Global Journal of Science Frontier Research: F

Neighborhood Properties of Generalized Bessel Function

By H. E. Darwish, A. Y. Lashin \& B. F. Hassan

Mansoura University, Egypt
Abstract- Let A denote the class of functions of the form

$$
f(z)=z-\sum_{n=2}^{\infty} a_{n} z^{n}\left(a_{n} \geq 0, n \in \mathbb{N}\right)
$$

which are analytic in the open unit disk $U=\{z:|z|<1\}$ In this paper, the new subclasses $Q_{n, c}(\gamma, k, \beta), H_{n, c}(\gamma, k, \beta ; \mu), Q_{n, c}^{\alpha}(\gamma, k, \beta)$ and $H_{n, c}^{\alpha}(\gamma, k, \beta ; \mu)$ of A which are de.ned by using generalized Bessel Function are introduced. Certain properties of neighborhood for functions belonging to these classes are studied.

Keywords: univalent functions, neighborhoods, starlike functions, convex functions and bessel operator.

GJSFR-F Classification : MSC 2010: 33C10

Strictly as per the compliance and regulations of :

Neighborhood Properties of Generalized Bessel Function

H. E. Darwish ${ }^{\alpha}$, A. Y. Lashin ${ }^{\circ}$ \& B. F. Hassan ${ }^{\rho}$
Abstract- Let A denote the class of functions of the form
$$
f(z)=z-\sum_{n=2}^{\infty} a_{n} z^{n} \quad\left(a_{n} \geq 0, n \in \mathbb{N}\right)
$$

which are analytic in the open unit disk $U=\{z:|z|<1\}$. In this paper, the new subclasses $Q_{n, c}(\gamma, k, \beta), H_{n, c}(\gamma, k, \beta ; \mu)$, $Q_{n, c}^{\alpha}(\gamma, k, \beta)$ and $H_{n, c}^{\alpha}(\gamma, k, \beta ; \mu)$ of A which are defined by using generalized Bessel Function are introduced. Certain properties of neighborhood for functions belonging to these classes are studied.
Keywords: univalent functions, neighborhoods, starlike functions, convex functions and bessel operator.

I. Introduction

Let A denote the class of functions of the form:

$$
\begin{equation*}
f(z)=z-\sum_{n=2}^{\infty} a_{n} z^{n} \quad\left(a_{n} \geq 0, n \in \mathbb{N}\right) . \tag{1.1}
\end{equation*}
$$

which are analytic in the open unit disk $U=\{z:|z|<1\}$.
For any function $f(z) \in A, z \in U$ and $\eta \geq 0$, we define

$$
\begin{equation*}
N_{n, \eta} f(z)=\left\{g \in A: g(z)=z-\sum_{n=2}^{\infty} b_{n} z^{n} \text { and } \sum_{n=2}^{\infty} n\left|a_{n}-b_{n}\right| \leq \eta\right\} \tag{1.2}
\end{equation*}
$$

which is the (n, η)-neighborhood of $f(z)$.
For $e(z)=z$, we see that

$$
\begin{equation*}
N_{n, \eta} e(z)=\left\{g \in A: g(z)=z-\sum_{n=2}^{\infty} b_{n} z^{n} \text { and } \sum_{n=2}^{\infty} n\left|b_{n}\right| \leq \eta\right\} \tag{1.3}
\end{equation*}
$$

The concept of neighborhoods was first introduced by Goodman [3] .
In this paper, we discuss certain properties of (n, η)-neighborhood results for functions in the classes $Q_{n, c}(\gamma, k, \beta), H_{n, c}(\gamma, k, \beta ; \mu), Q_{n, c}^{\alpha}(\gamma, k, \beta)$ and $H_{n, c}^{\alpha}(\gamma, k, \beta ; \mu)$ of A.

The subclass $S_{n}^{*}(\gamma)[4]$ of A, is the class of functions of complex order γ satisfying

$$
\operatorname{Re}\left\{1+\frac{1}{\gamma}\left(\frac{z f^{\prime}(z)}{f(z)}-1\right)\right\}>0 \quad(z \in U, \gamma \in \mathbb{C} \backslash\{0\})
$$

[^0]The subclass $K_{n}(\gamma)[4]$ of A, is the class of functions of complex order γ satisfying

$$
\operatorname{Re}\left\{1+\frac{1}{\gamma} \frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right\}>0 \quad(z \in U, \gamma \in \mathbb{C} \backslash\{0\})
$$

The Hadamard product of two power series

$$
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n} \text { and } g(z)=z+\sum_{n=2}^{\infty} b_{n} z^{n} .
$$

is defined as $(f * g)(z)=z+\sum_{n=2}^{\infty} a_{n} b_{n} z^{n}$.

