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. [NTRODUCTION

Zadeh, in his pioneering paper, introduced the notion of Fuzzy Subset of a set
X as a function p from X to the closed interval [0,1] of real numbers. The
function g, he called, the membership function which assigns to each memebr
x of X its membership value, px in [0, 1].

In 1983, Atanassov[l] generalized the notion of Zadeh fuzzy subset of a set fur-
ther by introducing an additional function v which he called a nonmembership
function with some natural conditions on p and v, calling these new generalized
fuzzy subsets of a set, intutionistic fuzzy subsets. Thus according to him an
intutionistic fuzzy subset of a set X, is a pair A = (ua,v4), where pa,v4 are
functions from the set X to the closed interval [0,1] of real numbers such that
for each x € X, px + vx <1, where p4 is called the membership function of A
and v4 is called the nonmembership function of A.

Later on in 1984, Atanassov and Stoeval[3], further generalized the notion intu-
itionistic fuzzy subset to L-intuitionistic fuzzy subset, where L is any complete
lattice with a complete order reversing involution N. Thus an L-intutionistic
fuzzy subset A of a set X, is a pair (ua,v4) where pa,va: X — L are such
that pa < Nvg. Let us recall that a complete order reversing involution is a
map N: L — L such that (1) N0, = 15 and N1 = 0g, (2) o < 8 implies N3
< Na (3) NNa = «a (4) N(Viera;) = NierNay and N(Ajerai;) = VierNa;.
Interestingly the same notion of intutionistic fuzzy subset of set was also in-
troduced by Gau and Buehrer[6] in 1993 under a different name called Vague
subset. Thus whether we called intutionistic fuzzy subset of a set or if-subset of
a set for short, or vague subset of a set, they are one and the same.

In order to make the document more readable, hereonwards we use the phrase
if-subset for intuitionistic fuzzy or vague subset of a set. Obviously, if/v-subset
only means intuitionistic fuzzy/vague subset, if/v-(normal)subgroup only means
intuitionistic fuzzy/vague (normal) subgroup.

Coming to generalizations of algebraic structures on to the intuitionitic fuzzy /vague
sets:

as early as 1989, Biswas[7] introduced the notion of if/v-subgroup of a group
and studied some properties of the same.
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In 2004, Hur-Jang-Kang[15] introduced and studied if/v-normal subgroup of
a group and Hur etal.[10,11,16] continued their studies of the same. In Hur
etal.[16], they established a one-one correspondence between, if/v-normal sub-
groups and if/v-congrunces.

In 2003, Banergee-Basnet|[6] introduced and studied the notions of if/v-subrings
and if/v-ideals of a ring. The same year Hur-Jang-Kang[10] introduced and
studied the notion if/v-subring of a ring. In Hur etal.[17,18] continued their
studies of if/v-ideals. In Hur etal.[18], they introduced and studied the notions
of if/v-prime ideals, if/v-completely prime ideals and if/v-weakly completely
prime ideals.

Coming back to the studies of intuitionistic fuzzy/vague subgroups of a group,
Feng[8] and Palaniappan etal.[22] initiated the study intuitionistic L-fuzzy/L-
vague subgroups of a group.

In this paper we studied some propertities of intuitionistic fuzzy subgrups and
intuitionistic fuzzy normal subgrups of an intuitionistic fuzzy subset.

For any set X, the set of all if/v-subsets of X be denoted by A(X). By defining,
for any pair of if/v-subsets A = (ua,va) and B = (ug,vp) of X, A < B iff
wa < ppand vg < vy, A(X) becomes a complete infinitely distributive lattice.
In this case for any family (A;);cs of if/v-subsets of X, (VierAi)x = VierAix
and (/\iGIAi):E = NjerA;x.

For any set X, one can naturally associate, with X, the if/v-subset (ux,vx) =
(1x,0x), where 1x is the constant map assuming the value 1 for each z € X
and Ox is the constant map assuming the value 0 for each z € X, which turns
out to be the largest element in A(X). Observe that then, the if/v-empty subset
¢ of X gets naturally associated with the if/v-subset (p4,v4) = (0x, 1x), which
turns out to be the least element in A(X).

Let A = (ua,va) be an if/v-subset of X. Then the if/v-complement of A, de-
noted by A€ is defined by (va, ). Observe that A° = X — A = X A A°.
Throughout this paper the capital letters X, Y Z stand for arbitrary but fixed
(crisp) sets, the small letters f, g stand for arbitrary but fixed (crisp) maps
f: X =Y and g:Y — Z, the capital letters A, B, C, D, E, F together with
their suffixes stand for if/v-subsets and the capital letters I and J stand for the
index sets. Ingeneral whenever P is an if-subset of a set X, always pup and vp
denote the membership and nonmembership function of the if-subset P respec-
tively. Also we frequently use the standard convention that V¢ = 0 and A¢ =
1.

[1. INTUITIONISTIC FUZZY/VAGUE-SUBGROUPS

In this section, first we give some definitions and statements. In the Lemma
that follows this, we give equivalent statements which are quite frequently used
in several prepositions later on without an explicit mention. Then analogues of
some crisp theoretic results are established. In the end, Lagranges theorem is
generalized to fuzzy setup.

Definitions and Statements 2.1 (a) Let A, B be a pair of if/v-subsets of G.
Let C be defined by, pex = Va—y{pay A ppz} and ver = Np—y{vay Vvpz},
for each x € G. Then the if/v-subset C of G is called the if/v-product of A by
B and is denoted by Ao B.

(b) For any if/v-subset A of G, the if/v-inverse of A, denoted by A~', defined
by (a-1, va—1) is in fact an if/v-subset of G, where for each v € G pa—1(x) =
pa(z™h) and vy (x) = va(z™h).

(¢) For any y € G and for any pair o, 8 of [0, 1], the if/v-point of G, denoted
by Yo, s defined by the if/v-subset yo 5 = (X;*,xg) where X (z) = a, Xg(x)
= when x =y and x5 (v) = Xg(ac) = 0 when x # y.

(d) An if/v-subset A of G is called an if/v-subgroup of G iff:

(1) pa(zy) > pa(x) A paly) and va(zy) < va(z) V va(y), for each z,y € G.
(2) palx™) > pa(z) and va(z=1) < va(z), for each x € G.
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(e) For any if/v-subgroup A of a group G, A, = {x € G/ua(x) = pal(e) and
va(z) =va(e)} and A* ={z € G/ua(z) > 0 andva(z) < 1}.

(f) For any if/v-subset A of G and for any «, B € [0,1], the («, B)-level subset
of A, denoted by Ay g, is defined by Ay p = {9 € G/uag > a,vag < S}.

The following Lemma, which provides alternative equivalent statements for some
of the above definitions and statements, is quite useful and is frequently used
without an explicit mention of it in several proofs in later chapters.

Lemma 2.2 Let A, B, (A;)icr be if/v-subsets of a group G. Let « = VuaG,
= AVAG, Yo g = (Xg‘,xg). Then the following are true:

1. (paoB) (@) = Vyea(pay) Appy~'z)) = Vyea(paly™) A up(yz))

=Vyea (pa (2y™') Aup(y)) = Vyea(paley) App(y™")) and
(vaoB)(x) = Ayea(valy) Vs(y~'e)) = Ayec(valy™") Vvp(yz))

= Nyec(va(z y ) Vrg(y) = Nyec(valzy) V ve(y™1)), for each x € G.
In particular, (paop)(ry) = Viec(pa(zz) Aup(27'y)) = Viea(pal(zz™")
/\MB((ZZ)Ig) and (Vaop)(xy) = Neec(va(z2)Vp(271y)) = Asec(valzz!)
Vvge(zy)).

