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On Dynamical Systems Induced by the
Adele Ring 

Abstract- In this paper, we construct a dynamical system induced by the Adele ring ; based on the dynamical 
systems induced by  -adic number fields ; for all primes : We study fundamental operator-theoretic and operator- 
algebraic properties of the corresponding crossed product operator algebra generated by such a dynamical system, via 
free probability. 
Keywords: prime fields (or, p-adic number fields), the adele ring, p-adicvon neumann algebras, adele-ring 
von neumann algebras, p-adic dynamical systems, adelic dynamical systems. 
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Continued from [10], in this paper, we consider how primes (or prime numbers)
act on operator algebras. In particular, instead of acting each p-adic number fields
Qp to operator algebras, for every prime p, we act the Adele ring AQ on operator
algebras. In [10], we act p-adic number fields Qp on a given von Neumann algebra
M, and construct a corresponding dynamical system generating its crossed product
algebra. We have studied fundamental properties of such dynamical systems and
crossed product W ∗-algebras. Also, by applying free probability, we considered free-
distributional data of certain operators. Here, based on results of [10], we act the
Adele ring AQ on M.

The relations between primes and operator algebras have been studied in various
different approaches. The main purposes of finding such relations are (i) to provide
new tools for studying operator algebras, (ii) to apply operator-algebraic techniques
(for example, free probability) to study number theory, and hence, (iii) to establish
bridges between number theory and operator algebra theory. In [4], we studied how
primes act “on” certain von Neumann algebras. Also, the primes as operators in
certain von Neumann algebras have been studied, too, in [5] and [8]. In [6] and [7],
we have studied primes as linear functionals acting on arithmetic functions. i.e.,
each prime induces a free-probabilistic structure on arithmetic functions. In such
a case, one can understand arithmetic functions as Krein-space operators (for fixed
primes), via certain representations (See [11] and [12]). These studies are all moti-
vated by well-known number-theoretic results under free probability techniques.

Arveson studied histories as a group of actions induced by real numbers R on
(type I subfactors of) B(H), satisfying certain additional conditions, where H is an
infinite dimensional separable Hilbert space (e.g., [1], [2] and cited papers therein).
By understanding the field R as an additive group (R, +), he defined an E0-group

ΓR of ∗-homomorphisms acting on B(H) indexed by R. By putting additional con-
ditions on ΓR, he defined a history Γ acting on B(H). We mimic Arveson’s con-
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II. Definitions and Background

a) p-Adic Number Fields  and The Adele Ring . 

struction to establish our dynamical systems and corresponding crossed product
algebras (e.g., [8], [9] and [10]).

In [9], by framing (e.g., also see [8]), a group Γ to groupoids generated by partial
isometries, we studied possible distortions ΓG of a history Γ. It shows that when-
ever a history Γ acts on H, a family of partial isometries distorts (or reduces, or
restricts) the “original” historical property (in the sense of Arveson) of Γ. And such
distortions are completely characterized by groupoid actions, sometimes called the
E0-groupoid actions induced by partial isometries on B(H). The above framed (E0-
)groupoids ΓG induce corresponding C∗-subalgebras C∗(ΓG) of B(H), investigated
by dynamical system theory and free probability (e.g., [15], [16] and [17]).

Independently, p-adic analysis provides a important tool for studying geometry
at small distance (e.g., [18]). it is not only interested in various mathematical fields
but also in physics (e.g., [3], [4], [5] and [18]). The p-adic number fields (or p-
prime fields) Qp and the Adele ring AQ play key roles in modern number theory,
analytic number theory, L-function theory, and algebraic geometry (e.g., [3], [13] and
[14]). Also, analysis on such Adelic structures gives a way for understanding small-
distance-measured geometry (e.g., [18]) and vector analysis under non-Archimedean
metric (e.g., [5]). Thus, prime fields and the Adele ring are interesting topics both
in mathematics and in other scientific fields.

We attempt to combine the above two topics; dynamical systems and p-adic
analysis under Adelic settings; which seem independent from each other.

On Dynamical Systems Induced by the Adele Ring

In this section, we introduce basic definitions and backgrounds of the paper.

Qp AQ Fundamental theo-

rem of arithmetic says that every positive integer in N except 1 can be expressed
as a usual multiplication of primes (or prime numbers), equivalently, all positive
integers which are not 1 are prime-factorized under multiplication. i.e., the primes
are the building blocks of all positive integers except for 1. Thus, it is trivial that
primes are playing key roles in both classical and advanced number theory.

The Adele ring AQ is one of the main topics in advanced number theory connected
with other mathematical fields like algebraic geometry and L-function theory, etc.

Throughout this paper, we denote the set of all natural numbers (which are
positive integers) by N, the set of all integers by Z, and the set of all rational
numbers by Q.

Let’s fix a prime p. Define the p-norm |.|p on the rational numbers Q by

|q|p =
∣∣pr ab ∣∣p def

= 1
pr ,

whenever q = pr ab ∈ Q× = Q \ {0}, for some r ∈ Z, with an additional identity:

|0|p
def
= 0 (for all primes p).

For example, ∣∣− 24
5

∣∣
2

=
∣∣23 · (− 3

5 )
∣∣
2

= 1
23 = 1

8 .

It is easy to check that

(i) |q|p ≥ 0, for all q ∈ Q,
(ii) |q1q2|p = |q1|p · |q2|p , for all q1, q2 ∈ Q
(iii) |q1 + q2|p ≤ max{|q1|p , |q2|p},
for all q1, q2 ∈ Q. In particular, by (iii), we verify that

(iii)′ |q1 + q2|p ≤ |q1|p + |q2|p ,
for all q1, q2 ∈ Q. Thus, by (i), (ii) and (iii)′, the p-norm |.|p is indeed a norm.

However, by (iii), this norm is “non-Archimedean.”

© 2015    Global Journals Inc.  (US)
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On Dynamical Systems Induced by the Adele Ring

i. Definition 2.1. We define a set Qp by the norm-closure of the normed space (Q,
|.|p), for all primes p. We call Qp, the p-adic number field.

For a fixed prime p, all elements of Qp are formed by

(2.1.1)pr
(∑∞

k=0 akp
k
)
, for 0 ≤ ak < p,

for all k ∈ N, and for all r ∈ Z. For example,

−1 = (p− 1)p0 + (p− 1)p + (p− 1)p2 + · · ·.

The subset of Qp, consisting of all elements formed by∑∞
k=0 akp

k, for 0 ≤ ak < p in N,

is denoted by Zp. i.e., for any x ∈ Qp, there exist r ∈ Z, and x0 ∈ Zp, such that

x = prx0.

Notice that if x ∈ Zp, then |x|p ≤ 1, and vice versa. i.e.,

(2.1.2)Zp = {x ∈ Qp : |x|p ≤ 1}.

So, the subset Zp of (2.1.2) is said to be the unit disk of Qp. Remark that

Zp ⊃ pZp ⊃ p2Zp ⊃ p3Zp ⊃ · · ·.

It is not difficult to verify that

Zp ⊂ p−1Zp ⊂ p−2Zp ⊂ p−3Zp ⊂ · · ·,
and hence

(2.1.3)Qp =
∞
∪

k=−∞
pk Zp, set-theoretically.

Consider the boundary Up of Zp. By construction, the boundary Up of Zp is
identical to Zp \ pZp, i.e.,

(2.1.4)Up = Zp \ pZp = {x ∈ Zp : |x|p = 1 = p0}.

Similarly, the subsets pkUp are the boundaries of pkZp satisfying

pkUp = pkZp \ pk+1Zp, for all k ∈ Z.

We call the subset Up of Qp in (2.1.4) the unit circle of Qp. And all elements of
Up are said to be units of Qp.

Therefore, by (2.1.3) and (2.1.4), we obtain that

(2.1.5)Qp =
∞
t

k=−∞
pkUp, set-theoretically,

where t means the disjoint union. By [18], whenever q ∈ Qp is given, there
always exist a ∈ Q, k ∈ Z, such that

q ∈ a + pk Zp, for a, k ∈ Z.

Fact (See [18]) The p-adic number field Qp is a Banach space. And it is locally
compact. In particular, the unit disk Zp is compact in Qp. �

Define now the addition on Qp by

(2.1.6)
(∑∞

n=−N1
anp

n
)

+
(∑∞

n=−N2
bnp

n
)

=
∑∞
n=−max{N1,N2} cn p

n,

for N1, N2 ∈ N, where the summands cnp
n satisfies that

cnp
n def

=

 (an + bn)pn if an + bn < p
pn+1 if an + bn = p
snp

n+1 + rnp
n if an + bn = snp+ rn,

Ref

        

37

G
lo
ba

l
Jo

ur
na

l
of

Sc
ie
nc

e
Fr

on
tie

r
R
es
ea

rc
h 

  
  
  
 V

ol
um

e
X
V
 I
ss
ue

  
  
  
er

sio
n 

I
V

IV
Y
ea

r
20

15

© 2015    Global Journals Inc.  (US)

  
 F
)

)
18

.V
. 

S
. 

V
l a

d
im

ir
ov

, 
I.
 

V
. 

V
ol

o
v
ic

h
, 

an
d
 

E
. 

I.
 

Z
el

en
ov

, 
p
-A

d
ic

 
A

n
al

y
si

s 
an

d
 

M
at

h
em

at
ic

al
 P

h
y
si

cs
, 
S
er

. 
S
ov

ie
t 

&
 E

as
t 

E
u
ro

p
ea

n
 M

at
h
.,
 v

ol
 1

,
IS

B
N

: 
97

8-
98

1
-0

2-
08

80
-6

,(
19

94
) 

W
or

ld
 S

ci
en

ti
fi
c.



 
 

 

for all n ∈ {−max{N1, N2}, ..., 0, 1, 2, ...}. Clearly, if N1 > N2 (resp., N1 <
N2), then, for all j = −N1, ..., −(N1 − N2 + 1), (resp., j = −N2, ..., −(N2 − N1

+ 1)),

cj = aj (resp., cj = bj).

And define the multiplication “on Zp” by

(2.1.7)
(∑∞

k1=0 ak1p
k1
) (∑∞

k2=0 bk2p
k2
)

=
∑∞
n=−N cnp

n,

where
cn =

∑
k1+k2=n

(
rk1,k2ik1,k2 + sk1−1,k2 i

c
k1−1,k2

+sk1,k2−1i
c
k1,k2−1 + sk1−1,k2−1i

c
k1−1, k2−1

)
,

where

ak1bk2 = sk1,k2 p + rk1,k2 ,

by the division algorithm, and

ik1,k2 =

{
1 if ak1bk2 < p
0 otherwise,

and

ick1,k2 = 1 − ik1,k2 ,

for all k1, k2 ∈ N, and hence, “on Qp,” the multiplication is extended to

(2.1.7)

(∑∞
k1=−N1

ak1p
k1
) (∑∞

k2=−N2
bk2p

k2
)

=
(
p−N1

)
(p−N2)

(∑∞
k1=0 ak1−N1

pk1
) (∑∞

k2=0 bk1−N2
pk2
)
.

Then, under the addition (2.1.6) and the multiplication (2.1.7)′, the algebraic
triple (Qp, +, ·) becomes a field, for all primes p. Thus the p-prime fields Qp are
algebraically fields.

Fact Every p-acid number field Qp, with the binary operations (2.1.6) and
(2.1.7)′ is indeed a field. �

Moreover, the Banach filed Qp is also a (unbounded) Haar-measure space (Qp,
σ(Qp), ρp), for all primes p, where σ(Qp) means the σ-algebra of Qp, consisting of
all measurable subsets of Qp. Moreover, this measure ρp satisfies that

(2.1.8)

ρp
(
a+ pkZp

)
= ρp

(
pkZp

)
= 1

pk

= ρ
(
pkZ×p

)
= ρ

(
a+ pkZ×p

)
,

for all a ∈ Q, and k ∈ Z, where Z×p = Zp \ {0}. Also, one has

ρp(a+ pkUp) = ρp
(
pkUp

)
= ρp

(
pkZp \ pk+1Zp

)
= ρp

(
pkZp

)
− ρp

(
pk+1Zp

)
= 1

pk
− 1

pk+1 ,

for all a ∈ Q. Similarly, we obtain that

(2.1.9)ρp
(
a+ pkUp

)
= ρ

(
pkUp

)
= 1

pk
− 1

pk+1 ,

for all a ∈ N, and k ∈ Z (See Chapter IV of [18]).