Definition 1. The subclass $Q_{n, c}(\gamma, k, \beta)$ of A is defined as the class of functions f such that

$$
\begin{equation*}
\left|\frac{1}{\gamma}\left(\frac{z\left[B_{k}^{c} f(z)\right]^{\prime}}{B_{k}^{c} f(z)}-1\right)\right|<\beta \tag{1.5}
\end{equation*}
$$

where, $\gamma \in \mathbb{C} \backslash\{0\}, 0<\beta \leq 1, c \in N_{0}$ and $z \in U$.
Definition 2. Let the subclass $H_{n, c}(\gamma, k, \beta ; \mu)$ of A is defined as the class of functions f such that

$$
\begin{equation*}
\left|\frac{1}{\gamma}\left[(1-\mu) \frac{B_{k}^{c} f(z)}{z}+\mu\left(B_{k}^{c} f(z)\right)^{\prime}-1\right]\right|<\beta \tag{1.6}
\end{equation*}
$$

where, $\gamma \in \mathbb{C} \backslash\{0\}, 0<\beta \leq 1,0 \leq \mu \leq 1, c \in N_{0}$ and $z \in U$.

II. Neighborhood for Classes $Q_{n, c}(\gamma, k, \beta)$ and $H_{n, c}(\gamma, k, \beta ; \mu)$

In this section, we obtain inclusion relations involving $N_{n, \eta}$ for functions in the classes $Q_{n, c}(\gamma, k, \beta)$ and $H_{n, c}(\gamma, k, \beta ; \mu)$.

Lemma 1. A function $f(z) \in Q_{n, c}(\gamma, k, \beta)$ if and only if

$$
\begin{equation*}
\sum_{n=2}^{\infty} \frac{(-c)^{n-1}}{4^{n-1}(k)_{n-1}(n-1)!}[n-1+\beta|\gamma|] a_{n} \leq \beta|\gamma| \tag{2.1}
\end{equation*}
$$

Proof. Let $f(z) \in Q_{n, c}(\gamma, k, \beta)$. Then, by (1.5) we can write,

$$
\begin{equation*}
\operatorname{Re}\left\{\frac{z\left[B_{k}^{c} f(z)\right]^{\prime}}{B_{k}^{c} f(z)}-1\right\}>-\beta|\gamma| \quad(z \in U) \tag{2.2}
\end{equation*}
$$

Using (1.1) and (1.4), we have,

$$
\begin{equation*}
\operatorname{Re}\left\{\frac{-\sum_{n=2}^{\infty} \frac{(-c)^{n-1}}{4^{n-1}(k)_{n-1}(n-1)!}[n-1] a_{n} z^{n}}{z-\sum_{n=2}^{\infty} \frac{(-c)^{n-1}}{4^{n-1}(k)_{n-1}(n-1)!} a_{n} z^{n}}\right\}>-\beta|\gamma|, \quad(z \in U) . \tag{2.3}
\end{equation*}
$$

Letting $z \rightarrow 1$,through the real values, the inequality (2.3) yields the desired condition (2.1).

Conversely, by applying the hypothesis (2.1) and letting $|z|=1$, we obtain,

$$
\begin{aligned}
\left|\frac{z\left[B_{k}^{c} f(z)\right]^{\prime}}{B_{k}^{c} f(z)}-1\right| & =\left|\frac{\sum_{n=2}^{\infty} \frac{(-c)^{n-1}}{4^{n-1}(k)_{n-1}(n-1)!}[n-1] a_{n} z^{n}}{z-\sum_{n=2}^{\infty} \frac{(-c)^{n-1}}{4^{n-1}(k)_{n-1}(n-1)!} a_{n} z^{n}}\right| \\
& \leq \frac{\sum_{n=2}^{\infty} \frac{(-c)^{n-1}}{4^{n-1}(k)_{n-1}(n-1)!}[n-1] a_{n}}{1-\sum_{n=2}^{\infty} \frac{(-c)^{n-1}}{4^{n-1}(k)_{n-1}(n-1)!} a_{n}} \\
& \leq \beta|\gamma| .
\end{aligned}
$$

Hence, by the maximum modulus theorem, we have $f(z) \in Q_{n, c}(\gamma, k, \beta)$, which establishes the required result.

