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Abstract-

 

In this paper, the modified simple equation method with the aid of Maple is used

 

to obtain new exact traveling 
wave solutions of the system of shallow water wave equations,

 

modified Benjamin-Bona-Mahony equation and 
nonlinear dynamics of microtubules-A new

 

model. When these parameters are taken special values, the solitary wave 
solutions are

 

derived from the exact traveling wave solutions. It is shown that the modified simple equation

 

method 
provides an effective and a more powerful mathematical tool for solving nonlinear

 

evolution equations in mathematical 
physics. Comparison between our results and the wellknown

 

results will be presented.

 
Keywords:

 

the system of shallow water wave equations; modified benjamin-bona-mahony

 

equation; nonlinear 
dynamics of microtubules; the modified simple equation method; traveling wave solutions, solitary wave 
solutions.

 I.

 

Introduction

 No one can deny the important role which played by the nonlinear partial 
differential equations

 

in the description of many and a wide variety of phenomena not 
only in physical phenomena,

 

but also in plasma, fluid mechanics, optical fibers, solid state 
physics, chemical kinetics and

 

geochemistry phenomena. So that, during the past five 
decades, a lot of method was discovered

 

by a diverse group of scientists to solve the 
nonlinear partial differential equations. For example,

 

tanh -

 

sech method [2]-[4], extended 
tanh -

 

method [5]-[7], sine -

 

cosine method [8]-[10], homogeneous

 

balance method [11], the 
exp( ( ))-expansion Method [12], Jacobi elliptic function

 

method [13]-[16], F-expansion 
method [17]-[19], exp-function method [20] and [21], trigonometric

 

function series method 

[22], ( )-
 

expansion  method [23]-[26],  the  modified simple equation

 

method [27]-[32] 

and so on.

 The objective of this article is to apply the modified simple equation method for 
finding the exact

 

traveling wave solution of some nonlinear partial differential equations, 
namely the system of

 

shallow water wave equations [33], modified Benjamin-Bona-
Mahony equation [34] and nonlinear

 

dynamics of microtubules-A new model [35], which 
play an important role in mathematical

 

physics.

 The rest of this paper is organized as follows: In section 2, we give the description 
of the modified simple equation method. In section 3, we use this method to find the 
exact solutions of the

 

nonlinear evolution equations pointed out above. In section 5, 
conclusions are given.
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II.  Description of the  Modified  Simple  Equation Method  

Consider the following nonlinear evolution equation  

(2.1) 

where F is a polynomial in  and its partial derivatives in which the highest order 
derivatives and nonlinear terms are involved. In the following, we give the main steps of 
this method [27]-[32]:  

Step 1.  We use the wave transformation  

 (2.2) 

where c  is a nonzero constant, to reduce Eq.(2.1) to the following ODE:  

(2.3) 

where P is a polynomial in  and its total derivatives, while  

Step 2.  Suppose that the solution of Eq.(2.3) has the formal solution:  

(2.4) 

where are  arbitrary  constants to be determined, such that , while the 
function 

  
is an unknown function to be determined later, such that 

  

Step 3.
 

Determined the positive integer N in Eq.(2.4) by considering the homogenous 
balance

 
between the highest order derivatives and the nonlinear terms in Eq.(2.3). 

Moreover precisely,
 

we define  the degree of    
 

as , which  gives  rise to 
degree of other expression as

 
follows:

 

 

Step 4.  Substitute  Eq.(2.4) into Eq.(2.3),  we calculate all the  necessary  derivative 

 of  the function  and we account the function  .  As a result of this 

substitution,  we get a  polynomial  of    .  In this polynomial, we gather 

all terms of the same power of  , and we equate with zero all coe_cient  of 
this polynomial. This operation  yields a system of equations which can be solved to find 

 and  . Consequently, we can get  the exact solution of Eq.(2.1).  

III.  Application  

Here, we will apply the modified simple equation method described in sec.2 to find 
the exact  traveling wave solutions and then the solitary wave solutions for the following 
nonlinear systems  of evolution equations.  

a)  Example 1: The system of shallow water wave equations  
We first consider the system of the shallow water wave equation[33]  

 (3.1) 

Using  the wave  transformation  carries  the  partial 

differential equation  (3.1) into the ordinary differential equaion:  

(3.2)
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F (u, ut, ux, uy, utt, uxx, uyy....) = 0,

u(x, t (

u(x, y, t) = u(ξ), ξ = (x + y − c t ),

P (u, u′, u′′, u′′′, .....) = 0,

u(ξ ( ′ = d
dξ .

u(ξ) =

N∑
k=0

Ak

[
′
(ξ)

(ξ)

]k
,

Ak AN 6= 0
(ξ)ψ ′ 6= 0.ψ

u(ξ

(

D (u (ξ)) = m

D

(
dqu

dξq

)
= n+ q, D

(
up
(
dqu

dξq

)s)
= np+ s (n+ q) .

u′, u′′, .... u(ξ ( (ξ (

ψ
−j(j = 0, 1, 2, ...