Fact The Banach field Qp is an unbounded Haar-measure space, where ρp sat-
isfies (2.1.8) and (2.1.9), for all primes p. �

The above three facts show that Qp is a unbounded Haar-measured, locally
compact Banach field, for all primes p.

On Dynamical Systems Induced by the Adele Ring

Notes
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On Dynamical Systems Induced by the Adele Ring

Let P = {all primes} ∪ {∞}. The Adele ring AQ = (AQ, +, ·)
is defined by the set

(2.1.10){(xp)p∈P : xp ∈ Qp, almost all xp ∈ Zp, x∞ ∈ R},

with identification Q∞ = R, and Z∞ = [0, 1], the closed interval in R, equipped
with

(2.1.11)(xp)p + (yp)p = (xp + yp)p, and

(2.1.12)(xp)p(yp)p = (xpyp)p,

for all (xp)p, (yp)p ∈ AQ.

Indeed, this algebraic structure AQ forms a ring. Also, by the algebraic construc-
tion and the product topology, the Adele ring AQ is also a locally compact Banach
space equipped with the product measure. Set-theoretically,

AQ ⊆ Π
p∈P

Qp = R ×
(

Π
p:prime

Qp
)
.

In fact, the Adele ring AQ is a weak direct product Π′
p∈P

Qp of {Qp}p∈P , i.e.,

AQ = Π′
p∈P

Qp.

i.e., whenever (xp)p ∈ AQ, almost all xq are in Zq, for primes q, except for finitely
many xp.

The product measure ρ of the Adele ring AQ is given:

ρ = ×
p∈P

ρp,

with identification ρ∞ = ρR, the usual distance-measure (induced by |.|∞) on R.

Fact The Adele ring AQ is a unbounded-measured locally compact Banach ring.
�

In this section,
we briefly discuss about dynamical systems induced by algebraic structures. Let
X be an arbitrary algebraic structures, i.e., X is a semigroup, or a group, or a
groupoid, or an algebra, etc (maybe equipped with topology).

Let M be an algebra over C, and assume there exists a well-defined action α of
X acting on M. i.e., α(x) is a well-defined function on X, satisfying that:

α(x1 · x2) = α(x1) ◦ α(x2) on M,

for all x1, x2 ∈ X, where x1 · x2 means the operation on X, and (◦) means the
usual functional composition. For convenience, we denote α(x) simply by αx, for
all x ∈ X.

Then the triple (X, M, α) is called the dynamical system induced by X on M
via α. For such a dynamical system (X, M, α), one can define a crossed product
algebra

MX = M ×α X,

by the algebra generated by M and α(X), satisfying that:

(m1αx1
) (m2αx2

) = (m1αx1
(m2)) αx1x2

in MX ,

where αxj
= α(xj), for all mjαxj

∈ MX , for j = 1, 2.
If M is a ∗-algebra, then one may have an additional condition;

(mαx)∗ = αx(m∗) α∗x in MX ,

for all mαx ∈ MX .
Of course, one can consider the cases where M is equipped with topology. More

precisely, in MX , we may put a topology from the topology on M, making α(X)
be continuous.

ii. Definition 2.2. 

b) Dynamical Systems Induced by Algebraic Structures:
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c) Free Probability:

In this paper, we are interested in cases where given algebrasM are von Neumann
algebras.In such cases, we call the corresponding topological dynamical systems,
W ∗-dynamical systems, and the corresponding crossed product algebra, the crossed
product W ∗-algebras.

For more about free probability theory, see [16] and [17].
In this section, we briefly introduce Speicher ’s combinatorial free probability (e.g.,
[16]), which is the combinatorial characterization of the original Voiculescu’s ana-
lytic free probability (e.g., [17]).

Let B ⊂ A be von Neumann algebras with 1B = 1A and assume that there exists
a conditional expectation EB : A → B satisfying that:

(i) EB(b) = b, for all b ∈ B,
(ii) EB(b a b′) = b EB(a) b′, for all b, b′ ∈ B and a ∈ A,
(iii) EB is bounded (or continuous), and

(iv) EB(a∗) = EB(a)∗, for all a ∈ A.
Then the pair (A, EB) is called a B-valued (amalgamated) W ∗-probability space

(with amalgamation over B).
For any fixed B-valued random variables a1, ..., as in (A, EB), we can have the

B-valued free distributional data of them;

◦ (i1, ..., in)-th B-valued joint ∗-moments:

EB
(
b1a

r1
i1
b2a

r2
i2

... bn a
rn
in

)
◦ (j1, ..., jm)-th B-valued joint ∗-cumulants:

kBm
(
b′1a

t1
j1
, b′2a

t2
j2
, ..., b′ma

tm
jm

)
,

which provide the equivalent B-valued free distributional data of a1, ..., as, for
all (i1, ..., in) ∈ {1, ..., s}n, (j1, ..., jm) ∈ {1, ..., s}m, for all n, m ∈ N, where b1,
..., bn, b

′
1, ..., b′m ∈ B are arbitrary and r1, ..., rn, t1, ..., tm ∈ {1, ∗}. By the Möbius

inversion, indeed, they provide the same, or equivalent, B-valued free distributional
data of a1, ..., as. i.e., they satisfy

EB
(
b1a

r1
i1

... bna
rn
in

)
=

∑
π∈NC(n)

kBπ
(
b1a

r1
i1
, ..., bna

rn
in

)
and

kBm
(
b′1a

r1
j1
, ..., b′ma

tm
jm

)
=

∑
θ∈NC(m)

EB:θ

(
b′1a

t1
j1
, ..., b′ma

tm
jm

)
µ(θ, 1m),

where NC(k) is the lattice of all noncrossing partitions over {1, ..., k}, for k ∈
N, and kBπ (...) and EB:θ(...) are the partition-depending cumulant and the partition-
depending moment, and where µ is the Möbius functional in the incidence algebra
I2.

Recall that the partial ordering on NC(k) is defined by

π ≤ θ def⇐⇒ ∀ blocks V in π, ∃ blocks B in θ s.t.V ⊆ B.,

for all k ∈ N. Under such a partial ordering ≤, the set NC(k) is a lattice with
its maximal element 1k = {(1, ..., k)} and its minimal element 0k = {(1), (2), ...,
(k)}. The notation (...) inside partitions {...} means the blocks of the partitions.
For example, 1k is the one-block partition and 0k is the k-block partition, for k ∈
N. Also, recall that the incidence algebra I2 is the collection of all functionals

ξ : ∪∞k=1 (NC(k)×NC(k)) → C,

satisfying ξ(π, θ) = 0, whenever π > θ, with its usual function addition (+) and
its convolution (∗) defined by

ξ1 ∗ ξ2(π, θ)
def
=

∑
π≤σ≤θ

ξ1(π, σ) ξ2(σ, θ),

On Dynamical Systems Induced by the Adele Ring
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for all ξ1, ξ2 ∈ I2. Then this algebra I2 has the zeta functional ζ, defined by

ζ(π, θ)
def
=

{
1 if π ≤ θ
0 otherwise.

The Möbius functional µ is the convolution-inverse of ζ in I2. So, it satisfies

(4.1.1)
π∈NC(k)

µ(π, 1k) = 0, and µ(0k, 1k) = (−1)k−1 ck−1,
∑

for all k ∈ N, where cm
def
= 1

m+1

(
2m
m

)
is the m-th Catalan number, for all m

∈ N.
The amalgamated freeness is characterized by the amalgamated ∗-cumulants.

Let (A, EB) be given as above. Two W ∗-subalgebras A1 and A2 of A, having their
common W ∗-subalgebra B in A, are free over B in (A, EB), if and only if all their
“mixed” ∗-cumulants vanish. Two subsets X1 and X2 of A are free over B in
(A, EB), if vN(X1, B) and vN(X2, B) are free over B in (A, EB), where vN(S1,
S2) means the von Neumann algebra generated by S1 and S2. In particular, two
B-valued random variable x1 and x2 are free over B in (A, EB), if {x1} and {x2}
are free over B in (A, EB).

Suppose two W ∗-subalgebras A1 and A2 of A, containing their common W ∗-
subalgebra B, are free over B in (A, EB). Then we can construct a W ∗-subalgebra

vN(A1, A2) = B[A1 ∪A2]
w

of A generated by A1 and A2. Such W ∗-subalgebra of
A is denoted by A1 ∗B A2. If there exists a family {Ai : i ∈ I} of W ∗-subalgebras
of A, containing their common W ∗-subalgebra B, satisfying A = ∗B

i∈I
Ai, then we

call A, the B-valued free product algebra of {Ai : i ∈ I}.
Assume now that the W ∗-subalgebra B is ∗-isomorphic to C = C · 1A. Then the

conditional expectation EB becomes a linear functional on A. By ϕ, denote EB .
Then, for a1, ..., an ∈ (A, ϕ),

kn(a1, ..., an) =
π∈NC(n)

ϕπ(a1, ..., an) µ(π, 1n)
∑

by the Möbius inversion

=
∑

π∈NC(n)

(
Π
V ∈π

ϕV (a1, ..., an)
)
µ(π, 1n)

since the images of ϕ are in C.
For example, if π = {(1, 3), (2), (4, 5)} in NC(5), then

ϕπ(a1, ..., a5) = ϕ(a1ϕ(a2)a3)ϕ(a4a5)
= ϕ(a1a3)ϕ(a2)ϕ(a4a5).

Remember here that, if ϕ is an arbitrary conditional expectation EB , and if B
· 1A, then the above second equality does not hold in general.

So, we have

(4.1.2)kn(a1, ..., an) =
∑

π∈NC(n)

(
Π
V ∈π

ϕV (a1, ..., an)µ(0|V |, 1|V |)

)
by the multiplicativity of µ.

6 =C

III. -Adic W -Dynamical Systems
∗

In this section, we introduce W ∗-dynamical systems induced by p-adic num-
ber fields Qp, for p ∈ P. They are defined by a certain semigroup(-or-monoidal)
dynamical systems induced by semigroups (resp., monoids) σ(Qp) = (σ(Qp), ∩).
Throughout this section, we fix a von Neumann subalgebra M of B(H), and a
prime p.

On Dynamical Systems Induced by the Adele Ring
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p L∞(Qp) As a measure space, the p-adic
number field Qp has its corresponding L2-Hilbert space Hp, defined by

(3.1.1)Hp
def
= L2

(
Qp, ρp

)
, for all primes p.

We call Hp, the p-prime Hilbert space. Remark that all elements of Hp are the
functions approximated by simple functions∑

S∈σ(Qp)

tS χS

(under limit), generated by characteristic functions χX ,

χX(x) =

{
1 if x ∈ X
0 otherwise,

for all x ∈ Qp, with tS ∈ C, for S ∈ σ(Qp). So, one can understand each element
f of Hp as an expression,

f =
∑

S∈σ(Qp)

tS χS (possibly an infinite sum).

By definition, the inner product <,>p on Hp is defined by

< f1, f2 >p
def
=
∫
Qp

f1 f2 dρp,

for all f1, f2 ∈ Hp, having the corresponding norm ‖.‖p on Hp,

‖f‖p
def
=
√
< f, f >p =

√∫
Qp
|f |2 dρp,

for all f ∈ Hp. Thus, if f =
∑

S∈σ(Qp)

tSχS in Hp, then

∫
Qp

f dρp =
∑

S∈σ(Qp)

tS ρp(S).

Let’s fix a function g ∈ L∞
(
Qp, ρp

)
, which is an essential-norm bounded func-

tion. Similar to Hp-case, one can / may understand g as the approximation of
simple functions. Then

gf ∈ Hp, too, for all f ∈ Hp.

The von Neumann subalgebras Mp = L∞
(
Qp, ρp

)
of B(Hp) are

called the p-prime von Neumann algebras, for all p ∈ P.

By locally compactness, and Hausdorff property of Qp, for any x ∈ Qp, there
exist a ∈ Q, and n ∈ Z, such that x ∈ a + pnUp (See [18]). Therefore, we obtain
the following lemma.