2. Ao(BoC(C) =(AoB)oC.

3 YapoA = (xS opa,xhova), (XJopa)r =palytx) and (x5 ova)z =
va(y~tx), for each z,y € G.

In particular eq g0 A = A.

4o Aoyap = (paoxg,vaoxy), (naoxy)e = pa(zy™") and (vaoxy)x =
va(zy™t), for each z,y € G. In particular Aoe, 53 = A.

C(ATHL = A
CA<ATV VAT <AFA =AY

5

6

7. A< Biff A7l < B~
8 (VierAi) ™' = Vit A7
9

. (/\iein)_l = AiGIAgl"
10. (AoB)™ =B 1o A71;
11. ga,p 0 hys = (gh)any,pvs-

Proof: (1): Since G is a group and hence for each z € G, {(a,b) € GxG/x = ab}
= {(a,a7'2) € G x G/a € G} = {(a Y, ax) € G x G/a € G} = {(xb~1,b) €
G xG/be G} = {(xb,b~') € G x G/b € G}, this assertion follows.

(2): prac(Boc) () = Vyea(palzy™) A wsoc)(¥)) = Vyea(palzy™) A (Viea
(B(yz~") A pez))) = Vyea Vaeo (a(zy™) A up(yz=") A pc(z)) and

1 aoB)oc () = Vaea(i(aon) (27 1) A pez) = Veea(Vyea(palzy™ ) Aup(yz—"))
Auc(2)) = Ve Vyea (pa(zy™") A up(yz=") A pe(z)), since a; A (VjesB;) =
Vjes(a; A Bj), when [0,1] is a complete infinite meet distributive lattice. Hence
HAo(BoC)(T) = H(aoB)oc ().

Similarly, v4o(Boc) (%) = Ayea(Va(zy™ ) ViBocy (1) = Ayea(valzy ™)V (Azea
(v (=) V002))) = Ayee Aeea @y ) VB (yz )V re(2) = vaosyec (@),
since o; V (AjesBi) = Njes(a; V B;), when [0, 1] is a complete infinite join dis-
tributive lattice. Therefore Ao (Bo(C) = (Ao B)oC.

(3): (xy o pa)r = Vampa(xy (b) A pa(a)) = Viea(xg () A pa(d~'a)) = a A
paly='z) = (VuaG) A (paly='z)) = paly™ o).

Similarly (xy © va)z = Ag=ba(xy (b) V va(a)) = Noec(x () V va(b~'z)) =
BValy~lz) = (WaG) V (valy'z)) = valy™ ')

Letting y = e, eq 30 A = A.
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(4): (maoxy)z = Vazap(pa(a)Axg (1) = Viea (pa(zb™" ) Axg (b)) = pa(zy=)A
a = pa(ry ") A (VpaG) = palzy™).

Similarly (va o X0)z = Ag—ap(va(a) V X5(0) = Npec(va(zdb™) v x5(b) =
(va(zy™)) VB = (valzy™)) V (\WaG) = valzy™).

Letting y = e, Aoeqp = A.

(5): For each x € G, pa—1(x) = pa(z™) and va-1(x) = vale ™). pa-1)-1(z
= pa-1(z7h) = pa(e™!) ™ = paz and va-1)-1(z) = va-r (@) = va(zh)”
= vax. Hence (A_l)_1 = A.

(6): Let A< A™1. Then for each x € G, pa(x) < pg-1(z) = pa(z~!) and VA( ) Notes
o

=

> va-i(z) = VA( ). Hence pg—1(z7") = paz < pa(e™") and vy (z7")
var > va(x~!l) implies g1 < paand g1 >vaor A7V <A Thus A< A
implies A™! < A.

Similarly A= < A implies for each z € G, pg-—1(x7!) < pa(r™) and vy—1 (z71)
> va(x~1) which implies pa(z) = pa-1(271) < pa(z™) = pyg-1(x) and va(z)
=vya(z7h) > vale™l) = vya(x). or A < A7L Thus A~! < A implies
A<A ' Now A<A'if AP < Aif A = A!is clear.

(7): (=): Let A < B. Then for each x € G, pa(z™!) < ug(x~!) and va(z~?
> vp(a). Henee pas(z) = palz ) < pp(et) = jupos (2) and vaos (2)
valz™) > vp(z™1) =vg-1(x) or A~ < B~L

(«<): Let A= < B7!. Then for each x € G, pg-1(z) < pg-1(z) and vy-1(z
> U1 (2). Hence uae) = pa-1(@) < ppo1(2) = ppla ) and va(a )
va-1(x) > vg-1(x) = vg(z~!) or A< B.

(8): Let A; = (11a,,v4,), A7 " = (pty—1,v,-1). Then foreach x € G, (Vierpa,) *(z)

= (Vierpa,)(@™") = Vierpa, () = Vierka-1 (z) = (\/ielﬂAi—l)(m) and (Aierva,) ™

(@) = (Nierva,)(@™h) = Nierva, (371) = Niervy—1(x) = (Aier v4-1)(@).

Hence (ViesA;) ™! = Vies AL

(9): Let A; = (ua,,va,), A7t = (ILLAi—l,l/Ai—l). Then for each x € G, (Ajerpa,) t(z)

= (Niera,) (@) = Nierpa, (7)) = Nierpi g1 () = (Nier pig-1) (@) and (Vierva,) ™ (z)
— (ierva)@™) = Vierwa, (0) = Vierwy (@) = (Vies v, 1)(@).

Hence (/\iein)flz/\iein_l

(10) Let (AOB)71 :(,LL(AOB)fl,I/(AOB)fl),B loA™t = (,LLB 1 A 1,VB-1oA4— 1)

Then for each © € G, pi(a0p)-1(T) = paop(z~ Y = Vyea(palz™ Yy Aps(y™h))

and v op)-1 (1) = Vaos(x7h) = Ayeq (va(z™ly) Vg(y™)).

On the other hand, pg-104-1)(2) = Vyea(pp-1(y) A pa-1(y ')

~—

[

=Vyea(us (Y~ Apaly™'2)™") = Vyea(up(y™ )AMA(JJ_ y))

= Vyec(palz™'y) App(y™")) = waos) (') = piaop)-1 () and
(VB-10a-1)(2) = Ayea(p-1(y) Vva—r(y™* )) = Nye ( sy ) Vvaly te)™?
= Nyea(va(y™) Vvalz™ly)) = /\yeG(VA(fC ") Vus(yTh)) = vaen (x7h) =
V(aop)-1 (). Therefore (Ao B)™* o A™L.

(11)' (x5 ox)(x) = \/zec(xg(xz‘ )A Xn(2) = xg(@h™) Ay = xG, (@) Ay =

Ay = x;‘,ﬁ'y( ) where the third equality follows because g = zh~! or gh = x

and x5 o x5 (7) = Azea (XS (2271 V) (2) = XZ(zh 1) V3 = X, (z) VI = BV S
= X0 ().
Hence Ja,B © h'y,é = (gh)a/\’y,ﬁ\/é-
Lemma 2.3 For any if/v-subset A of a group G such that pa(zy) > pa(x) A
pa(y), valry) < va(x) vV valy):

(1) pa(z™) = pa(z) (2) va(z") < va(x)
for each x € G andn € N.