On similar lines, we have the following Lemma.
Lemma 2. A function $f(z) \in H_{n . c}(\gamma, k, \beta ; \mu)$ if and only if

$$
\begin{equation*}
\sum_{n=2}^{\infty} \frac{(-c)^{n-1}}{4^{n-1}(k)_{n-1}(n-1)!}[1+\mu(n-1)] a_{n} \leq \beta|\gamma| \tag{2.4}
\end{equation*}
$$

Theorem 1. Let $c<0$. if

$$
\begin{equation*}
\eta=\frac{2 \beta|\gamma|}{\frac{(-c)}{4(k)}[1+\beta|\gamma|]}, \quad(|\gamma|<1) \tag{2.5}
\end{equation*}
$$

then $Q_{n, c}(\gamma, k, \beta) \subset N_{n, \eta}(e)$.
Proof. Let $f(z) \in Q_{n, k}(\gamma, k, \beta)$. By Lemma 1, we have,

$$
\frac{(-c)}{4(k)}[1+\beta|\gamma|] \sum_{n=2}^{\infty} a_{n} \leq \beta|\gamma|
$$

which implies,

$$
\begin{equation*}
\sum_{n=2}^{\infty} a_{n} \leq \frac{\beta|\gamma|}{\frac{(-c)}{4(k)}[1+\beta|\gamma|]} \tag{2.6}
\end{equation*}
$$

Using (2.1) and (2.6), we have,

$$
\begin{aligned}
\frac{(-c)}{4(k)} \sum_{n=2}^{\infty} n a_{n} & \leq \beta|\gamma|+\frac{(-c)}{4(k)}[1-\beta|\gamma|] \sum_{n=2}^{\infty} a_{n} \\
& \leq \frac{2 \beta|\gamma|}{[1+\beta|\gamma|]}=\eta
\end{aligned}
$$

That is,

$$
\sum_{n=2}^{\infty} n a_{n} \leq \frac{2 \beta|\gamma|}{\frac{(-c)}{4(k)}[1+\beta|\gamma|]}=\eta
$$

Thus, by the definition given by (1.3), $f(z) \in N_{n, \eta}(e)$, which completes the proof.
Theorem 2. Let $c<0$. If

$$
\begin{equation*}
\eta=\frac{2 \beta|\gamma|}{(1+\mu) \frac{(-c)}{4(k)}}, \quad(|\gamma|<1) \tag{2.7}
\end{equation*}
$$

then $H_{n, c}(\gamma, k, \beta ; \mu) \subset N_{n, \delta}(e)$.
Proof. Let $f(z) \in H_{n, c}(\gamma, k, \beta ; \mu)$. Then, by Lemma 2, we have,

$$
\frac{(-c)}{4(k)}(1+\mu) \sum_{n=2}^{\infty} a_{n} \leq \beta|\gamma|
$$

which gives the following coefficient inequality,

$$
\begin{equation*}
\sum_{n=2}^{\infty} a_{n} \leq \frac{\beta|\gamma|}{\frac{(-c)}{4(k)}(1+\mu)} \tag{2.8}
\end{equation*}
$$

Using (2.4) and (2.8), we also have,

$$
\begin{aligned}
\mu \frac{(-c)}{4(k)} \sum_{n=2}^{\infty} n a_{n} & \leq \beta|\gamma|+(\mu-1) \frac{(-c)}{4(k)} \sum_{n=2}^{\infty} a_{n} \\
& \leq \beta|\gamma|+(\mu-1) \frac{\beta|\gamma|}{(1+\mu)}
\end{aligned}
$$

That is,

$$
\sum_{n=2}^{\infty} n a_{n} \leq \frac{2 \beta|\gamma|}{(1+\mu) \frac{(-c)}{4(k)}}=\eta
$$

Thus, by the definition given by $(1.3), f(z) \in N_{n, \eta}(e)$, which completes the proof.

III. Neighborhood for Classes $Q_{n, c}^{\alpha}(\gamma, k, \beta)$ and $H_{n, c}^{\alpha}(\gamma, k, \beta ; \mu)$

In this section, we define the subclasses $Q_{n, c}^{\alpha}(\gamma, k, \beta)$ and $H_{n, c}^{\alpha}(\gamma, k, \beta ; \mu)$ of A and neighborhoods of these classes are obtained.