Let X ∈ σ(Qp) be a measurable subset. Then there exists N ∈ N ∪
{∞}, such that: (i) there are corresponding a1, ..., aN ∈ Q, and n1, ..., nN ∈ Z,
and (ii) X is covered by the unions of ak + pnkUp, for k = 1, ..., N, i.e.,

(3.1.2)X ⊆
N
∪
k=1

(ak + pnkUp) ,

where Up is the unit circle of Qp, which is the boundary of the unit disk Zp. �

In (3.1.2), we show that every measurable subset X of Qp is covered by a union

of transformed boundaries a + pk Up of a + pkZp (a ∈ Q, k ∈ Z).

Let X be a measurable subset of the unit circle Up in Qp, for primes
p. Then there exists

(3.1.3)0 ≤ rX ≤ 1 in R,

a) - : 

Definition 3.1. 

Prime von Neumann Algebras 

Lemma 3.1.

Lemma 3.2.
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such that

ρp (X) = rX

(
1− 1

p

)
.

�

By (3.1.3), we can obtain the following theorem.

On Dynamical Systems Induced by the Adele Ring

(See [10]) Let χS be a characteristic function for S ∈ σ(Qp). Then
there exist N ∈ N ∪ {∞}, and k1, ..., kN ∈ Z, r1, ..., rN ∈ R, such that

(3.1.4)
∫
Qp

χS dρp =
∑N
j=1 rj

(
1

pkj
− 1

pkj+1

)
.

�

The above formula (3.1.4) characterizes the identically-distributedness under the
integral in Mp. By (3.1.4), one can obtain the following corollary.

Let g =
∑

S∈σ(Qp)

tS χS be an element of the p-prime von Neumann

algebra Mp. Then there exist

rj ∈ [0, 1] in R, kj ∈ Z, and tj ∈ C,
and

(3.1.5)h =
∑∞
j=−∞ (tjrjp

kj ) χUp

such that g and h are identically distributed under the integral
∫
Qp
• dρp. �

p ∗
Now, let M be a fixed von

Neumann algebra in the operator algebra B(H) on the Hilbert space H, and Qp, a
fixed p-adic number field, and let Mp = L∞(Qp, ρp) be the p-prime von Neumann
algebra in the sense of Section 3.1.

Let Hp be the tensor product Hilbert space H ⊗ Hp of the p-prime Hilbert space
Hp and the Hilbert space H, where ⊗ means the topological tensor product of
Hilbert spaces. i.e.,

Hp = H ⊗ Hp.

Understand the σ-algebra σ(Qp) of Qp as a monoid (σ(Qp), ∩). It is not difficult
to check indeed σ(Qp) is a semigroup under the intersection (∩), with (∩)-identity
Qp ∈ σ(Qp), i.e., it is a well-defined monoid.

Define an action α of the monoid σ(Qp), acting on the von Neumann algebra M
in B(Hp) by

(3.2.1)α(S)(m)
def
= χS m χ∗S = χS m χS ,

for all S ∈ σ(Qp), and m ∈ M, in B(Hp), by understanding

χS = χS ⊗ 1M , and m = 1Mp ⊗ m in B(Hp),

where 1Qp
is the identity map χQp

on Qp, and 1M is the identity element of M .

(See [10]) The action α of σ(Qp) in the sense of (3.2.1) acting on a
von Neumann algebra M is a monoid action, and hence, the triple (M, σ(Qp), α)
forms a monoidal dynamical system. �

Indeed, the morphism α of (3.2.1) satisfies that:

α(S1 ∩ S2) = α(S1) ◦ α(S2) on M,

for all S1, S2 ∈ σ(Qp).
Remark that all elements f of the p-prime von Neumann algebra Mp = L∞(Qp,

ρp) is generated by the σ-algebra σ(Qp) of Qp, in the sense that: every element f
∈ Mp has its expression,

∑
S∈Supp(f)

tSχS . So, the action α of (3.2.1) is extended to

the linear morphism, also denoted by α, from Mp into B(Hp), acting on M, with

Theorem 3.3.

Corollary 3.4.

b) - Adic Semigroup W_- Dynamical Systems: 

Lemma 3.5.

Ref

        

43

G
lo
ba

l
Jo

ur
na

l
of

Sc
ie
nc

e
Fr

on
tie

r
R
es
ea

rc
h 

  
  
  
 V

ol
um

e
X
V
 I
ss
ue

  
  
  
er

sio
n 

I
V

IV
Y
ea

r
20

15

© 2015    Global Journals Inc.  (US)

  
 F
)

)
10

.I
. 
C

h
o
, 
O

n
 D

y
n
am

ic
al

 S
y
st

em
s 

In
d
u
ce

d
 b

y
 p

-A
d
ic

 N
u
m

b
er

 F
ie

ld
s,

 O
p
u
sc

u
la

 M
at

h
.,

(2
01

5)
 T

o 
A

p
p
ea

r.



 
 

 
 

 
 
 
 
 
 
 
 
 
 

(3.2.2)α(f)(m) = α
∑

S∈Supp(f)

tSχS

)
(m)

def
=

∑
S∈Supp(f)

tS α(S)(m) =
∑

S∈Supp(f)

tS (χSmχS) ,

for all f ∈ Mp.

Let σ(Qp) be the σ-algebra of the p-adic number field Qp, under-
stood as a monoid (σ(Qp), ∩), and let α be the action of σ(Qp) on a von Neumann

)

algebra M in the sense of (3.2.1). Then the mathematical triple (M, σ(Qp), α) is
called the p-adic (monoidal) W ∗-dynamical system. For this p-adic W ∗-dynamical
system, define the crossed product W ∗-algebra

(3.2.5)Mp
def
= M ×α σ(Qp)

by the von Neumann subalgebra of B(Hp) generated by M and χ (σ(Qp)) satis-
fying (3.2.2) (See Section 2.2 above).

The von Neumann algebraMp is called the p-adic dynamical W ∗-algebra induced
by the p-adic W ∗-dynamical system (M, σ(Qp), α).

Note that, all elements of the p-adic dynamical W ∗-algebraMp = M ×α σ(Qp)
induced by the p-adic W ∗-dynamical system Q(M, p) have their expressions,∑

S∈σQp)

mS χS , with mS ∈ M

(possibly infinite sums under topology). Define the support Supp(T ) of a fixed
element T =

∑
S∈σ(Qp)

mS χS in Mp by

Supp(T )
def
= {S ∈ α(Qp) : mS 6= 0M}.

Now, let m1χS1
, m2χS2

∈ Mp, with m1, m2 ∈ M, S1, S2 ∈ σ(Qp). Then

(m1χS1
)(m2χS2

) = m1χS1
m2χS1

χS2

= m1χS1
m2χ

2
S1
χS2

= m1χS1
m2χS1

χS1
χS2

since χS = 1M ⊗ χS (in B(Hp)) are projections (χ2
S = χS = χ∗S), for all S ∈

σ(Qp)
= m1 αS1

(m2) χS1
χS2

= m1 αS1
(m2) χS1∩S2

.

Notation For convenience, if there is no confusion, we denote αS(m) by mS ,
for all S ∈ σ(Qp), and m ∈ M. �

More generally, one has that:
(3.2.3)

N

Π
j=1

(mjχSj
) = m1m

S1
2 mS1∩S2

3 ...m
S1∩...∩SN−1

N χS1∩...∩SN

=
N

Π
j=1

m

j−1
∩

i=0
Si

j

)(
χ N
∩

j=1
Sj

)
for all N ∈ N. Also, we obtain that

(3.2.4)(mχS)∗ = χSm
∗ χSχS = (m∗)S χS ,

for all m χS ∈ Mp, with m ∈ M, and S ∈ σ(Qp).
So, let

Tk =
∑

Sk∈Supp(Tk)

mSk
χSk
∈ Mp, for k = 1, 2.

)
Definition 3.2.

On Dynamical Systems Induced by the Adele Ring
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On Dynamical Systems Induced by the Adele Ring

Then
T1T2 =

∑
(S1,S2)∈Supp(T1)×Supp(T2)

mS1
χS1

mS2
χS2

(3.2.5)

=
∑

(S1,S2)∈Supp(T1)×Supp(T2)

mS1
mS1

S2
χS1∩S2

,

by (3.2.3).

Also, if T =
∑

S∈Supp(T )

mSχS in Mp, then

(3.2.6)

T ∗ =
∑

S∈Supp(T )

(m∗S)SχS ,

by (3.2.4).
So, one can have that if

Tk =
∑

Sk∈Supp(Tk)

mSk
χSk
∈ Mp, for k = 1, ..., n,

for n ∈ N, then

T r11 T r22 · · · T rnn =
n

Π
j=1

∑
Sj∈Supp(Tj)

[m
rj
Sj

]SjχSj

)
where
(3.2.7)

[m
rj
Sj

]Sj
def
=

{
mSj

if rj = 1
(m∗Sj

)Sj if rj = ∗,
for j = 1, ..., n

=
∑

(S1,...,Sn)∈
n
Π

j=1
Supp(Tj)

(
n

Π
j=1

(
[m

rj
Sj

]SjχSj

))
(3.2.8)

=
∑

(S1,...,Sn)∈
n
Π

j=1
Supp(Tj)

 n

Π
j=1

(
[m

rj
Sj

]Sj

)(j−1
∩

i=1
Si

) χ n
∩

j=1
Sj

) ,

for all (r1, ..., rn) ∈ {1, ∗}n.

Let Tk =
∑

Sk∈Supp(Tk)

mSk
χSk

be elements of the p-adic semigroup

W ∗-algebra Mp = M ×α σ(Qp) in B(Hp), for k = 1, ..., n, for n ∈ N. Then
(3.2.9)

n

Π
j=1

T
rj
j =

∑
(S1,...,Sn)∈

n
Π

j=1
Supp(Tj)

 n

Π
j=1

(
[m

rj
Sj

]Sj

)(j−1
∩

i=1
Si

) χ n
∩

j=1
Sj

) ,

for all r1, ..., rn ∈ {1, ∗}, where [m
rj
Sj

]Sj are in the sense of (3.2.7).

Proof. The proof of (3.2.9) is done by (3.2.8) with (3.2.7).

M ×α σ(Qp). Let Mp = M ×α σ(Qp) be the p-
adic W ∗-algebra induced by the p-adic W ∗-dynamical system (M, σ(Qp), α). In
this section, we consider a structure theorem for this crossed product von Neumann
algebra Mp.

Define the usual tensor product W ∗-subalgebra

M0 = M ⊗C Mp of B(Hp),
where Mp = L∞(Qp, ρp) is the p-prime von Neumann algebra in the sense of

Section 3.1, and where ⊗C is the topological tensor product of topological operator
algebras over C. By definition, clearly, one can verify thatMp is a W ∗-subalgebra
of M0 in B(Hp), i.e.,

Lemma 3.6. 

c) Structure Theorems of 
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Mp

Subalgebra

⊆ M0.

Now, define the “conditional” tensor product W ∗-algebra

Mp
0 = M ⊗α Mp,

induced by an action α of Mp acting on M (in the sense of (3.2.4)), by a W ∗-
subalgebra of M0 dictated by the α-relations:

(3.3.1)(m1 ⊗ χS1
)(m2 ⊗ χS2

) = (m1m
S1
2 ) ⊗ χS1

χS2
,

and

(3.3.2)(m ⊗ χS)∗ = (m∗)S ⊗ χ∗S ,

for all m1, m2, m ∈ M, and S1, S2, S ∈ σ(Qp). i.e., the W ∗-subalgebra Mp
0 of

M0 satisfying the α-relations (3.3.1) and (3.3.2) is the conditional tensor product
W ∗-algebra M ⊗α Mp.

(See [10]) Let Mp = M ×α σ(Qp) be the p-adic W ∗-algebra in-
duced by the p-adic W ∗-dynamical system Q(M, p), and let Mp

0 = M ⊗α Mp be
the conditional tensor product W ∗-algebra of M and the p-prime von Neumann al-
gebra Mp satisfying the α-relations (3.3.1) and (3.3.2). Then these von Neumann
algebras Mp and Mp

0 are ∗-isomorphic in B(Hp), i.e.,
(3.3.3)

Mp = M ×α σ(Qp)
∗-iso
= M ⊗α Mp = Mp

0,

in B(Hp). �

In this section, we consider free probability on the p-adic dynamical W ∗-algebra

Mp = M ×α σ(Qp)
induced by the p-adic W ∗-dynamical system (M, σ(Qp), α).
By Section 3.3, the von Neumann subalgebra Mp is ∗-isomorphic to the con-

ditional tensor product W ∗-algebra Mp
0 = M ⊗α Mp of a fixed von Neumann

subalgebra M of B(H) and the p-prime von Neumann algebra Mp = L∞(Qp, ρp),
in B(Hp), for p ∈ P. So, throughout this section, we understand Mp and Mp

0,
alternatively.