Proof: (1): pa(z™) = pa(z"'z) > pala™ ") A pa(z) > pa(z) A pa(z)...A
wa(z) = pa(z) for each z € G.

(2): va(z"™) = va(z" o) < va(a™ ) V va(z) < valz) V va(z)...V va(z) =
va(z) for each x € G.
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Lemma 2.4 Whenever A is an if/v-subgroup of a group G, for each x € G,
pa(z™t) = pa(@) and va(z™!) = va().

Proof: Let A be an if/v-subgroup of G. Then for each z € G, pa(z~1!) > ,uA(x),
va(e™) <wva(z). pa(@) = pa((z)™") > pa(z™!) and va(z) = va((z=")™")
<wa(z!

Hence pa(x™t) = pa(z) and va(x™t) = va(x).

Corollary 2.5 For any if/v-subgroup A of a group G, the following are true
for each xz € G:

1. pa(e) > pa(z) and va(e) < va(x);
2. Ao > pa and Vaos S va.

Proof: (1): pa(e) = pa(zz™) > pa(@) A pa(a™) = pa(@) A pa(@) = pa()
and va(e) = va(za™) <wva(z) Vvalz™) = va(z) V valz) = va(z).

(2): paoa(@) = Vyea(palry " )Aua(y)) > pa(ze)Apale) > pa(z) and vaoa(z)
= Nyec(walzy™) Vva(y)) < va(ze) Vva(e) < vax for each z € G.

Lemma 2.6 For any if/v-subset A of a group G, A is an if/v-subgroup iff
palzy™) > pa(z) A paly) and va(zy=1) < va(z) V va(y) for each z,y € G.

Proof: (=): Suppose A is an if/v-subgroup. Then by 2.4, pa(zy™!) > pa(z) A
pay™) = pa(@) A paly) and va(ey™) < valz) Vvaly™) = val@) V valy)
for each z,y € G.

(«=): First, by hypothesis and 2.5(1), pa(z™!) = palex™) > pale) A pa(z) =
pa(x) and va(z™) = va(ez™!) < wvale) V va(xr) = vax for each x € G.

Letting 2! inplace of o, a(x) > pa(z™1) and va(z) < va(x~!) foreachx € G
or pa(z) = pa(z™t) and va(z) = va(z~1) for each z € G.

Next, pa(zy) = pa(z(y=)"") > pale) A paly™") = pa@) A paly).
Similarly va(zy) < va(x) Vva(y). Therefore A is an if/v-subgroup of G.

Lemma 2.7 For any if/v-subgroup A of a group G,
1. A, ={x € G/ua(x) = pale), va(x) =va(e)} is a subgroup of G;

2. A* ={x € G/pa(z) > 0, va(x) < 1} is a subgroup of G whenever L is
strongly reqular.

Proof: (1): Let #,y € A,. Then pa(zy™t) > pa(z) A pa(y) = pale), va(zy™1)
< wva(z) V VA(y) = va(e). By 2.5(1), pa(zy™t) < pae, va(zy™t) > vae for
each 7,y € G. So, pa(zy~!) = pae and VA(zy D =wveor zy~! € A, implying
A, is a subgroup of G.

(2): Since L is strongly regular, by 2.1(f), for each z,y € A*, pua(zy=1) > pa(z)
A pa(y) > 0and va(zy™t) <wva(z) Vwvaly) < 1lorzy~! € A* implying, A* is
a subgroup of G.

Lemma 2.8 For any if/v-subset A of a group G, A is an if/v-subgroup of G iff
A satisfies the following conditions:

(1) paoca = pa and vaoa = va or equivalently Ao A = A.

(2) pa—1 = pa and vy—1 = va or equivalently A=t = A.

Proof: (=): Let A be an if/v-subgroup of G. Then for each z,y € G, pax
= palzy™'y) > palzy™) A paly), vaz = valzy~'y) < valey™") vV valy),
pa(e™) = pa(z) and va(a™") = va() .

(1): paca(x) = Vyea(ualey™) Apa(y)) < Vyecra(@) = pa(z) or paca < pra
and (Va04)(®) = Ayec(va(zy™) Vva(y)) > Ayegra(z) = va(x) or vaoa > va.
Now by 2.5(2), we get that paca = pa and vaos = va.

(2): 2.4 implies for each x € G, pig-1(x) = pa(z™t) = pa(x) or pa = pa-1 and
va-1(x) =va(e™l) = va(x) or vg1 = va.
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(«<): 2.2(1) and the facts that pa—1 = pa, va-1 = va, flaca < fa, Vaoa = Va
imply, for each € G pa(zy™") > pacal@y™) > palzy='y) A paly™) =
par A ppay and va(ry ™) < vaoa(zy™t) < valzy ly) Vvaly™t) = vaz Vrvay.

Lemma 2.9 For any pair of if /v-subgroups A and B of a group G, Ao B is an
if fv-subgroup of G iff Ao B = Bo A.

Proof: (=): Since A, B and A o B are if/v-subgroups of G, A=' = A, B~! =
B,AoB=(AoB)"'=B"10A!'=BoA.

(«<): Let Ao B = BoA. Then (a) (AocB)o (AoB)=Ao(BoA)oB =
Ao(AoB)oB = (AoA)o(BoB)=AoBand (b) (AoB)™! = (BoA)™! =
A=toB7! = Ao B. By 2.8, Ao B is an if/v-subgroup of G.

Lemma 2.10 For any pair of groups G and H and for any crisp homomor-
phism f:G—H the following are true:

1. Ais an if/v-subgroup of G implies f(A) is an if/v-subgroup of H, whenever
[0, 1] is a complete infinite distributive lattice;

2. B is an if/v-subgroup of H implies f~*(B) is an if/v-subgroup of G.

Proof: (1): Let fA = B. Then pupy = Vuaf ly, vy = Avaf~ly. Now we
show that pp(zy=') > up(x) A up(y) and ve(zy=') < vp(x) V vp(y). Let us
recall that pp(z) = Vpaf e = Veep-1zpaa, ppy = Vpaf 'y = Veep-1,pab
and vp(x) = Avaf lae = Nac f-12VAG, VBY = Naf~ly = Apef-14v4b. If one
of f~'x or f~'y is empty, we are done because V¢ = 0z, and A¢ = 1. So, let
both of them be non-empty. a € f~'x, b € f~'y imply fa = z, fb = y which
implies fab=! = fafb~—! = zy~! which in turn implies ¢ = ab=! € f~(zy~1).
Since A is an if/v-subgroup of G, pup(xy™") = Vee-1(zy-1yac > pa(ab™t)
> pa(a) A pa(b) and similarly vp(zy=!) < va(a) Vva(b) for each a € f~ 'z,
be f~ly.

Observe that in any complete infinite distributive lattice,

) v > aApfor each « € M C [0, 1], for each § € N C [0, 1] implies
> (Vaema) A (VgenB) = (VM) A (VN),

)y < aVp for each « € M C [0, 1], for each 8 € N C[0, 1] implies
< (Awent) V (AgenB) = (AM) V (AN).

So, we will get that ug(ry~1) > pupx A pupy and vg(zy~—t) < vpa V vgy.
Hence fA = B is an if/v-subgroup of G.

(1
N
(2
N

(2): Let f~'B = A. Then pax = ppfr, var = vgfr. Now we show that
pa(zy™) > pa(@) A paly) and va(zy™") < va(z) vV valy) .