For $0 \leq \alpha<1$ and $z \in U$, a function $f(z) \in Q_{n, c}^{\alpha}(\gamma, k, \beta)$ if there exists a function $g(z) \in Q_{n, c}(\gamma, k, \beta)$ such that

$$
\begin{equation*}
\left|\frac{f(z)}{g(z)}-1\right|<1-\alpha \tag{3.1}
\end{equation*}
$$

For $0 \leq \alpha<1$ and $z \in U$, a function $f(z) \in H_{n, c}^{\alpha}(\gamma, k, \beta ; \mu)$ if there exists a function $g(z) \in H_{n, c}(\gamma, k, \beta ; \mu)$ such that the inequality (3.1) holds true.
Theorem 3. If $g(z) \in Q_{n, c}(\gamma, k, \beta)$ and

$$
\begin{equation*}
\alpha=1-\frac{\eta \frac{(-c)}{4(k)}[1+\beta|\gamma|]}{2\left[\frac{(-c)}{4(k)}[1+\beta|\gamma|]-\beta|\gamma|\right]}, \tag{3.2}
\end{equation*}
$$

then $N_{n, \eta}(g) \subset Q_{n, c}^{\alpha}(\gamma, k, \beta)$.
Proof. Let $f(z) \in N_{n, \eta}(g)$. Then,

$$
\begin{equation*}
\sum_{n=2}^{\infty} n\left|a_{n}-b_{n}\right| \leq \eta \tag{3.3}
\end{equation*}
$$

which yields the coefficient inequality,

$$
\begin{equation*}
\sum_{n=2}^{\infty}\left|a_{n}-b_{n}\right| \leq \frac{\eta}{2}, \quad(n \in \mathbb{N}) \tag{3.4}
\end{equation*}
$$

Since $g(z) \in Q_{n, c}(\gamma, k, \beta)$ by (2.6), we have,

$$
\begin{equation*}
\sum_{n=2}^{\infty} b_{n} \leq \frac{\beta|\gamma|}{\frac{(-c)}{4(k)}[1+\beta|\gamma|]} \tag{3.5}
\end{equation*}
$$

so that,

$$
\begin{aligned}
\left|\frac{f(z)}{g(z)}-1\right| & <\frac{\sum_{n=2}^{\infty}\left|a_{n}-b_{n}\right|}{1-\sum_{n=2}^{\infty} b_{n}} \\
& \leq \frac{\eta}{2} \frac{\frac{(-c)}{4(k)}[1+\beta|\gamma|]}{\frac{(-c)}{4(k)}[1+\beta|\gamma|]-\beta|\gamma|} \\
& =1-\alpha
\end{aligned}
$$

Thus, by definition, $f(z) \in Q_{n, c}^{\alpha}(\gamma, k, \beta)$ for α given by (3.2), which establishes the desired result.

On similar lines, we can prove the following theorem.
Theorem 4. If $g(z) \in H_{n, c}(\gamma, k, \beta ; \mu)$ and

$$
\begin{equation*}
\alpha=1-\frac{\eta \frac{(-c)}{4(k)}(1+\mu)}{2\left[\frac{(-c)}{4(k)}(1+\mu)-\beta|\gamma|\right]} \tag{3.6}
\end{equation*}
$$

then $N_{n, \delta}(g) \subset H_{n, c}^{\alpha}(\gamma, k, \beta ; \mu)$.

References Références Referencias

1. J. Dziok and H. M. Srivastava, Classes of analytic functions with the generalized hypergeometric function. Appl. Math. Comput. 103 (1999), 1-13.
2. E. Deniz, H. Orhan and H. M. Srivastava, Some sufficient conditions for univalence of certain families of integral operators involving generalized Bessel functions, Taiwanse J. Math. 15(2) (2011), 883-917.
3. A. W. Goodman, Univalent functions and nonanalytic curves, Proc. Amer. Soc, 81(1981), 521-527.
4. M.A. Nasr and M.K. Aouf, Starlike function of complex order, J. Natur. Sci. Math. 25 (1985) 1-12.
5. G. N. Watson, Atreatis on the theory of Bessel functions, second edition, Cambridge University Press, Cambridge, Londonand New York, 1994.

[^0]: Author $\alpha \sigma \rho$: Department of Mathematics Faculty of Science, Mansoura University Mansoura, 35516, EGYPT.
 e-mails: Darwish333@yahoo.com, aylashin@mans.edu.eg, basharfalh@yahoo.com