By understanding Mp as Mp
0, we construct a well-defined conditional expecta-

tion
(4.1)

Ep : Mp
0
∗-iso
= Mp → Mp,

where

Mp = M ⊗α C [{χS : S ∈ σ(Qp), S ⊆ Up}] ,

where Up is the unit circle of Qp, which is the boundary Zp − pZp of the unit
disk Zp of Qp, satisfying that:

Ep(mχS) = Ep(m ⊗ χS)
def
= m χS∩Up

,

for all m ∈ M, and S ∈ σ(Qp).
Define now a morphism

IV. Free Probability on  -Adic Dynamical    -Algebras∗W

Fp : Mp → Mp

by a linear transformation satisfying that:

(4.1)′Fp (mχS) = m
(
rSχUp

)
,

for all S ∈ σ(Qp), where rS ∈ [0, 1] in R, making

Theorem 3.7.

On Dynamical Systems Induced by the Adele Ring
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∫
Qp

(
χS∩Up

)
dρp = rS

∫
Qp

(
χUp

)
dρp

⇐⇒
ρp

(
rSχUp

)
= rS

(
1− 1

p

)
= ρp

(
χS∩Up

)
,

by the identically distributedness (3.1.4) (and (3.1.5)), i.e.,

(4.1)′′ρp(S ∩ Up)
def
= rS

(
1− 1

p

)
= rSρp(Up).

Define now a linear functional

γ : Mp → C
by

(4.2)γ
def
=
(
⊗
∫
Qp
• dρp

)
◦ Fp,

where Fp is in the sense of (4.1)′. More precisely, it satisfies that:

γ (m ⊗ χS)
def
= (m)

∫
Qp

(
rSχUp

)
dρp

= rS (m)
(

1− 1
p

)
.

And then define a linear functional

γp : Mp
∗-iso
= M0

p → C
by

(4.3)γp = γ ◦ Ep,

where γ and Ep are in the sense of (4.2) and (4.1), respectively. i.e., for all m ∈
M, and S ∈ σ(Qp),

γp (m χS) = γ (Ep(m χS))

= γ
(
mY ∩Up (rχUp

)
)

= (m)
∫
Qp

(
r χUp

)
dρp

= r ψ(m)
(

1− 1
p

)
,

for some r ∈ [0, 1], satisfying (4.1)′′.
Then the pair (Mp, γp) is a W ∗-probability space in the sense of Section 2.3.

We consider the free distributional data of certain elements of (Mp, γp).
Let Mp = M ×α σ(Qp) be the p-adic dynamical W ∗-algebra in B(Hp), under-

stood also as its ∗-isomorphic von Neumann algebra, Mp
0 = M ⊗α Mp. Let γp =

γ ◦ Ep be the linear functional in the sense of (4.3) on Mp
0 = Mp, where γ is in

the sense of (4.2) and Ep is in the sense of (4.1), with (4.1)′′. i.e., γp is a linear
functional on Mp, satisfying that:

γp(mχS) = γ (Ep(mχS)) = γ
(
m(rχUp

)
)

= rψ(m)
(

1− 1
p

)
,

for some r ∈ [0, 1], satisfying (4.1)′′, for all m ∈ M, and S ∈ σ(Qp).
By [10], the morphism γp = γ ◦ Ep : Mp → C of (4.3) is indeed a well-defined

bounded linear functional on Mp
∗-iso
= M0

p.

The pair (Mp, γp) is called the p-adic dynamical W ∗-probability
space.

The following lemmas are obtained by the straightforward computations.

(See [10]) Let mχS be a free random variable in the p-adic dynamical
W ∗-probability space (Mp, γp), with m ∈ M, and S ∈ σ(Qp). Then

(4.4)γp ((mχS)n) = rS
(
m(mS)n−1

) (
1− 1

p

)
,ψ

Definition 4.1.

Lemma 4.1.
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for all n ∈ N, where rS ∈ [0, 1] satisfies (4.1)′′. �

(See [10]) Let m1χS1
, ..., mnχSn

be free random variables in the
p-adic dynamical W ∗-probability space (Mp, γp), with mk ∈ M, Sk ∈ σ(Qp), for k
= 1, ..., n, for n ∈ N. Then there exists r0 ∈ [0, 1], such that:

(4.5)γp

(
n

Π
j=1

mjχSj

)
= r0

N

Π
j=1

m

j−1
∩

i=0
Si

j

))(
1− 1

p

)
.

�

By (4.4) and (4.5), we obtain the following free distributional data of free random
variables of the p-adic dynamical W ∗-probability space (Mp, γp).

(See [10]) Let (Mp, γp) be the p-adic dynamical W ∗-probability
space, and let

Tk =
∑

Sk∈Supp(Tk)

mSk
χSk

, for k = 1, ..., n,

be free random variables in (Mp, γp), for n ∈ N. Then

(4.6)

γp

(
n

Π
j=1

Tj

)
=

∑
(S1,...,Sn)∈

n
Π

j=1
Supp(Tj)

r(S1,...,Sn)

n

Π
j=1

(
mSj

)(j−1
∩

i=1
Si

)))(
1− 1

p

)
.

�

So, by the Möbius inversion of Section 2.3, one can obtain that:

kn
((
m1χS1

)r1
, ..., (mnχSn

)rn
)

=
∑

π∈NC(n)

(γp)π
(
[mr1

1 ]S1χS1
, ..., [mrn

n ]SnχSn

)
µ(π, 1n)

=
∑

π∈NC(n)

(
Π
V ∈π

(γp)V
(
[mr1

1 ]S1χS1
, ..., [mrn

n ]SnχSn

)
µ
(
0|V |, 1|V |

))
by the Möbius inversion (See Section 4.1)

=
∑

π∈NC(n)

(
Π

V=(i1,...,ik)∈π
γp

(
[m

ri1
i1

]Si1χSi1
· · · [m

rik
ik

]SikχSik

)
µ (0k, 1k)

)
(4.7)

))ψ

))ψ

=
∑

π∈NC(n)

Π
V=(i1,...,ik)∈π

rV
k

Π
t=1

(
[m

rit
it

]Sit

)k−1
∩

t=1
Sit

))(
1− 1

p

))
µ (0k, 1k)

)
,

by (4.6), where rV ∈ [0, 1] satisfy (4.1)′′.

By (4.7), we obtain the following inner free structure of the p-adic dynamical
W ∗-algebra Mp, with respect to γp.

(See [10]) Let m1χS , and m2χS be free random variables in the p-
adic dynamical W ∗-probability space (Mp, γp), with m1, m2 ∈ M, and S ∈ σ(Qp) \
{∅}. Also, assume that S is not a measure-zero element in σ(Qp). Then {m1, m

S
1 }

and {m2, m
S
2 } are free in the W ∗-probability space (M, ψ), if and only if m1χS

and m2χS are free in (Mp, γp). �

))) ) ψ

Now, let m1 χS and m2 χUp
∈ Mp, with m1, m2 ∈ M, and S ∈ σ(Qp). Assume

that S ∩ Up is empty. Since S ∩ Up = ∅, all mixed cumulants of m1χS and m2χUp

have rV = 0, for some V ∈ π in (4.7), for all π ∈ NC(n). Therefore, one obtains
the following inner freeness condition of (Mp, γp).

(See [10]) Let S1 6= S2 ∈ σ(Qp) such that S1 ∩ S2 = ∅. Then the
subsets
{mχS1

: m ∈ M} and {aχS2
: a ∈ M}

are free in (Mp, γp). �

Lemma 4.2.

Theorem 4.3.

Theorem 4.4.

Theorem 4.5.
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On Dynamical Systems Induced by the Adele Ring

One may do the same process by fixing pkUp instead of fixing Up, for k ∈ Z.
Recall that pkUp are the boundaries pkZp \ pk+1Zp of pkZp, for all k ∈ Z (See
Section 2.1). i.e., for a fixed k ∈ Z, define

(4.8)

Mp:k
def
= M ⊗α C

[
{χpkUp

}
]
∗-iso
= M,

Then Mp = M ⊗α C
[
{χUp

}
]

of (4.1) is identical to Mp:0 in the sense of (4.8).

Similar to (4.1), construct a conditional expectation

Ep:k : Mp = M0
p → Mp:k

by a linear morphism satisfying that:
(4.9)

Ep:k (mχS) = m χ0
S∩pkUp

,

with

χ0
S∩pkUp

= r χpkUp
,

where r ∈ [0, 1] satisfying
(4.9)′ ∫

Qp
χ0
S∩pkUp

dρp = r
∫
Qp

χpkUp
dρp = r

(
1
pk
− 1

pk+1

)
.

Then, just like (4.1), Ep:k is a well-defined conditional expectation from Mp

onto Mp:k = M.
And then, for k ∈ Z, define a linear functional

γk : Mp:k → C
by

(4.10)γk

(
m χpkUp

)
def
= (m)

∫
Qp

(
χpkUp

)
dρp

= (m)
(

1
pk
− 1

pk+1

)
.

Then one has a well-defined linear functional

γp:k : Mp → C
defined by

(4.11)γp:k
def
= γk ◦ Ep:k, for all k ∈ Z.

Note that our linear functional γp in the sense of (4.3) is identified with γp:0 of
(4.11).

Let’s replace Mp = Mp:0 of (4.1) to Mp:k, for k ∈ Z. Then
the formulae (4.4), (4.5), (4.6) and (4.7) can be re-obtained by replacing factors(

1− 1
p

)
to
(

1
pk
− 1

pk+1

)
. So, the freeness of the above two theorems are same under

(Mp, γp:k)-settings.

For instance, if mjχSj
∈ (Mp, γp:k), for j = 1, ..., n, for n ∈ N, then

γp:k

(
n

Π
j=1

mjχSj

)
= r0

N

Π
j=1

m

j−1
∩

i=0
Si

j

))(
1
pk
− 1

pk+1

)
,

for some r0 ∈ [0, 1], satisfying (4.9)′. �

ψ

ψ

))ψ
The above Observation 4.1 shows that we have systems of W ∗-probability

spaces {(
Mp, γp:k

)}
k∈Z ,

sharing similar free probability with (Mp, γp = γp:0).

Observation 4.1

        

49

G
lo
ba

l
Jo

ur
na

l
of

Sc
ie
nc

e
Fr

on
tie

r
R
es
ea

rc
h 

  
  
  
 V

ol
um

e
X
V
 I
ss
ue

  
  
  
er

sio
n 

I
V

IV
Y
ea

r
20

15

© 2015    Global Journals Inc.  (US)

  
 F
)

)

Notes



 
 

 
 

 
 
 
 
 
 
 
 
 
 

In this section, we consider a W ∗-dynamical system induced by the σ-algebra
σ(AQ) of the Adele ring AQ. Similar to the p-adic cases of Sections 3 and 4, one
may understand σ(AQ) as a monoid

σ(AQ) = (σ(AQ), ∩),

equipped with its binary operation ∩, the set intersection. Like in Section 3, we
fix a von Neumann algebra M embedded in an operator algebra B(H) on a Hilbert
space H.

We will define a suitable action, also denoted by α, of the monoid σ(AQ) acting
on M in B(HQ), where

HQ = H ⊗ HQ.

Before proceeding, we introduce weak tensor product structures in Section 5.1.

Let Xi be arbitrary sets, for i ∈ Λ,
where Λ means any countable index set. Let

(5.1.1)gi : Xi → Xi

be well-defined functions, for all i ∈ Λ.
Now, let X be the Cartesian product Π

i∈Λ
Xi of {Xi}i∈Λ. Define the subset X of

X by

(5.1.2)X =

(xi)i∈Λ ∈ X

∣∣∣∣∣∣
finitely many xi ∈ Xi, and

almost of all other xj ∈ gj(Xj),
for i, j ∈ Λ

 ,

determined by a system g = {gi}i∈Λ of (5.1.1). We denote this subset X of
(5.1.2) in X by

X = Πg
i∈Λ

Xi.