Since f is a homomorphism and B is an if/v-subgroup of H, pa(zy~!) =
ppf(zy™") = pe(fx)(fy) ™' > ppfr A ppfy = pax A pay and

va(zy™') = vpflay™") = va(fo)(fy)™' <vefr Vvpfy =var V vay.
Hence f~!B = A is an if/v-subgroup of G.

Lemma 2.11 For any family of if/v-subgroups (A;)icr of a group G, NierA; is
an if/v-subgroup of G.

Proof: Let C = NjerA;. Then pc = Nierpia,, vo = Vierva,. Now we show
that, pc(zy™') > pe(z) A pely) and ve(zy ™) < ve(z) V ve(y).

Let us recall that in any complete lattice,

(1) Nier(ei A Bi) = (Nierai) A (Nie1Bi)

(2) Vier(ai V Bi) = (Vierai) V (Vie1Bi)

(3) a; < B; for each i € I implies Ajer a; < Nier Bi

(4) a; < B; for each i € I implies Vier a; < Vier Bi

Now the above and A; is an if/v-subgroup of G imply, puc(zy~t) = (Aierpa,)
(zy™1) = Nierpa; (@y™") = Nier(pa, () Apa, (y) = (Nieria,x) A (Nierpay) =
per Apcy and ve(zy ™) = (Vierva,)(ay™") = Vierva, (zy™") < Vier(va,(z) v
va,(y)) = Vierva,x) V (Vierva,y) = vex V vey. Hence C = AicrA; is an
if /v-subgroup of G.
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It may so happen that the A;c;A; may be the empty if/v-subset which is trivially
an if/v-subgroup of G as shown in the following example:

Example 2.12 A, = (£,1- 1), A32, A, =(0,1) = ¢, the empty subgroup of
G.

The AV B of if/v-subgroups A, B of a group G need not be an if/v-subgroup
as shown in the following example:

Example 2.13 Let A = (x2.,1—x2:), B = (X3z, 1—X3.) be the I-if/v-subgroups
of Z, the additive group of integers, where I = [0,1], the closed interval of real
numbers. Then AV B = (x2: V X3z, (1 — x22) A (1 — x32)) and pavp(5) =
(XQZ \/X3z)5 =0V 0=0.

If AV B is an if/v-subgroup of G, then 0 = pavp(3+2) > pave(3) A pavs(2)
= (x2:VX32)3 N (X2:Vx32)2 = (0OV1) A (1V0) = I A I =1, a contradiction.
So AV B is not an if/v-subgroup of G.

Lemma 2.14 For any family of if/v-subgroups (A;)icr of G, VicrA; is an if/v-
subgroup of G whenever (A;)icr is a sup/inf assuming chain of if/v-subgroups.

Proof: Let A = V,erA;. Then pia = Vierpa,, va = Nicrva,. Now we show that
palzy™t) > pa(z) A paly) and va(zy=1) < wva(x) V va(y) for each x,y € G.
If one of pax or pa(y) = 0 and one of vax or va(y) = 1 then anyway the
inequalities hold good.

Let pax, pay > 0 and vaz, vay < 1. Then Vier(pa,x), Vier(pa,y) > 0
and Ajer(va,v), Nier(va,y) < 1. Then there exists i9 € I such that pa,
= VieIla, T, VA, T = NieIVa,T and there exists jo € I such that pa; Y =
Viertha, Y, va,;, ¥ = Nicrva,y because (A;);er is a sup/inf assuming chain.

Now (1) A;, < Aj, or (2) Aj, < A;, because (4;);er is a chain.

(1) Suppose A;, < Aj, or pa,, < pa,, and va, < va, . Then pa(zy=t) >
pag, (@y=1) = pasw Apagy = pa e A pagy = (Vierpa) A (Vierpiay) =
par A pay and va(zy=t) < VA, (xy~1) < VA, TV VA, Y S VA, TV A Y =
(Nierva,x) V (Nierva,y) = vaz V vay.

2) Suppose Aj, < A, or pa; < pa,, and va, < va, .
pa, (Ty™") > pa, @ Apay > pa, e A pagy = Vierpae) A (Vierpa,y)
par A pay and va(ry=t) < VA, (xy~1) < VA, TV VA, Y S VA, TV VA Y =
(/\ieIVAiJ?) vV (/\iejl/Aiy) = vAT V VaY.

1It/V-Cosets And If/V-Index Of An If/V-Subgroup

Definitions 2.15 (1) For any if/v-subgroup A of a group G and for any g € G,
the if/v-subset gA = (pga,vga) of G, where pga, vga : G — [0, 1], are defined
by pgar = pa(g~'w) and vgax = va(g='z), is called the if/v-left coset of A by
g in G. The if/v-subset Ag = (pag,vay) of G, where pagr = pa(rg=t) and
vagr = va(xg™t) is called the if/v-right coset of A by g in G.

(2) The set of all if/v-left cosets of A in G is denoted by (G/A)r. The set of
all if/v-right cosets of A in G is denoted by (G/A)g.

(8) (Later on we show, as in the crisp set up, that) The number of if/v-left
cosets of A in G is the same as the number of if/v-right cosets of A in G and
this common number, denoted by (G : A), is called the if/v-index of A in G.

Then jua(zy~")

v

Theorem 2.16 For any if/v-subgroup A of a group G and for any pair of ele-
ments g, h of G, the following are true:

1. gA = YGuae,vae oA and Ag = Aog#AevVAe'
2. gA = hA iff gA, = hA,.
3. Ag = Ah iff A.g = A,h.
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Proof: (1): From 2.2(3) and 2.15(1), (x4 o pa)(x) = pa(g~'x) = pgaz and
(xy2¢ova)(x) = va(g™ @) = vgax or pga = xH4° o pa and vga = X520 va.
Hence gA = gu,evqe © A

From 2.2(4) and 2.15(1), (paox#4¢)(z) = pa(xg™") = page and (va o x2¢)(x)
=va(zg™) = vagw or pag = pa oxhA¢ and vag = va 0 xpA°.

Hence Ag = Ao gy, evqe-

(2): (=): Suppose gA = hA. Then piga = ptna and vga = vpa or for each z € G,
pga(z) = ppa(x) and vgaz = vpax which implies pa(g~'z) = pa(h~'z) and
va(lg~la) = va(h~la).

Choosing = = h, pa(g~'h) = pa(h™'h) = pa(e) and va(g~'h) = va(h~'h) =
va(e) implying g~ th € A,, where A, = {x € G/ua(z) = pa(e), va(z) =va(e)}.
Hence gA, = hA..

(«<): From 2.7, A is an if/v-subgroup of G implies A, is a subgroup of G.
Suppose gA, = hA,. Then g 1h € A, or pa(g=th) = pale), va(g=th) =va(e).
Hence for each z € G, pa(g7'2) = pa(g'hh=12) > pa(g=th) Apa(h™1z2) =
pale) A pa(h™2) = pa(h=12) and va(g=t2) = va(g~thh=12) < wva(g~th) v
va(h™12) = va(e) A va(h™12) = va(h™12) because, pae is the largest of usG
and v e is the least of v4G.

