)
4(k)

(1 + �)
1X
n=2

an � � jj ;

which gives the following coe¢ cient inequality,

(2.8)
1X
n=2

an �
� jj

(�c)
4(k) (1 + �)

:

Using (2:4) and (2:8) ; we also have,

�
(�c)
4(k)

1X
n=2

nan � � jj+ (�� 1)(�c)
4(k)

1X
n=2

an

� � jj+ (�� 1) � jj
(1 + �)

:

That is,

1X
n=2

nan �
2� jj

(1 + �) (�c)4(k)

= �:

Thus, by the de�nition given by (1:3) ; f(z) 2 Nn;� (e) ; which completes the proof.
�

Theorem 2. 
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Notes

In this section, we de�ne the subclasses Q�n;c(; k; �) and H
�
n;c(; k; �;�) of A

and neighborhoods of these classes are obtained.

For 0 � � < 1 and z 2 U; a function f(z) 2 Q�n;c(; k; �) if there exists a function
g(z) 2 Qn;c(; k; �) such that

(3.1)

����f(z)g(z)
� 1
���� < 1� �:

For 0 � � < 1 and z 2 U; a function f(z) 2 H�
n;c(; k; �;�) if there exists a function

g(z) 2 Hn;c(; k; �;�) such that the inequality (3:1) holds true.

If g(z) 2 Qn;c(; k; �) and

(3.2)
� = 1�

� (�c)4(k) [1 + � jj]

2
h
(�c)
4(k) [1 + � jj]� � jj

i ;
then Nn;�(g) � Q�n;c(; k; �):

Proof. Let f(z) 2 Nn;� (g) : Then,

(3.3)
1X
n=2

n jan � bnj � �;

which yields the coe¢ cient inequality,

(3.4)
1X
n=2

jan � bnj �
�

2
; (n 2 N) :

Since g(z) 2 Qn;c(; k; �) by (2:6) ; we have ,

(3.5)
1X
n=2

bn �
� jj

(�c)
4(k) [1 + � jj]

;

so that, ����f(z)g(z)
� 1
���� <

P1
n=2 jan � bnj
1�

P1
n=2 bn

� �

2

(�c)
4(k) [1 + � jj]

(�c)
4(k) [1 + � jj]� � jj

= 1� �:

Thus, by de�nition, f(z) 2 Q�n;c(; k; �) for � given by (3:2) ; which establishes the
desired result. �
On similar lines, we can prove the following theorem .

If g(z) 2 Hn;c(; k; �;�) and

(3.6)� = 1�
� (�c)4(k) (1 + �)

2
h
(�c)
4(k) (1 + �)� � jj

i
then Nn;�(g) � H�

n;c(; k; �;�):

III. Neighborhood for  Classes Q α
n,c (γ, k, β) and H α

n,c (γ, k, β µ)  ;

Theorem 3. 

Theorem 4. 
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