It is clear that X is a subset of X. If gi are bijections, for all i ∈ Λ, then X is
equipotent (or bijective) to X. However, in general, X is a subset of X.

The subset X = Πg
i∈Λ

Xi of X = Π
i∈Λ

Xi, in the sense of (5.1.2), is

called the weak tensor product set of {Xi}i∈Λ induced by a system g = {gi}i∈Λ of
functions gi.

Let Qp be our p-adic number fields, for all p ∈ P. Define a function

gp : Qp → Qp
by

(5.1.3)gp

(
p−N

(∑∞
j=0 ajp

j
))

def
=
∑∞
j=0 ajp

j ,

for all p−N
∑∞
j=0 ajp

j ∈ Qp (with N ∈ N ∪ {0}), for all p ∈ P. Then the image

gp (Qp) is identical to the compact subset Zp, the unit disk of Qp, for all p ∈ P.
Therefore, the Adele ring

AQ = Π′
p∈P

Qp

is identified with

AQ = Πg
p∈P

Qp,

by (2.1.10) and (5.1.2), where g = {gp}p∈P is the system of functions gp of (5.1.3).
Remark here that, for example, if we have real number r in R = Q∞, with its

decimal notation

V Adelic W -Dynamical Systems

a) Weak Tensor Product Structures:

Definition 5.1.
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On Dynamical Systems Induced by the Adele Ring

|r| =
∑
k∈Z

tk · 10−k = · · ·t−2t−1t0. t1t2t3 · ··

with 0 ≤ tk < 10 in N, then

(5.1.4)g∞(r) = 0. t1t2t3 · · ·,

with identification g∞(±1) = 1.
Traditionally, we simply write AQ = Π′

p∈P
Qp as before, if there is no confusion.

Remark also that, Xi’s of (5.1.1) and (5.1.2) may / can be algebraic structures
(e.g., semigroups, or groups, or monoids, or groupoids, or vector spaces, etc), or
topological spaces (e.g., Hilbert spaces, or Banach spaces, etc). One may put prod-
uct topology on the weak tensor product, with continuity on {gi}i∈Λ. Similarly, if
Xi’s are topological algebras (e.g., Banach algebras, or C∗-algebras, or von Neu-
mann algebras, etc), then we may have suitable product topology, with bounded
(or continuous) linearity on the system {gi}i∈Λ.

Notation In topological-∗-algebraic case, to distinguish with other situations,
we use the notation ⊗Φ

i∈Λ
, instead of using ΠΦ

i∈Λ
, for a system Φ of functions. �

M . In this section, we establish
a von Neumann algebra M generated by the Adele ring AQ. Recall that the Adele
ring AQ is a unbounded-measured product topological ring induced by {Qp}p∈P .
In particular, it is a weak tensor product of {Qp}p∈P , i.e.,

AQ = Π′
p∈P

Qp = Πg
p∈

Qp,

where g = {gp}p∈P is the system of functions (5.1.3) satisfying (5.1.4).
By understanding AQ as a measure space (AQ, σ(AQ), ρ) (e.g., see Section 2.1),

we have the L2-Hilbert space HQ, defined by
(5.2.1)

HQ
def
= L2(AQ, ρ).

It has its inner product <,>, defined by
(5.2.1)′

< F1, F2 >
def
=
∫
AQ

F1 F2 dρ,

for all F1, F2 ∈ HQ. And similar to Section 3.1, the von Neumann algebra M is
defined by

(5.2.2)M
def
= L∞ (AQ, ρ).

We call the Hilbert space HQ of (5.2.1) the Adele-ring Hilbert
space. The von Neumann algebra M of (5.2.2) is said to be the Adele-ring von
Neumann algebra.

Let F =
∑

Y ∈σ(AQ)

tY χY be an element of the Adele-ring von Neumann algebra

M. Then

(5.2.3)
∫
AQ
F dρ =

∫
AQ

∑
Y ∈σ(AQ)

tY χY

)
dρ

=
∑

Y ∈σ(AQ)

tY ρ(Y ).

By construction, if Y is a subset of the Adele ring AQ, then

(5.2.4)Y = Π
p∈P

Yp,

)

b) The Adele-Ring von Neumann Algebra 

Definition 5.2.
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where Yp’s are subsets of Qp, for p ∈ P. So, by (2.1.10), (5.2.3) and (5.2.4), one
has

(5.2.5)ρ(Y ) = ρ

(
Π
p∈P

Yp

)
= Π

p∈P
ρp(Yp),

by identifying ρ∞ with the usual distance measure on Q∞ = R.
As we discussed in (3.1.3) and (3.1.4), if S ∈ σ(Qp), for a prime p, then the

element χS is identically distributed with∑N
j=1 rj χpkjUp

,

for some N ∈ N ∪ {∞}, rj ∈ [0, 1] in R, and kj ∈ Z, for j = 1, ..., N. Therefore,
we obtain the following theorem.

Let Y ∈ σ(AQ) and let χY be a generating element of the Adele-ring
von Neumann algebra M. Then there exist Np ∈ N ∪ {∞}, rp:j ∈ [0, 1] in R, and
kp:j ∈ Z, for j = 1, ..., Np, for p ∈ P, such that

(5.2.6)∫
AQ
χY dρ = Π

p∈P

(∑Np

j=1 rp:j

(
1

pkp:j
− 1

pkp:j+1

))
.

Proof. Let Y ∈ σ(AQ). Then, by (5.2.4), there exist Yp ∈ σ(Qp), for all p ∈ P, such
that Y = Π

p∈P
Yp. By Section 3.1, for each p ∈ P, the ρp-measurable subsets Yp has

Np ∈ N ∪ {∞}, and kp:1, ..., kp:Np ∈ Z, and rp:1, ..., rp:Np ∈ [0, 1], such that:

ρp (Yp) =
∑Np

j=1 rp:j

(
1

pkp:j
− 1

pkp:j+1

)
=
∫
Qp

χYp
dρp.

Therefore, by the product measure ρ = ×
p∈P

ρp on the Adele ring AQ, we have

that: ∫
AQ

χY dρ = ρ (Y ) =

(
×
p∈P

ρp

)(
Π
p∈P

Yp

)
= Π

p∈P
ρp(Yp)

= Π
p∈P

(∑Np

j=1 rp:j

(
1

pkp:j
− 1

pkp:j+1

))
.

Therefore, the formula (5.2.6) holds.

The formula (5.2.6) characterizes the identically-distributedness on elements of
the Adele-ring von Neumann algebra M.

The following theorem provides a structure theorem of the Adele-ring von Neu-
mann algebra M in terms of the p-prime von Neumann algebras {Mp}p∈P .

Let M = L∞ (AQ, ρ) be the Adele-ring von Neumann algebra, and
let Mp = L∞

(
Qp, ρp

)
be the p-prime von Neumann algebras, for p ∈ P. Then

M is ∗-isomorphic to the weak tensor product von Neumann algebra ⊗ϕ
p∈P

Mp of

{Mp}p∈P , induced by the system of functions ϕ = {ϕp}p∈P , i.e.,

(5.2.8)M
∗-iso
= ⊗ϕ

p∈P
Mp, with M∞ = L∞(R),

where the weak tensor product ⊗ϕ is not only algebraic, but also topological,
satisfying

(5.2.9)ϕp
∑

X∈σ(Qp)

tX χX

)
def
=

∑
X∈σ(Qp)

tX χX∩Zp
,)

Theorem 5.1.

Theorem 5.2.
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On Dynamical Systems Induced by the Adele Ring

for all p ∈ P.

Proof. By the construction of the Adele ring AQ, it is the weak tensor product
Π′
p∈P

Qp of {Qp}p∈P as we discussed in Sections 2.1 and 5.1. Therefore,

M
def
= L∞(AQ, ρ)

∗-iso
= L∞

(
Π′
p∈P

Qp, ×
p∈P

ρp

)
∗-iso
= ⊗ϕ

p∈P
L∞

(
Qp, ρp

)
= ⊗ϕ

p∈P
Mp,

where ϕ = {ϕp}p∈P is the family of ∗-homomorphisms ϕp : Qp → Zp of (5.2.9).
Now, it suffices to show that ϕp are ∗-homomorphisms, for all p ∈ P. Trivially

ϕp are linear and bounded, by the very definition. Also, it satisfies that

ϕp
(
χS1

χS2

)
= ϕp

(
χS1∩S2

)
= χS1∩S2∩Zp

= χ(S1∩Zp)∩(S2∩Zp) = χS1∩Zp
χS2∩Zp

= ϕp (S1) ϕp (S2) ,

for all S1, S2 ∈ σ(Qp). So, for any g1, g2 ∈ Mp,

ϕp(g1g2) = ϕp(g1) ϕp(g2).

Now, observe that
ϕp ((t χS)∗) = ϕp

(
t χ∗S

)
= t ϕp(χS)

= t χS∩Zp
= t χS∩Zp

= t
(
χS∩Zp

)∗
=
(
tχS∩Zp

)∗
=
(
ϕp(tχS)

)∗
,

for all S ∈ σ(Qp), and t ∈ C. Therefore, for g ∈ Mp,

ϕp(g
∗) =

(
ϕp(g)

)∗
.

Therefore, ϕp are well-defined ∗-homomorphisms, for all p ∈ P. So, the family
{ϕp}p∈P is a system of ∗-homomorphisms.

Therefore, indeed, M is ∗-isomorphic to the weak tensor product ⊗ϕ
p∈P

Mp, as a

well-defined W ∗-subalgebra of the usual tensor product W ∗-algebra ⊗C
p∈P

Mp.

The above theorem shows that, to study the Adele-ring von Neumann algebra
M, we can investigate the system of conditional summands Mp, the p-prime von
Neumann algebras, for p ∈ P.

∗
Let’s fix an arbitrary von Neumann alge-

bra M in an operator algebra B(H), and let M = L∞(AQ, ρ) be the Adele-ring von
Neumann algebra, which is ∗-isomorphic to the weak tensor product W ∗-algebra
⊗ϕ
p∈P

Mp of p-prime von Neumann algebras Mp = L∞(Qp, ρp), where ϕ = {ϕp}p∈P

is in the sense of (5.2.9). Thus, in this section, we understand M and ⊗ϕ
p∈P

Mp,

alternatively.

Consider the σ-algebra σ(AQ) of the Adele ring AQ as a monoid (σ(AQ), ∩), with
its identity AQ. Define a monoidal action α of σ(AQ) acting on M in B(HQ) by

(5.3.1)αS(m)
def
= χS m χ∗S = χS m χS ,

for all S ∈ σ(AQ), and m ∈ M, where

HQ = H ⊗ HQ.

c) Adele W-Dynamical Systems
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Then the action α of σ(AQ) is indeed a well-defined monoidal action, since

αS1∩S2
(m) = χS1∩S2

m χS1∩S2
= χS1∩S2

m χS2∩S1

= χS1
χS2

m χS2
χS1

= χS1
(αS2

(m)) χS1

= αS1
(αS2

(m)) = (αS1
◦ αS2

) (m),

and

(αS1
(m))

∗
=
(
χS1

mχS1

)∗
= χS1

m∗ χS1
= αS1

(m∗),

for all S1, S2 ∈ σ(AQ), and m ∈ M. Thus,

(5.3.2)(αS1∩S2
) (m) = (αS1

◦ αS2
) (m), and (αS1

(m))
∗

= αS1
(m∗),

for all S1, S2 ∈ σ(AQ), for all m ∈ M.
The action α compresses operators of M in B(HQ), and hence it is bounded. So,

α is a well-defined monoidal action of σ(AQ) acting on M in B(HQ), by (5.3.2).

Notation Similar to Section 3.2, we denote αS(m) simply by mS , for all S ∈
σ(AQ) and m ∈ M. �

Notice that there exists an action χ of the monoid σ(AQ) acting on HQ = L2(AQ,
ρ), such that

(5.3.3)χ(S) = χS , the characteristic function of S,

for all S ∈ σ(AQ). By construction,

HQ = linear span of χ(σ(AQ))
<,>

,

under the Hilbert space topology induced by <,> of (5.2.1)′.