Similarly, for each z € G, pa(h™'2) > pa(g712) and va(h=12) < wa(g~12).
Hence for each 2z € G, pa(g7'2) = pa(h™'2), va(g7'2) = va(h™'2) or pga(z)
= pna(2), vga(z) = vpa(z) for each z or pga = ppa, vga = vpa or gA = hA.
(3) (=): Suppose Ag = Ah. Then pa, = pan, vag = vap or for each z € G,
pag(®) = pan(z) and vagr = vape which implies pa(rg™t) = pa(zh™') and
va(zg™') = va(zh™1).

Choosing = h, pa(hg™") = pa(hh™') = pa(e) and va(hg™') = va(hh™') =
va(e) implying hg~! € A, or A,g = A.h.

(«<): Suppose A.g = A.h. Then hg=! € A, or pa(hg™) = pa(e) and va(hg™?)
= vy(e).

Hence for each z € G, pa(zg™t) = pa(zh™thg™) > pa(zh ™ )Apa(hg™t) =
pa(zh™) A pale) = pa(zh™t) and va(zg=t) = va(zh thg™!) < va(zh™1) v
va(hg™!) = va(zh™1).

Similarly, for each z € G, pa(zh™') > pa(zg™') and va(zh™!) < wva(zg™h).
Hence for each z € G, pa(zg™"') = pa(zh™b), va(zh™) = va(zg™") or pag(z)
= pan(z), vag(z) = van(z) for each z or Ag = Ah.

Corollary 2.17 For any if/v-subgroup A of a group G, the following are true:
(1) The number of if/v-left(right) cosets of A in G is the same as the number
of left(right) cosets of A, in G.

(2)(G:A) =(G:A,).

Proof: (1): Let S be the set of all if/v-left cosets of A in G and N be the set
of all if/v-left cosets of B in G. Define ¢ : & — X by ¢(gA) = gA.. Then by
2.16(2), ¢ is both well defined and one-one. But clearly, ¢ is onto. Thus ¢ is a
bijection implying our assertion.

(2): For any subgroup H of a group G, the number of left coset of H in G is the
same as the number of right coset of H in G. Now the assertion follows from (1).

In the crisp set up, when G is a finite group, for any subgroup H of G, |H|
= (G|G}|I) If one were to define the order for an if/v-subgroup of a finite group,
|G

the preceeding equation suggests that |A| = ﬁ But (G:A4) = (G: A,) and

consequently |A| = |A,|. Thus the definition of if/v-order of an if/v-subgroup
is as follows:

Definition 2.18 For any if/v-subgroup A of a group G, the order of A, denoted
by |Al, is defined to be the order of A, or |As|. In other words |A| = |A.|.

An if/v-subgroup A of a group G is finite or infinite according as its order |A|
is finite or infinite.
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Lagranges Theorem
Theorem 2.19 For any finite group G and for any if/v-subgroup A, order of
A, |A| divides the order of G, |G].

[II.  INTUITIONISTIC FuzzY/VAGUE-NORMAL SUBGROUPS

In this section, we begin with equivalent conditions for if/v-normality for a sub-
group and several of these conditions will be used in some subsequent results,
sometimes, without an explicit mention. Later on we proceed to generalize var-
ious crisp theoretic results mentioned in the beginning of this chapter.

The following is a theorem which gives equivalent statements for an if/v-normal
subgroup, some what similarly as in crisp set up.

Theorem 3.1 Let A be an if/v-subgroup of G. Then the following are equiva-
lent:

1. pa(zy) = palyz) and va(zy) = va(yz) for each x,y € G,
2. palryr=t) = paly) and va(zyr=t) = va(y) for each z,y € G,

3. palry] > pax and valzy] < vax for each x,y € G, where [x,y] =

x~ Yy~ Yy is the commutator of x, v,

4. palzyr™t) > paly) and va(zyz=t) < va(y) for each x,y € G,
5. wa(zyz™) < pa(y) and va(zyz=) > va(y) for each x,y € G,
6. AoB = Bo A for each if/v-subset B of G,

7. Ago Ah = Agh, gAohA = ghA, Agh = ghA and Ago Ah = Aho Ag for
each g,h € G,

8. gA = Ag for each g € G,
9. A = gusepnc0Ao g;je’me for each g € G.
Proof: Let xz,y € G.

(D)=(2): palzyz™") = pale™" - 2y) = pa(y) and va(eya™") = va(a™" -ay) =
va(y)-

(2)=(3): pale™ry  ay) = palz™Hy tay)) > pale™ ) Apalytoy) = pa(z™t)
Au (2) = pa(z) and va (= tyay) = va(z ™ (y~tay)) <vale™ ) Vvaly 'zy)

valx™ ) Vwg(x) = va(x), by 2.4 and 2.6.

-1 —1

3 )=>_411) pa(y~ ay) _MA(M_ly xy) > pa(@) Apale™ 'y tey) > pa(r) and

valy™lay) = valzz™ty"tey) < va(z) Valely " ay) < va(e).

(4)=(5): paleyz™') < uA( “loayrmt (7)) = paly) and va(eyzT?)
> va(e - zye - (7)) = valy).

(5)=(1): palzy) = pa(ryre™') = pa(z - yz-27') < pa(yr) and pa(yr) =
pa(y-xzy-y~) < pa(zy), implying pa(zy) = palyz).

va(zy) = valeyze™) = va(z-yo-27") > va(yz) and va(yr) = valy-zy-y=)
> va(zy), implying va(zy) = va(yz).

(1)=(6): paon(x) = Vyea(palzy™) A up(y)) = Vyea(paly™'z) A ps(y)) =
Vyea(up () Apaly™'2)) = poa(x) and vaop(x) = Ayea(va(zy™)Vp(y)) =
Nyea VX(ZJ*I!F) Vg(y) = Ayea(vB(y) Vraly™'z)) = vpoa(z), implying Ao B
= BoA.
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(6)=(7): 2.16, 2.8, 2.2(11) imply Ago Ah = Ao gu,ewse © A0 Rpyjepse =
AoAo Guaevae © hMAe,VAe =Ao Guaevae © huAe,uAe =Ao (gh)uAe,uAe = Agh
Similarly gA o hA = ghA.

Now letting B = (gh)ue,v4e; by the hypothesis, the above implies Agh = ghA.
Again by hypothesis, Ago Ah = Ao gy, evseCPujevie = ARy ev4eOGuaevae
= Ahg = Aho Ag.

(7)=(8): h = e implies Ag = gA.

(8)=(9): By 2.16, 2.2(4) and 2.2(11), gue,vae vog;je,yAe = gA Og;je,VAe =

Ago g;je,me = A0 Gusevae© g;j&VAe =Ao (ggil)ﬂAe,l’Aﬁ = Ao (e)ILA€7VA€ =
Ae =A.

(9)=(1): By 2.15, pa(zy) = pa(y 'yzy) = pyay-1(yr) = palyz) and va(zy)
= valy 'yzy) = vyay— (yx) = va(yz).

Definition and Statements 3.2 (1) For any if/v-subgroup A of a group G,
A is an L-if/v-normal subgroup of G iff it satisfies any one of the previous nine
equivalent conditions. In particular, A is an if/v-normal subgroup of G iff for
each g € G, Ag = gA.

(2) The set of all if/v-cosets of G, denoted by G/A or %, whenever A is an
if/v-normal subgroup of G, is called the if/v-quotient set of G by A.

(3) Whenever G is a finite group and A is an if/v-normal subgroup of G, from
the generalized Lagranges Theorem 2.19, |(G/A)| = %.