The triple AM = (M, σ(AQ), α) of a fixed von Neumann algebra
M in B(H), the σ-algebra σ(AQ) of the Adele ring AQ, understood as a monoid
equipped with (∩), and the monoidal action α of σ(AQ) in the sense of (5.3.1),
is called an Adele W ∗-dynamical system in B(HQ). For an Adele W ∗-dynamical
system AM , define the corresponding crossed product W ∗-algebra

MQ = M ×α σ(AQ)

by the W ∗-subalgebra of B(HQ) generated by M and α (χ (σ(AQ))), where χ is
in the sense of (5.3.3), consisting of all elements∑

S∈σ(AQ)

mS χS with mS ∈ M.

This W ∗-subalgebra MQ of B(HQ) is said to be the Adele dynamical W ∗-algebra
induced by AM .

Let AM = (M, σ(AQ), α) be an Adele W ∗-dynamical system, and let MQ =
M ×α σ(AQ) be the Adele dynamical W ∗-algebra induced by AM . Let mjχSj

be

elements of MQ, with mj ∈ M, and Sj ∈ σ(AQ), for j = 1, ..., n, for n ∈ N. Then
one can obtain that

(5.3.4)
n

Π
j=1

(mj χSj
) = m

n

Π
j=2

m
j−1
∩

i=1
Si

)) (
χ n
∩

j=1
Sj

)
,

since
(m1χS1

)(m2χS2
) = m1χS1

m2χ
2
S1
χS2

= m1χS1
m2χS1

χS1∩S2

= m1m
S1
2 χS1∩S2

.

))

Also, we have

(5.3.5)

(mχS)∗ = χ∗Sm
∗ = χSm

∗

= χSm
∗χ2

S = χSm
∗χSχS

= (m∗)SχS = (m∗)Sχ∗S ,

Definition 5.3.
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for all m χS ∈ MQ, with m ∈ M, and S ∈ σ(AQ).
So, the Adele dynamical W ∗-algebra MQ is a W ∗-subalgebra of B(HQ) generated

by M and χ (σ(AQ)) , satisfying the conditions (5.3.4) and (5.3.5).

Let M = L∞(AQ, ρ) be the Adele-ring von Neumann algebra. For a fixed von
Neumann algebra M , construct the tensor product W ∗-algebra

M0 = M ⊗C M,

which is a W ∗-subalgebra of B(HQ). Define now a W ∗-subalgebra MQ of M0

by the “conditional” tensor product W ∗-algebra
(5.3.6)

MQ
def
= M ⊗α M,

satisfying the following α-relations (5.3.7) and (5.3.8);
(5.3.7)

(m1 ⊗ χS1
)(m2 ⊗ χS2

) = (m1m
S1
2 )⊗ χS1

χS2
,

and
(5.3.8)

(m⊗ χS)∗ = (m∗)S ⊗ χ∗S ,

for all m1, m2, m ∈M, and S1, S2, S ∈ σ(AQ). Of course, the α-relations; (5.3.7)
and (5.3.8); are determined under linearity.

Similar to Section 3.3, we obtain the following structure theorem for MQ.

Let MQ = M ×α σ(AQ) be the Adele dynamical W ∗-algebra in
B(HQ) induced by an Adele W ∗-dynamical system AM , and let M be the Adele-ring
von Neumann algebra. Then MQ and the conditional tensor product W ∗-algebra M
⊗α M of (5.3.6) are ∗-isomorphic, i.e.,

(5.3.9)

MQ = M ×α σ(AQ)
∗-iso
= M ⊗α M = MQ.

Proof. Let MQ be the Adele dynamical W ∗-algebra M ×α σ(AQ) induced by an
Adele W ∗-dynamical system AM , and letMQ = M ⊗α M be the conditional tensor
product W ∗-algebra (5.3.6) of a fixed von Neumann algebra M, and the Adele-ring
von Neumann algebra M in B(HQ), satisfying the α-relations (5.3.7) and (5.3.8).

Define now a morphism

Φ : MQ → MQ

by a linear transformation satisfying

(5.3.10)Φ (m⊗ χS) = mχS ,

for all m ∈ M, and S ∈ σ(AQ). Then it is generator-preserving, and hence, it is
bijective and bounded. Also, it satisfies that

Φ
(
(m1 ⊗ χS1

)(m2 ⊗ χS2
)
)

= Φ
(

(m1m
S1
2 )⊗ χS1

χS2

)
= (m1m

S1
2 ) χS1∩S2

= (m1χS1
)(m2χS2

)

= Φ(m1 ⊗ χS1
) Φ(m2 ⊗ χS2

),

for all m1, m2 ∈ M, and S1, S2 ∈ σ(AQ).
Thus, for any T1, T2 ∈ MQ, we have

(5.3.11)Φ(T1T2) = Φ(T1) Φ(T2) in MQ,

by the linearity of Φ.Furthermore,

Φ ((m⊗ χS)∗) = Φ
(
(m∗)S ⊗ χ∗S

)
= (m∗)S χS = (m χS)∗ = (Φ(m⊗ χS))

∗
,

for all m ∈ M, and S ∈ σ(AQ).

On Dynamical Systems Induced by the Adele Ring

Theorem 5.3.

        

55

G
lo
ba

l
Jo

ur
na

l
of

Sc
ie
nc

e
Fr

on
tie

r
R
es
ea

rc
h 

  
  
  
 V

ol
um

e
X
V
 I
ss
ue

  
  
  
er

sio
n 

I
V

IV
Y
ea

r
20

15

© 2015    Global Journals Inc.  (US)

  
 F
)

)

Notes



 
 

 
 

 
 
 
 
 
 
 
 
 
 

So, for any T ∈ MQ,

(5.3.12)Φ(T ∗) = Φ(T )∗ in MQ.

Therefore, by (5.3.11) and (5.3.12), the bijective linear transformation Φ of
(5.3.10) is a ∗-isomorphism from MQ onto MQ.

The above structure theorem (5.3.9) shows that, just like the p-adic cases, Adelic

dynamical W ∗-algebras M ×α σ(AQ) are understood as conditional tensor product
W ∗-algebras M ⊗α M. As in Section 3, we handle von Neumann algebras MQ and
MQ, alternatively.

One of the most interesting results of the above structure theorem (5.3.9) is the
following structure theorem.

Let MQ be the Adele dynamical W ∗-algebra induced by an Adele
W ∗-dynamical system AM . Then MQ is ∗-isomorphic to the weak tensor product
W ∗-algebra ⊗ϕM

p∈P
Mp of the p-adic dynamical W ∗-algebras Mp = M ×α σ(Qp) in

the sense of (3.2.5), for p ∈ P, i.e.,

(5.3.13)MQ
∗-iso
= ⊗ϕM

p∈P
Mp,

with the system ϕM ,

(5.3.14)ϕM
def
= 1M ⊗ ϕ = {1M ⊗ ϕp}p∈P ,

where ϕ = {ϕp}p∈P is in the sense of (5.2.9).

Proof. By (5.3.9), the given Adele dynamical W ∗-algebra MQ is ∗-isomorphic to
MQ = M ⊗α M;

MQ
∗-iso
= MQ.

Also, by (5.2.8), the Adele-ring von Neumann algebra M is ∗-isomorphic to
⊗ϕ
p∈P

Mp, where ϕ is in the sense of (5.2.9);

M
∗-iso
= ⊗ϕ

p∈P
Mp,

where Mp = L∞(Qp, ρp) are p-prime von Neumann algebras, for p ∈ P.
Thus, one can have that

MQ
∗-iso
= M ⊗α M

∗-iso
= M ⊗α ⊗ϕ

p∈P
Mp

)
∗-iso
= ⊗ϕM

p∈P
(M ⊗α Mp)

where ϕM = {1M ⊗ ϕp}p∈P
∗-iso
= ⊗ϕM

p∈P
Mp,

by (3.3.3).

The structure theorem (5.3.13) provides a useful tool for studying our Adelic
dynamical W ∗-algebras MQ in terms of p-adic dynamical W ∗-algebras Mp’s.

Let M be a fixed von Neumann algebra in B(H), and let

MQ = M ×α σ(AQ)

be the Adele dynamical W ∗-algebra induced by an Adele W ∗-dynamical system

Theorem 5.4.

VI. Adelic Dynamical W -Algebras
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AM = (M, σ(AQ), α) in B(HQ).

In Section 5, we showed that MQ is ∗-isomorphic to the conditional tensor prod-
uct W ∗-algebra

MQ = M ⊗α M

of M and the Adele von Neumann algebra M = L∞(AQ, ρ) by (5.3.9). And
hence, it is ∗-isomorphic to the weak tensor product von Neumann algebra

MQ = ⊗ϕM

p∈P
Mp

of p-adic dynamical W ∗-algebras Mp = M ×α σ(Qp), for p ∈ P, by (5.3.13).
We understand these three von Neumann algebras MQ, MQ and MQ, as the

same von Neumann algebras MQ. Especially, case-by-case, we use a suitable one
among {MQ,MQ, MQ} as MQ.

First, recall that, if Y ∈ σ(AQ), then there exist Yp ∈ σ(Qp), for all p ∈ P, such
that

Y = Π
p∈P

Yp,

where most of Yq’s are identical to Yq ∩ Zq (i.e., Yq ⊆ Zq), for q ∈ P.
For instance, the subset U of AQ,

(6.0.1)U = Π
p∈P

Up

is a well-determined element of σ(AQ), where Up are the unit circles of Qp, for
all p ∈ P. We call U, the unit circle of the Adele ring AQ. Indeed, for any element
(up)p∈P ∈ U, we have

|(up)p∈P |Q = Π
p∈P
|up|p = 1,

where |.|Q is the non-Archimedean norm on AQ induced by the p-norms {|.|p}p∈P
(e.g., see [18]).

Define now a conditional expectation

E : MQ = MQ → M ⊗α C [{χU}]
∗-iso
= M

by a linear morphism satisfying that:

(6.0.2)E (mχY ) = m (rχU ) ,

where r ∈ [0, 1] satisfies that:

(6.0.3)
∫
AQ

χY ∩U dρ = r
∫
AQ

χU dρ = r

(
Π
p∈P

(
1− 1

p

))
.

Remark here that the quantity Π
p∈P

(
1− 1

p

)
on the right-hand side of (6.0.2)′

satisfies that:

Π
p∈P

(
1− 1

p

)
=
(
1− 1

∞
)(

Π
p:primes

(
1− 1

p

))

= Π
p:primes

(
1− 1

p

)
= 1

ζ(1) ,

where

ζ(s)
def
=
∑∞
n=1

1
ns = Π

p:primes

1
1−p−s = 1

Π
p:primes

(1− 1
ps )

is the Riemann zeta function, satisfying that:

1
ζ(s) = Π

p:prime

(
1− 1

ps

)
, for s ∈ C.
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By definition, it is clear that

ζ(1) =
∑∞
n=1

1
n = ∞,

and hence,
1
ζ(1) = 0.

Thus, one can verify that the formula (6.0.3) becomes 0, for all mχY ∈MQ, with
m ∈ (M, ψ) and Y ∈ σ(AQ). In other words, we cannot directly mimic the p-adic
dynamical free-probabilistic approaches as in Section 4.

Therefore, we consider a new, but similar approach to establish a suitable free
probability model on our Adelic dynamical W ∗-algebra MQ.

∗ {(MQ, ϕP )}P⊂P . As we have
discussed at the beginning of this section, we cannot directly mimic the free-
probabilistic settings from the p-adic dynamicalW ∗-probability spaces to our Adelic
W ∗-probability settings. So, we construct suitable linear functionals differently
from those of Section 4 (and those of [10]).

Take first a “finite” subset P of P, say

(6.1.1)P = {p1, ..., pn},

for some n ∈ N, in particular, suppose all p1, ..., pn of P are primes (not ∞) in
P. We call such subsets P of P, finite prime (sub)sets of P.

Let P be a finite prime set (6.1.1) of P. Define an element UP of σ(AQ) by

(6.1.2)UP
def
=

(
Π
p∈P

Up

)
×
(

Π
q∈P \ P

Zq
)
,

under possible re-arrangement. i.e., for all p in P, take the unit circle Up of Qp,
and for almost all other q in P, take Zq of Qq, and then product them to construct
a ρ-measurable subset UP in the Adele ring AQ.

Then define a subalgebra MP of MQ = MQ = MQ by

(6.1.3)MP
def
= M ⊗α C [{χS : S ∈ σ(AQ), S ⊆ UP }] .

Define now a conditional expectation

EP : MQ = MQ → MP

by a linear morphism satisfying that:

(6.1.4)EP (mχY ) = m χY ∩UP
.

Now, let’s check the morphism EP of (6.1.4) is indeed a conditional expectation:
(6.1.5) For any m χS ∈ MP , one has

EP (mχS) = mχS∩UP
= mχS ,

since S ⊆ UP , and hence, for any x ∈ MP , we have

EP (x) = x, under linearity.

(6.1.6) For mjχSj
∈ MP , for j = 1, 2, and m χY ∈ MQ, we have

EP
(
(m1χS1

)(mχY )(m2χS2
)
)

= EP

(
m1m

S1mS1∩Y
2 χS1∩Y ∩S2

)
= EP

(
m1m

S1mS1∩Y
2 χS1∩Y ∩S2

)
=
(
m1m

S1mS2∩Y
2

)
χS1∩Y ∩S2

,

and (
m1χS1

)
(EP (mχY ))

(
m2χS2

)
= (m1χS1

)
(
mχY ∩UP

)
)

(m2χS2
)

=
(
m1m

S1mS1∩Y ∩UP
2

)
χS1∩Y ∩S2

,

=
(
m1m

S1mS1∩Y
2

)
χS1∩Y ∩S2

,

a) Adelic Dynamical W -Probability Spaces 
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because S1 ∩ UP = S1, so, S1 ∩ Y ∩ UP = S1 ∩ Y, and hence,

EP
(
(m1χUP

)(mχY )(m2χUP
)
)

=
(
m1χUP

)
(EP (mχY ))

(
m2χUP

)
.

Thus, under linearity, we have that:

EP (x1yx2) = x1 EP (y) x2,

for all x1, x2 ∈ MP and y ∈ MQ.
(6.1.7) Also, one has that:

EP ((mχY )∗) = EP
(
(m∗)Y χY

)
= (m∗)Y (χY ∩UP

) = (EP (mχY ))
∗
,

and hence, for all y ∈ MQ, we have

EP (y∗) = EP (y)∗.

The morphism EP of (6.1.4) is a well-defined conditional ex-
pectation from MQ onto MP , for any finite prime set P of P.

Proof. By definition, the morphism EP of (6.1.4) is bounded and linear. So, it is a
conditional expectation because of (6.1.5), (6.1.6) and (6.1.7).

Define now a morphism FP : MP → MP by a linear morphism satisfying that:

(6.1.8)FP (mχY ) = m
(
rY χUP

)
, for some rY ∈ [0, 1].

In particular, the quantity rY in (6.1.8) is determined as follows in [0, 1] of R:∫
AQ
χY ∩UP

dρ = ρ (Y ∩ UP )

= ρ

((
Π
p∈P

Yp

)
∩
(

Π
p∈P

Vp

))
where Up = Π

p∈P
Vp satisfies (6.1.2) (under possible re-arrangement)

=

(
×
p∈P

ρp

)(
Π
p∈P

(Yp ∩ Vp)
)

= Π
p∈P

ρp (Yp ∩ Vp)

=

(
Π
p∈P

ρp (Yp ∩ Up)
)(

Π
q∈P \ P

ρp (Yq ∩ Zq)
)

by (6.1.2)

=

(
Π
p∈P

rp

(
1− 1

p

))(
Π

q∈P \ P
rq · 1

)
for rw ∈ [0, 1], since

ρw(Uw) = 1− 1
w , and ρw(Zw) = 1

for all w ∈ P, and hence, we have

(6.1.9)
∫
AQ
χY ∩UP

dρ =

(
Π
q∈P

rq

)(
Π
p∈P

(
1− 1

p

))
.

Define rY in [0, 1] by

(6.1.10)rY = Π
q∈P

rq,

where the quantity of the right-hand side of (6.1.10) is from (6.1.9).
i.e., the morphism FP on MP satisfies

FP (mχY ) = m
(
rY χUP

)
,

On Dynamical Systems Induced by the Adele Ring

Proposition 6.1.

        

59

G
lo
ba

l
Jo

ur
na

l
of

Sc
ie
nc

e
Fr

on
tie

r
R
es
ea

rc
h 

  
  
  
 V

ol
um

e
X
V
 I
ss
ue

  
  
  
er

sio
n 

I
V

IV
Y
ea

r
20

15

© 2015    Global Journals Inc.  (US)

  
 F
)

)

Notes



then almost all Yq’s are identical to Zq.

Assumption If we take Y = Π
p∈P

Yp in σ(AQ), with Yp ∈ σ(Qp), then we assume

almost all Yq’s are identical to Zq. �

where rY ∈ [0, 1] satisfy (6.1.10), for all mχY ∈ MP .
By Section 5.2, without loss of generality, one can verify that: if

Y = Π
p∈P

Yp ∈ σ(AQ), with Yp ∈ σ(Qp),

Define now a linear functional

γ0 : MP → C
by

(6.1.11)γ0
def
=
(
⊗
∫
AQ
• dρ

)
◦ FP

i.e., γ0 is a linear morphism satisfying that:

(6.1.12)γ0 (m χY )
def
= (m)

(∫
AQ
rY χUP

dρ
)

= rY (m)

(
Π
p∈P

(
1− 1

p

))
,

for all m ∈ (M, ψ) and Y ∈ σ(AQ), where rY ∈ [0, 1] is in the sense of (6.1.10).
The linear morphism γ0 of (6.1.12) is indeed a well-defined linear functional on MP .

Define now a linear functional γP on MQ = MQ = MQ by

(6.1.13)γP
def
= γ0 ◦ EP ,

for any fixed finite prime sets P of P.
Since γ0 is a bounded linear functional, and EP is a bounded conditional ex-

pectation, γP of (6.1.13) is indeed a well-defined linear functional on the Adelic
dynamical W ∗-algebra MQ.

Let MQ = MQ = MQ be an Adelic dynamical W ∗-algebra over
a W ∗-probability space (M, ψ). Let P be a finite prime set of P, and γP , the
corresponding linear functional in the sense of (6.1.13). Then the pair (MQ, γP )
is called the Adelic dynamical W ∗-probability space induced by a finite prime set P
of P.

By definition, for any m χS ∈ MQ, one has that:

γP (mχS) = γ0 (EP (mχS))

= γ0

(
mχS∩UP

)
(6.1.14)

= rS∩UP
(m)

(
Π
p∈P

(
1− 1

p

))
,

where rS∩UP
∈ [0, 1] satisfies (6.1.10) and (6.1.12).

Notice now that

Up =

(
Π
p∈P

Up

)
×
(

Π
q∈P \ P

Zq
)
,

under possible re-arrangement. Like in Section 4, if we replace Up’s to pkUp, for
some k ∈ Z, i.e., if we define

UP :k
def
=

(
Π
p∈P

Up:k

)
×
(

Π
q∈P \ P

Zq
)
,

where Up:k = pkUp, as in (4.8), then we have similar structures, for all k ∈ Z,
with identity:

Definition 6.1.
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UP = UP :0.

However, in such cases, the formula (6.1.9) will be replaced by∫
AQ
UP :k dρ = Π

p∈P

(
1
pk
− 1

pk+1

)
.

In this paper, we only consider the case where we have UP = UP :0.

(MQ, γP ). Let MQ = M ×α σ(AQ) be the Adelic dy-

namical W ∗-algebra in B(HQ) induced by an Adele W ∗-dynamical system AM =
(M, σ(AQ), α). As before, we understand MQ as its ∗-isomorphic von Neumann
algebras MQ = M ⊗α M, and MQ = ⊗ϕM

p∈P
Mp, case-by-case, and let γP be the

linear functional in the sense of (6.1.13), satisfying that:

γ(mχS) = rS (m)

(
Π
p∈P

(
1− 1

p

))
,

where rS ∈ [0, 1] in R satisfying (6.1.10) and (6.1.12), for all m ∈ M, and S ∈
σ(AQ), for all finite primes sets P of P.

Throughout this section, we fix a finite prime set P of P, and concentrate on
free probabilistic structure on MQ in terms of γP of (6.1.13). The following lemma

is obtained by the straightforward computations.

Let mχS be a free random variable in the Adelic dynamical W ∗-
probability space (MQ, γ), with m ∈ M, and S ∈ σ(AQ). Then

(6.2.1)γP ((mχS)n) = rS∩UP

( (
m(mS)n−1

))(
Π
p∈P

(
1− 1

p

))
,

for all n ∈ N, where rS∩UP
∈ [0, 1] satisfies (6.1.10) and (6.1.12).

Proof. If mχS ∈ MQ, with m ∈ M, and S ∈ σ(AQ), then

(mχS)n = mmSmS∩S ... mS∩S∩...∩S χS∩...∩S

= m mS mS ... mS χS = m (mS)n−1 χS ,

for all n ∈ N. Therefore, one can have that

γP ((mχS)n) = γP
(
m(mS)n−1χS

)
= rS∩UP

(
m(mS)n−1

)(
Π
p∈P

(
1− 1

p

))
for all n ∈ N, by (6.1.14), where rS∩UP

∈ [0, 1] satisfies (6.1.10) and (6.1.12).

More general to (6.2.1), we obtain the following lemma.

Let m1χS1
, ..., mnχSn

be free random variables in an Adelic dynam-
ical W ∗-probability space (MQ, γP ), with mk ∈ M, Sk ∈ σ(Qp), for k = 1, ..., n,
for n ∈ N. Then

(6.2.2)γ

(
n

Π
j=1

mjχSj

)
= r( n

∩
j=1

Sj

)
∩UP

N

Π
j=1

m

j−1
∩

i=0
Si

j

))(
ρ

(
n
∩
j=1

Sj

))
,

where r( n
∩

j=1
Sj

)
∩UP

∈ [0, 1], satisfying (6.1.10) and (6.1.12).

Proof. If mk χSk
∈ (Mp, γp) are given as above, for k = 1, ..., n, then

n

Π
j=1

(mjχSj
) = m1m

S1
2 mS1∩S2

3 ...m
S1∩...∩Sn−1

N χS1∩...∩Sn

=
n

Π
j=1

m

j−1
∩

i=0
Si

j

)(
χ n
∩

j=1
Sj

)
,)

ψ ))

in MQ, for all n ∈ N.

b) Free Structure of 

Lemma 6.2.

Lemma 6.3.
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Thus, one has that:

γP

(
n

Π
j=1

(mjχSj
)

)
= γP

((
n

Π
j=1

m

j−1
∩

i=0
Si

j

)(
χ n
∩

j=1
Sj

))

= r( n
∩

j=1
Sj

)
∩UP

n

Π
j=1

m

j−1
∩

i=0
Si

j

))(
Π
p∈P

(
1− 1

p

))
,

by (6.1.14), where r( n
∩

j=1
Sj

)
∩UP

∈ [0, 1] satisfies (6.1.10) and (6.1.12).

Notation 6.2 In the following, we denote Π
p∈P

(
1− 1

p

)
by ζ−P , for convenience.

�

By (6.2.1) and (6.2.2), we obtain the following free-distributional data of free
random variables of (MQ, γP ).

Let (MQ, γP ) be an Adelic dynamical W ∗-probability space deter-
mined by a finite prime set P of P, and let

Tk =
∑

Sk∈Supp(Tk)

mSk
χSk

, for k = 1, ..., n,

be free random variables, for n ∈ N. Then
(6.2.3)

γP

(
n

Π
j=1

Tj

)
=

ζ−P

 ∑
(S1,...,Sn)∈

n
Π

j=1
Supp(Tj)

r( n
∩

i=1
Si

)
∩UP

n

Π
j=1

(
mSj

)(j−1
∩

i=1
Si

))) ,

where ζ−P is in the sense of Notation 6.2, and where rr j−1
∩

i=1
Si

)
∩UP

∈ [0, 1] satisfy

(6.1.10) and (6.1.12).