Proposition 3.3 The following are true for any group G:

(a) If G is abelian then every if/v-subgroup of G is if/v-normal subgroup of G,
but not conversely.

(b) For an if/v-subgroup A of G and for any z € G, the if/v-subset zAz~' =
(Usns—1,Voa5—1) where pyp,17 = pa(z 7 2z) and voa, 10 = va(z7la2) for
each x € G, is an if/v-subgroup of G.

¢) For any if /v-subgroup A of G, for each z € G, zAz™' =2, e, e0 A0z}
raeva W

A€, VpA€E"

Proof: (a): It follows from 3.1(1) and 3.2(1).
(b): Since prp,17 = pa(z txz) < Nva(z7l2z) = Nv,y,-17, it follows that
zAz~ ! is an if/v-subset of G.

1

peaz-1(zy) = pa(z™ayz) = pa(elwzz7lyz) > paz"lez) A palz"lyz) =
MzAz*l(x) N Praz—1 (y) and VzAzfl(‘ry) = VA(Zil‘Tyz) = VA(Zilxzzilyz) <
VA(Zile) \4 VA(Zilyz) = VzAz_l(x) \ VzAz_l(y)'

MzAz’l(x) = /J’A(Z_lxz) = MA(z_lx_lz) = MzAz’l(x_l) and VzAz’l(x) = VA
(27twz) = va(z a7 12) = v 4.1 (27 1) for each z € G.Hence zAz~ 1! is an if/v-
subgroup of G.

(c): It follows from 2.16(1).

Definition 3.4 For any pair of if/v subgroups A and B of a group G, A is said
to be an -if/v-conjugate of B iff there exists y € G such that A = yBy~! or
simply A = By.

It is easy to see that being conjugate to an arbitrary but fixed if/v-subgroup A,
is an equivglence relation on the set of all if/v-subgroups of G.

Theorem 3.5 For any if/v-normal subgroup A of G, the following are true:
(1) Ay ={x/pua(zx) = pale), va(x) =vale)} is a normal subgroup of G.
(2) A* ={x € G/ua(x) > 0, va(x) < 1} is a normal subgroup of G,
whenever L is a strongly regular complete lattice.
Proof: By 2.7, A, is subgroup of G and A* is a subgroup of G when L is a

strongly regular complete lattice. Since A is an if/v-normal subgroup of G, by
3.1(2),
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(1): For each y € Ay, pra(zyz=)= pay = pa(e) and va(zyz=') = vay = vale)
or zyx~' € A, or A, is a normal subgroup of G.

(2): For each y € A*, pa(zyzr™t) = pay > 0 and va(zyx~!) = va(y) < 1 or
ryz~t € A* or A* is a normal subgroup of G.

1t/ V-Normalizer

Theorem 3.6 For any if/v-subgroup A of a group G, Ng(A) ={z € G/ua(zy)
= palyz), valzy) = valyx), for each y € G} is a subgroup of G and the
restriction of A to Ng(A), denoted by A|Ng(A), defined by (pa|Na(A),val
Ng(A)), is an if/v-normal subgroup of Ng(A).

Proof: Since pa(ey) = pa(y) = pa(ye) and va(ey) = va(ye) for each y € G,
e c Ng(A)
Let z,y € Ng(A) and z € G. Then x € Ng(A) implies pa(zr-y~12) = pa(y=tz-

1), va(z -y~ 12) = va(ylz-z) and y € Ng(A) implies pa(z=1z71 - y) =

paly - o tz7Y), vale=tz7 o y) = valy -2 t27h).

From the above, pa(xy='-2) = pa(z -y 12) = paly=tz-2) = pa((y~tzz)™1)
= pale 27t y) = paly 2727 = pal(z -2y = palz - ay!) and
valoy - 2) = va@y2) = valy " 2) = val(ly~ts) ) = wale~te - y)
=valy 2727 = va((z-2y™) 7Y = valz-ay™!).

Thus 2y~ € Ng(A) and Ng(A) is a subgroup of G.

Now we show that A|Ng(A) is an if/v-normal subgroup of Ng(A).

But first A|Ng(A) is an if/v-subgroup of Ng(A) because for each z,y € Ng(A4),
(N3|NG(A))($Z/_1) = pa(zy™') > pax A pay = (palNa(A)zA (1alNa(A))y
an

(valNG(A)(y™) = valey™) < vaz V vay = walNa(A)e V (valNa(4))y.
Next for each z,y € Ng(A),

(LalNe(A))(zy) = pa(zy) = pa(yz) = (na|lNe(A))(yz) and (va|N(A))(zy)
= va(zy) = va(yz) = (va|Ng(A))(yz) implying A|Ng(A) is an if/v-normal
subgroup of Ng(A).

Definition 3.7 For any if/v-subgroup A of a group G, the subgroup Ng(A) of
G defined as above is called the normalizer of A in G and A|Ng(A) is called the
if/v-normalizer of A.

lemma 3.8 For any if/v-subgroup A of a group G, A is an if/v-normal sub-
group of G iff No(4) = G.

Proof: (=): Always Ng(A) C G. On the other hand, € G implies for each
y € G, by 3.1(1), pa(zy) = pa(yz) and va(zy) = va(yx). So, z € Ng(A).
(«<): Again by 3.1(1), we get that A is an if/v-normal subgroup of G.

Theorem 3.9 For any if/v-subgroup B of a group G, the number of if/v-
conjugates of B in G is equal to the index (G : Ng(B)) of the normalizer
Ne(B) in G.

Proof: Let u,v € G. Then v™'Gu = G. Now uBu~' = vBv~! iff for each

r € G, pp(u~tzu) = pup(v~lzv) and v(u=tzu) = vp(v~lzv) iff (put x =

vrut) pp(u™tv-z) = pp(r-u=tv) and vp(u=tv-2) = vp(z-utv) iff u=tv €
Ng(B) iff u='Ng(B) = v"!Ng(B). Hence B,—u"'Ng(B) is a bijection from

{uBu~'/u € G} onto {uNg(B)/u € G}.

Theorem 3.10 For any if/v-subgroup B of a group G, NycguBu™! is an if/v-
normal subgroup of G and is the largest if/v-normal subgroup of G that is con-
tained in B.

Proof: First observe that uBu~?! is an if/v-subgroup of G for each u € G by
6.1.3(b). So AyeguBu~! is an if/v-subgroup of G, by 2.11.

Since {uBu™1/u € G} = {(zu)B(zu)~!/u € G} for each x € G,
/\uEG/LuBufl(x_lyx) = /\ueG'//fB(u_l m_lyx u) = /\ueG,uB((xu)
NueG M(mu)B(zu)*l(y) = AuEGMuBufl(y) and

“ly(eu)) =
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VueaVupu—1 (T71y2) = Vuearp(u™ 27 'yx u) = Vueava((zu) " y(zu))

= \/uEGV(a:u)B(xu)*l(y) = quGVuBufl(y) for each z,y € G.

Hence AyeguBu~! is an if/v-normal subgroup of G.

Next, let A be an if/v-normal subgroup of G, with A < B. Since A is an
if/v-normal subgroup of G, A = uAu~! for each u € G. Since A < B, A =
uAu~! < uBu~! for each u € G or A < AyeguBu™! or AyeguBu~! is the
largest if/v-normal subgroup of G that is contained in B.

lemma 3.11 For any if/v-normal subgroup A of a group G and for any x,y €
G such that tA = yA, pa(x) = pa(y) and va(z) =val(y).