Proof. Inductively, one can get that

n

Π
j=1

Tj =
∑

(S1,...,Sn)∈
n
Π

j=1
Supp(Tj)

((
n

Π
j=1

(
mSj

)(j−1
∩

i=1
Si

))(
χ n
∩

j=1
Sj

))
,

for all j = 1, ..., n. So,

γP

(
n

Π
j=1

Tj

)
= γP (T1T2 ... Tn)

= γP

 ∑
(S1,...,Sn)∈

n
Π

j=1
Supp(Tj)

((
n

Π
j=1

(
mSj

)(j−1
∩

i=1
Si

))(
χ n
∩

j=1
Sj

))

=
∑

(S1,...,Sn)∈
n
Π

j=1
Supp(Tj)

γP

((
n

Π
j=1

(
mSj

)(j−1
∩

i=1
Si

))(
χ n
∩

j=1
Sj

)))

=
∑

(S1,...,Sn)∈
n
Π

j=1
Supp(Tj)

r( n
∩

i=1
Si

)
∩UP

n

Π
j=1

(
mSj

)(j−1
∩

i=1
Si

)))(
ζ−P
))

)

) ) )

)

ψ ))

))ψ

ψ

Theorem 6.4.
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by (6.2.2), where r( n
∩

i=1
Si

)
∩UP

∈ [0, 1] satisfy (6.1.10) and (6.1.12), and where

ζ−P is in the sense of Notation 6.2.

Thanks to (6.2.3), we obtain the following corollary.

Let T =
∑

S∈Supp(T )

mS χS be a free random variable in (Mp, γp).

Then

(6.2.4)γP (Tn) = ζ−P
∑

(S1,...,Sn)∈Supp(T )n
r( n
∩

j=1
Sj

)
∩UP

n

Π
j=1

(
mSj

)(j−1
∩

i=1
Si

)))))
,

(6.2.5)

γP ((T ∗)n) =

ζ−P

 ∑
(S1,...,Sn)∈Supp(T )n

r( n
∩

j=1
Sj

)
∩UP

  n

Π
j=1

(
(m∗Sj

)Sj

)(j−1
∩

i=1
Si

) ,

for all n ∈ N, where r( n
∩

j=1
Sj

)
∩UP

∈ [0, 1] satisfy (6.1.10) and (6.1.12). �

Let m1χS1
, ..., mnχSn

be free random variables in (MQ, γ), for n ∈ N, where
m1, ..., mn ∈ M, and S1, ..., Sn ∈ σ(AQ). Then, by (6.2.3), one can obtain that:

kPn
(
m1χS1

, ..., mnχSn

)
=

∑
π∈NC(n)

(γP )π
(
m1χS1

, ..., mnχSn

)
µ(π, 1n)

=
∑

π∈NC(n)

(
Π
V ∈π

(γP )V
(
m1χS1

, ..., mnχSn

)
µ
(
0|V |, 1|V |

))

by the Möbius inversion (See Section 2.3)

) ) ) )ψ

ψ

=
∑

π∈NC(n)

(
Π

V=(i1,...,ik)∈π
γP

(
mi1χSi1

· · · mikχSik

)
µ (0k, 1k)

)
(6.2.7)

=
∑

π∈NC(n)

Π
V=(i1,...,ik)∈π

ζ−P rV
k

Π
t=1

(mit)

(
k−1
∩

t=1
Sit

))))
µ (0k, 1k)

)
,

where kPn (...) mean free cumulants induced by γV in the sense of Section 2.3.
By (6.2.7), we obtain the following inner free structure of the given Adelic dy-

namical W ∗-algebra MQ, with respect to γP .

Let m1χS , and m2χS be free random variables in an Adelic dynam-
ical W ∗-probability space (MQ, γP ), with m1, m2 ∈ M, and S ∈ σ(AQ), with ρ(S)
6= 0. Moreover, assume that S contains UP . i.e., suppose

(6.2.8)S = Π
q∈P

Sq in AQ, and Sp ⊇ Up, for all p ∈ P.

Then {m1, m
S
1 } and {m2, m

S
2 } are free in the W ∗-probability space (M, ψ), if

and only if m1χS and m2χS are free in (MQ, γP ). i.e.,

(6.2.9){m1, m
S
1 } and {m2, m

S
2 } are free in (M, ψ)

)) ) ) ψ

⇐⇒
m1χS and m2χS are free in (MQ, γP ),
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under the condition (6.2.8).

Proof. (⇒) Assume that {m1, m
S
1 } and {m2, m

S
2 } are free in (M, ψ). Then, by

definition, all mixed free ∗-cumulants of them (with respect to the linear functional
) vanish (See Section 2.3, or [16]). i.e.,

kn
(
ur1i1 , ..., urnin

)
= 0 in C,

for all n ∈ N \ {1}, where (ui1 , ..., uin) ∈ {m1, m2, m
S
1 , m

S
2 } are “mixed,” and

(i1, ..., in) ∈ {1, 2}n, and (r1, ..., rn) ∈ {1, ∗}n, where kn (...) mean free cumulants
induced by ψ.

Consider mixed free ∗-cumulants of m1χS and m2χS in (MQ, γ), for a fixed
nonzero ρ-measurable set S ∈ σ(AQ). By (6.2.7), one has that

kPn ((mi1χS)r1 , ..., (minχS)rn)

=
(
ζ−P
) ∑
π∈NC(n)

Π
V=(j1,...,jn)∈π

rV
k

Π
t=1

(
[m

rjt
jt

]Sit

)k−1
∩

t=1
Sjt

)
µ (0k, 1k)

)

where all Sjt are identical to S, and rV satisfy (6.1.10) and (6.1.12), and where

(
[mr

j ]
S
)Y def

=

{
mY
j if r = 1

(m∗j )
S∩Y if r = ∗,

for all j, r ∈ {1, ∗} and S, Y ∈ σ(AQ), and hence,

ψ

ψ

)) ψ

=
(
ζ−P
) ∑
π∈NC(n)

(
Π

V=(j1,...,jn)∈π
rV

(
k

Π
t=1

(
[m

rjt
jt

]S
)S)

µ (0k, 1k)

)

=
(
ζ−P
) ∑
π∈NC(n)

(
Π

V=(j1,...,jn)∈π

(
k

Π
t=1

(
[m

rjt
jt

]S
)S)

µ (0k, 1k)

)

by the condition (6.2.8) (Since the assumption (6.2.8) holds, rV = 1, for all V ∈
π, for all π ∈ NC(n), for all n ∈ N)

=
(
ζ−P
) (
kn (ur1i1 , ..., urnin )

)
= (ζ−P ) · 0

= 0,
for all n ∈ N \ {1}. It shows that, if {m1, m

S
1 } and {m2, m

S
2 } are free in (M,

), then {m1χS , m2χS} are free in (MQ, γP ), under the condition (6.2.8).

(⇐) Assume now that two free random variables m1χS and m2χS are free in
(MQ, γP ), where S satisfies ρ(S) 6= 0 and the condition (6.2.8), i.e.,

kPn ((mi1χS)r1 , ..., (minχS)rn)
(6.2.10)

=
(
ζ−P
) ∑
π∈NC(n)

(
Π

V=(j1,...,jn)∈π

(
rV

(
k

Π
t=1

(
[m

rjt
jt

]S
)S))

µ (0k, 1k)

)

= 0,
whenever (i1, ..., in) are “mixed” in {1, 2}n, for (r1, ..., rn) ∈ {1, ∗}n, for all n

∈ N \ {1}.
The formula (6.2.10) is identical to(

ζ−P
) (
kn (ur1i1 , ..., urnin )

)
,

since rV = 1, by (6.2.8), for the mixed n-tuple (ui1 , ..., uin) of {m1, m
S
1 } ∪ {m2,

mS
2 }.
Since ρ(S) 6= 0, and since the condition (6.2.8) is assumed, ρ(S ∩ UP ) 6= 0, and

hence,
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(
ζ−P
) (
kn (ur1i1 , ..., urnin )

)
= 0,

as in (6.2.10), equivalently,

kn (ur1i1 , ..., urnin ) = 0,

for all mixed n-tuple (ui1 , ..., uin) ∈ {m1, m
S
1 , m2, m

S
2 }. Equivalently, {m1, m

S
1 }

and {m2, m
S
2 } are free in (M, ψ).

The above theorem shows that, the freeness of (M, ψ) acts like a certain kind of
free-filterizations for the inner freeness of (MQ, γP ), under the assumption (6.2.8).

The following corollary is a direct consequence of the above theorem.

Let M1 and M2 be W ∗-subalgebras of M in B(H), and assume
that the subsets {M1, αS(M1)} and {M2, αS(M2)} are free in (M, ψ), for S ∈
σ(AQ), with ρ(S ∩ UP ) 6= 0, satisfying the condition (6.2.8). Then two subsets

M1 ⊗α {χS} and M2 ⊗α {χS} of MQ = MQ,

On Dynamical Systems Induced by the Adele Ring

ψ

ψ

are free in (MQ, γP ), for a fixed finite prime set P of P.
Conversely, if M1 ⊗ {χS} and M2 ⊗ {χS} are free in (Mp, γp), where S satisfies

(6.2.8), then {M1, αS(M1)} and {M2, αS(M2)} are free in (M, ψ), too. �

Let UP be in the sense of (6.1.2) for a fixed finite prime set P of P. Assume now
that S1, S2 ∈ σ(AQ) satisfies

(6.2.11)S1 ∩ UP 6= ∅ and S2 ∩ UP = ∅.

For example, “S2 ∩UP = ∅” means that, if S2 = Π
q∈P

Sq2 , with Sq2 ∈ σ(Qq), then

Sp2 ∩ Up = ∅, for all p ∈ P,
and

Sq2 ∩ Zq = ∅, for all q ∈ P \ P.

By (6.2.11), it is clear that

(6.2.12)(S1 ∩ UP ) ∩ (S2 ∩ UP ) = ∅,

even though S1 ∩ S2 6= ∅.

Let m1χS1
, m2χS2

be free random variables in an Adelic dynamical
W ∗-probability space (MQ, γP ). If S1 and S2 satisfy the condition (6.2.11) in σ(AQ),
then they are free in (MQ, γP ). i.e.,

(6.2.13)S1 and S2 satisfy (6.2.11)

=⇒
M ⊗α C

[
{χS1

}
]

and M ⊗α C[{χS2
}] are free

in (MQ, γP ).

SupposeS1, S2 ∈ σ(AQ) satisfy the condition (6.2.11). Then, with respect
to UP of (6.1.2), they also satisfy the condition (6.2.12). Therefore, one has that:

kPn ((mi1χS)r1 , ..., (minχS)rn) (6.1.14)

=
(
ζ−P
) ∑
π∈NC(n)

Π
V=(i1,...,ik)∈π

r( k
∩

t=1
Sit

)
∩UP

k

Π
t=1

(mit)

(
k−1
∩

t=1
Sit

))
µ (0k, 1k)

)

by (6.2.7), where

(
k−1
∩
t=1

Sit

)
∩ UP ∈ [0, 1] satisfy (6.1.10) and (6.1.12), and the

elements
(
[mr

j ]
S
)Y

are in the sense of the proof of the above Theorem .

Assume that a block V = (i1, ..., ik) of π in (6.1.13) is mixed in {1, 2}k. Then
the corresponding quantity

)) ψ

Proof.  

Theorem 6.8. 

Corollary 6.7. 
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r( k
∩

t=1
Sit

)
∩UP

= 0 in [0, 1],

by (6.2.12). Therefore, whenever a noncrossing partition π of NC(n) contains at
least one mixed block, then the corresponding summand vanishes. Even though a
noncrossing partition θ of NC(n) does not contain a mixed block, since it contains
a block corresponding S2, one obtains the quantity

rS2∩S2∩...∩S2∩UP
= rS2∩UP

= 0 in [0, 1],

for at least one block of θ. Thus, even though θ does not contain a mixed block,
the corresponding partition-depending free moment vanishes.

i.e., whenever (i1, ..., in) ∈ {1, 2}n are mixed for n ∈ N \ {1}, then the free
cumulants (6.1.13) vanish. Equivalently, m1χS1

and m2χS2
are free in (MQ, γP ).

With a freeness characterization (6.2.9) (under (6.2.8)), the above freeness nec-
essary condition (6.2.13) provide inner free structures of the Adelic W ∗-algebra MQ
in terns of linear functionals γP , for finite prime sets P of P.
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