Proof: By 2.16(2), #A = yA implies 24, = yA, which implies 2~y € A, and
y~tr € A, or pa(zty) = pae = paly tz) and va(r~ly) = vae = va(y~lx).
Since A is an if/v-normal subgroup of G, pua(z) = pa(y~tzy) > uA(y Lz) A

pa(y) = pa(e) A paly) = paly) and va(e) = va(y~'zy) < valy'z) V va(y)
=wale) V va(y) = va(y). Similarly, pa(y) = pa(z~'yz) > pale='y) A pa()
= pale) A pale) = pa(x) and va(y) = vale'yz) <vale™'y) Vva(e) = vale)
Vva(z) = va(z). Hence pa(z) = paly) and va(z) = va(y).

Theorem 3.12 For any if/v-normal subgroup A of a group G. The following
are true in G/A:

1. (zA) o (yA) = (zy)A for each x,y € G;
2. (G/A,o0) is a group;

3. GJA = G/A,;
4

. Let A®) be an if/v-subset of G/A be defined by pac (xA) = pa(z) and
Vi (xA) = va(z) for each x € G. Then A®) is an if/v-normal subgroup
of G/A.

Proof: (1): Since A is an if/v-normal subgroup, by 3.1(7), this follows.

(2): By (1), G/A is closed under the operation o.

For each z,y,z € G, zAo (yAo zA) = xAo (yz)A = (zyz)A = (2y)A ozA =
(xAoyA)ozA. So G/A is associative under the operation o.

By 2.2(3), eA = A. Further by (1), for each x € G, Aoz A =eAoxA =exA=
xAand xAo A =1xAoceA =zeA = xA or A is the identity element for G/A.
(x71A) o (zA) = (z7'2)A = eA = A= (zA)o (7L A) or 271 A is the inverse of
zA in G/A. Hence (G/A, o) is a group.

(3): Let n : G/A — G/A,, defined by n(xA) = zA.. Then n is well defined and
1-1 because A = yA iff A, = yA,.

Now we show that 7 is a homomorphism or zyA, = zA. yA.. But by 3.5(1),
A, is a normal subgroup of G and so it follows that 7 is a homomorphism.

Now we show that 7 is onto. 8 € G/A, implies § = gA., g € G. Then gA € %
such that n(gA) = gA. = S or 7 is onto.

(4): First we show that A®) is an if/v-subgroup of G/A.

Since A be an if/v-subgroup of G,

(2): prae(gA o hA) = pye (ghA) = pal(gh) > palg) Apa(h) = pac(gA)
Aia (RA) and vy (gA o hA) = v e (ghd) = va(gh) < va(g)Vrva(h) =
IO (gA)\/l/A(*) (hA)

(b): par ((9A) ™) = pacr (971 A) = palg™) = palg) = pae (gA) and

Vae ((9A4)7Y) = vae (971 A) = valg™') = valg) = vae (gA).

Therefore A®) is an if/v-subgroup of G/A.

Now we show that A®) is an if /v-normal subgroup of G/A.

Since A is an if/v-normal subgroup of G, for each g,h € G, s ((gA)~1 o
(hA)o(gA)) = pae (97 AohAogA) = jise (97 hgA) = palg~hg) > pa(h) =
fae (hA) and v ((9A) = o(hA)o(gA)) = v (97! AohAogA) = vy (9~ hgA)
= valg'hg) < va(h) = vy (hA). Hence A™) is an if/v-normal subgroup of
G/A.
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Theorem 3.13 For any if/v-subgroup B of a group G and for any normal
subgroup N of G, the if/v-subset C: G/N — L where for each x € G, pc(xN)
=Vug(zN) and vo(xN) = Avg(xN), is an if/v-subgroup of G/N when L is a
complete infinite distributive lattice.

Proof: Since B is an if/v-subgroup of G and N is a normal subgroup of G and
hence for each z € G, (xN)~! = 27N,

pe((@N)™) = pc(@™'N) = V up(a™'N) = V.e,-1npp?

= Vu-tea IN(=(@N) WHBW " = Vueenppw =V pp(zN) = pc(zN)

and ve((zN) ) = ve(x™IN) = A vg(z7IN) = ALcp-1nVB2

= /\w*lexle(:(wN)*l) I/Bwi1 = AwezNVBW = N Z/B([L'N) = Vo(xN)
where the 5t" equality in both cases is due to the fact that w € zN iff w™! €
(xN)~!. Hence C(zN)~! = C(xN).

Since [0,1] is a complete infinite distributive lattice and N is a normal sub-
group of G, for each z,y € G

NC((:EN)(yN)) = \/,UB(HU?JN) = szxyNMBZ = qumN,UGyNMB(UU)
> \/uEzN,veyN(,uB(u) A MB('U)) = (\/UECEN/'LB(U)) A (vveyN MB('U))
= (Vup(zN)) A (Vup(yN)) = (pc(zN)) A (pc(yN)) and
VC(('TN)(Z/N)) = /\I/B(J?yN) = /\ZEJJyNVBZ = /\uEJ;N,UEyNVB(UU)
< /\ueacN,vEyN(VB(u) \ VB(U)) = (/\ueacNVB(u)) \ (/\UEyNVB(U))
= (Avp(xN)) V (Avp(yN)) = (vo(zN)) v (ve(yN)).

Hence C is an if/v-subgroup of G/N.

Definition 3.14 For any if/v-subgroup B of a group G and for any normal
subgroup N of G, the if/v-subgroup C:G/N — L, where L is a complete infinite
distributive lattice, defined by po(xN) = Vug(xN) and ve(xN) = Avg(xN)
for each x € G, is called the if/v-quotient subgroup of G/N relative to B and is
denoted by B/N or £.

In other words when N is a normal subgroup of G and B is any if/v-subgroup of
G, and [0,1] is a complete infinite distributive lattice, %: % — [0, 1] is defined
by ,u%(gN) =Vugp(gN) and V%(gN) = Avg(gN) for each g € G.

Lemma 3.15 For any pair of groups G and H and for any crisp homomor-
phism f: G — H, the following are true:

1. A is an if/v-normal subgroup of G implies f(A) is an if /v-normal subgroup
of H when f is onto.

2. B is an if/v-normal subgroup of H implies f~1(B) is an if/v-normal sub-
group of G.

Proof: (1): A is an if/v-normal subgroup of G implies pa(g~thg) > pa(h) and
va(g~thg) < va(h) for each h,g € G.

Let fA= B. Then upy = Vuaf 'y and vpy = Avaf~ly. Since the if/v-image
of an if/v-subgroup is an if/v-subgroup, we only show that ug(g~thg) > pg(h)
and vg(g~thg) < vp(h) for each g, h € G.

Since f is onto, for each y € H, f~'y # ¢. Let a € f~'g, b € f~'h. Then
fa=g, fb="hand fa—! = g~!. Since f is a homomorphism, g~'hg = f(a"'ba)
and a~'ba € f~1 (g 'hg). So, for each b € f~1h, ug(g=thg) = Vuaf (g thg)
= Vees-1(g-1hg)thac = pia(a=ba) > pa(b) and vp(g~'hg) = Avaf~ (g~ 'hg) =
Acef-1(g-1hgivac < va(a—tba) < va(b) implying pp(9~ " hg) > Vies-1p pa(b)
= in(h) and v(g~"hg) < Apesin va(b) = vi(h)

or B = f(A) is an if/v-normal subgroup of H when f is onto.

(2): Let f~1B = A. Then for each g € G, pag = upfg and vag = vpfg. Since
the if /v-inverse image of an if/v-subgroup is an if /v-subgroup we only show that
pa(g~ hg) > pa(h) and va(g~—"hg) < va(h).
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Since f is a homomorphism and B is an if/v-normal subgroup of H, for each
9.7 € G, palg~'hg) = ppf(9~ hg) = ps((f9) "' (fh)(f9)) = ppfh = pah and

valg~'hg) = v f(g~'hg) = vu((f9) ' (fh)(f9)) < vpfh =vahor A= f~'B
is an if/v-normal subgroup of G.

Definition 3.16 For any pair of if/v-subgroups A and B of a group G such
that A < B, A is called an if/v-normal subgroup of B iff for each z,y € G,
pa(zyz=) > paly) A pp(x) and va(zyx=t) < va(y) V vp(x).

Theorem 3.17 For any pair of if/v-subgroups A and B of a group G such that
A < B, the following are equivalent:

1. A is an if/v-normal subgroup of B.
2. palyxr) > pa(zy) A pp(z) and va(yz) < va(zy) V vp(z) for each x,y €
G.

3. (xh2opa) = (paoxi?®) App and (x7*€ ova) < (vaoxi*®) Vg for
each x € G.

Proof: (1)=(2): Since A is an if/v-normal subgroup of B, for each x,y €
G, pa(yzr) = pa(z " eyr) = pa(z= (zy)z) > pa(ry) A pp(z) and va(yr) =
va(z7reyr) = va(z=Hay)x) < valzy) V vp(x).
(2)=(3): By 2.2(3) and 2.2(4), we have (x“4¢opus)y = pa(x " y) > pa(yz=") A
1B(y) = (paoxi )y Appy = ((paoxh*€) Aup)y and (x54¢ova)y = va(z~'y)
< valwa=) V os() = (v 0 XAy V vy = ((va 0 X49) V vp)y or for each
T € G, (xH4%opua) > (paoxt4) Aup and (x44¢ova) < (va o x%4¢) Vup.
(3)=(1): Letting z=! = 271y and by 2.2(3) and 2.2(4), we have
pale ) = pa(2 ) = (4% 0 pa)z > (a0 XEA9)e Aup = palaa) A
pp(x) =pa(za™'y) A pp(x) = pa(y) A pp(z) and
va(z lyz) = va(z7la)=(x¥1ova)z < (vaox¥4®)x Vupr = va(zz~t) V vp(x)
=va(rz~ty) Vve(z) = va(y) Vvg(x) or for each x,y € G, pa(x~tyz) > pa(y)
A pp(z) and va(e~lyz) < va(y) V vp(x) or A is an if/v-normal subgroup of
B.

Theorem 3.18 For any pair of if/v-subgroups A and B of a group G such that
A is an if/v-normal subgroup of B:

1. A, is a normal subgroup of Bi.

2. A* is a normal subgroup of B* whenever [0, 1] is strongly regular.

Proof: (1): Since pae is the largest of uaG, vae is the smallest of 4G and A
is an if/v-subgroup of G, we get for each z,y € A, pa(ry™1) > paz Apay =
pae and Z/A(xy_l) < VA% VVay = vae, so we have pazy~! = pae and vazy !
=vgeor zy ! € A,. Hence A, is a subgroup of B,.

Again since pae is the largest of uaG, vae is the smallest of v4G, A is an
if/v-normal subgroup of B; we get for each b € B, and a € A., pa(bab™1) >
paaAppb = pseAuge = pse and va(bab™t) < vaaVupb = vaeVuvge = vae,
so we have p4(bab™1) = pae and va(bab~1) = vae or bab~! € A,. Therefore
A, is a normal subgroup of B,.

(2): Since [0, 1] is strongly regular, for each x,y € A*, pa(xy™!) > par Apay
> 0 and va(zy™t) <wvarVway < 1oraxy ! € A*. Hence A* is a subgroup of
B*.

Again, since [0,1] is strongly regular, for each b € B* and a € A*, we get
pa(bab™) > paa A pugb > 0 and va(bab=!) < vaa Vvgb < 1 or bab~! € A*.
Hence A* is a normal subgroup of B* when [0,1] is strongly regular.

Lemma 3.19 For any pair of if/v-subgroups A and B of a group G such that
A is an if/v normal subgroup of B, the if/v-subset C: £= —[0, 1] defined by,
for each b € B* ucbA* = VupbA* and vebA* = AvgbA*, is an if/v-subgroup
of ﬁ—:, whenever [0,1] is a strongly reqular complete infinite distributive lattice.
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Proof: Since [0,1] is strongly regular, by 3.18, A* is a normal subgroup of B*.
Now in 3.13 set G = B*, N = A*, B = B. Then since [0,1] is a complete infinite
distributive lattice, C' is an if/v-subgroup of Z-.

Definition 3.20 For any pair of if/v-subgroups A and B of a group G such that
A is an if/v normal subgroup of B and L is a strongly reqular complete infinite
distributive lattice, the if/v-quotient subgroup of B|B* relative to A*, denoted by
B/A or £ is defined by B/A: B*/A* — L with g a(bA*) = Vug(bA*) and
vp/a(bA*) = Avp(bA*) for each b € B* and is called L-if/v-quotient subgroup
of B relative to A.

In what follows we prove a natural relation between (%)* and ﬁ: which is used

in the Third Isomorphism Theorem.

Lemma 3.21 For any pair of if/v-subgroups A and B of a group G such that
A is an if/v-normal subgroup of B, (B/A)* = B*/A*.

Proof: Let us recall that (B/A)* = {bA* € (B*/A*) /b € B*,up/a(bA*) > 0
and vp,4(bA*) < 1}. So always, (B/A)* C B*/A*.

a € B*/A* implies @ = bA* for some b € B*. Now as e € A* and b € B*,
pp/a(bA*) = Vup(bA*) > ppb > 0 and vg/a(bA*) = Avp(bA*) < vpb < 1
implying o € (B/A)*. Hence (B/A)* = B*/A*.

Theorem 3.22 For any if/v-normal subgroup A of G and an if/v-subgroup B
of G, AN B is an if/v-normal subgroup of B.

Proof: By 3.11, if A, B are if/v-subgroups of G then A A B is an if/v-subgroup
of G and AAB < B. Now we show that C = AA B is an if/v-normal subgroup
of B or for each z,y € G, pc(zyz™) > pc(y) A pup(z) and vo(ryz~t) < ve(y)
V vp(z). Since A is an if/v-normal subgroup of G, for each z,y € G,

pc(zyr=t) = (na App)(zya=™") = pa(zyz™) A ppleyz™")

> pa(y) A pp(eya™) > pa(y) A pe(@) A pely) A pela™)

= (pa(y) A ps()) A pp(z) = pars(y) Aus(r) = po(y) A pp(z) and
vo(zyz™t) = (va Vug)(zyr™t) = va(eyz™t) V vp(ayz~1)

<wal(y) Vvp(eyr™') <wvaly) vV vs(z) Vuply) Vse™!)

(va(y) Vve(y)) V ve(x) = vars(y) Vve(z) = ve(y) V vp().
Therefore pc(ryz™t) > uc(y) A pp(r) and ve(zyz™) < ve(y) V vp(z) or C
= A A B is an if/v-normal subgroup of B.
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