(ψ
−j(j = 0, 1, 2, ... (ψ

Ak (ξ (

ψ

{
ut + (uv)x + vxxx = 0,
vt + ux + vvx = 0.

u(x, t) = u(ξ), ξ = (x−ct (

{
−cu′ + vu′ + uv′ + v′′′ = 0,

u′ − cv′ + vv′ = 0,
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Integrating once the second ordinary differential equation with zero constant of 
integration, we get  

(3.3) 

Substituting Eq.(3.3) into the _rst equation of Eq.(3.2) we obtain 

(3.4) 

Integrating Eq.(3.4) and neglecting the constant of integration, we obtain 

(3.5) 

Balancing  and  in Eq.(3.5) yields, (N + 2 = 3N)  (N = 1). So that, by using 
Eq.(2.4) we get the formal solution of Eq.(3.5) 

 
(3.6)

 

Substituting Eq.(3.6) and its derivative into Eq.(3.5) and collecting all term with the 

same power of     we get: 

(3.7)
 

 

(3.8)
 

 

(3.9) 

 

(3.10)
 

From Eqs.(3.7) and (3.10), we deduce that

 

 

Let us discuss the following cases.

 

Case 1.

 

If 

 

In this case, we deduce from Eqs.(3.8) and (3.9) that :

 
  

(3.11) 

and
 

 

(3.12)
 

Eqs.(3.11) and (3.12) yield

 
 

(3.13)

 

where   consequently, when ( ) is rejected since it make

=0 whilst, when ( ) it make ( ) Integrating  (3.13)  and using
 (3.12), we deduce

 

that

 

(3.14)
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ψ

u = cv − v2

2
.

v′′′ + (3cv − 3v2

2
− c2)v′ = 0.

v′′ +
3

2
cv2 − 1

2
v3 − c2v = 0.

v′′ v3 ⇒=

v = A0 +A1

( ′)
.

ψ
ψ

−3, −2, −1, 0ψ ψ ψ ψ

−3 : A1
′3
(

1− 1

2
A2

1

)
= 0,

−2 : A1
′
[
−3

′′
+

3

2
A1

′ (c−A0)

]
= 0,

−1 : A1

[
′′′ + ′

(
3cA0 −

3

2
A2

0 − c2
)]

= 0,

0 : A0

[
−1

2
A2

0 +
3

2
cA0 − c2

]
= 0.

ψ ψ

ψ ψ ψ ψ

ψ ψ ψ

ψ

A1 = ±2, A0 = 0, A0 = c and A0 = 2c.

A0 6= 0.

′ =
1

c2 + 3
2A

2
0 − 3cA0

′′′,

′ =
1

c
2A1 − 1

2A0A1

′′.

′′′

′′ = E0,

ψ ψ

ψ ψ

ψ

ψ(
E0 =

c2+ 3
2
A2

0−3cA0
c
2
A1− 1

2
A0A1

6= 0
)
⇒ A0 = c

E0

) ) A0 = 2c E0 = ∓c 6= 0

′ = c2exp (∓c ξ) ,

Notes



(3.15)

 

where and are arbitrary constants.

 

Substituting (3.14) and (3.15) into Eq.(3.6), we have the exact traveling wave solution:

 

 

(3.16)

 

when c1

 

= 1, we obtain c2

 

= E0. So that we get the solitary wave solutions

 

•

 

If = 1 and c

 

>

 

0

 
 

(3.17)

 

•

 

while, if c3

 

= 1 and c

 

<

 

0

 
 

(3.18)

 

•

 

If c3

 

= -1, and c

 

>

 

0

 

(3.19)

 

•
 

while, if c3

 
= -1, and c <

 
0 

(3.20)
 

Case 2.  If  

In this case, we deduce from Eqs.(3.8) and (3.9) that :  

(3.21) 

and  
 

 (3.22) 

Eqs.(3.21) and (3.22) yield  

 (3.23) 

where integrating (3.23) and using (3.22), we deduce that
 

(3.24)
 

where , and consequently, we get

 

 

(3.25)

 

where and are arbitrary constants.
 

Substituting (3.24) and (3.25) into Eq.(3.6), we have the exact traveling wave solution:
 

 

(3.26)

 

when c4

 

= c2, we obtain c5

 

= E1. So that we get the solitary wave solutions

 

•
 

If c6

 

= 1, c

 

>
 

0, we get

 

 

(3.27)
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where , and consequently, we getc2 = c1
c
2
A1− 1

2
A0A1

= c1
∓c

=
c2
∓c

exp (∓c ξ) + c3,ψ

c1, c2 c3

v = 2c∓ 2c

[
exp (∓c ξ)

exp (∓c ξ) + c3

]
,

c3

v(1,2) = 2c∓ c
[
1∓ tanh

( c
2
ξ
)]
,

v(3,4) = 2c∓ c
[
1± tanh

( c
2
ξ
)]
,

v(5,6) = 2c∓ c
[
1∓ coth

( c
2
ξ
)]
,

v(7,8) = 2c∓ c
[
1± coth

( c
2
ξ
)]
.

A0 = 0.

′ =
1

c2
′′′,

′ =
2

cA1

′′.

ψ ψ

ψ ψ

′′′

′′ = E1,
ψ

ψ(
E1 = 2c

A1
= ±c 6= 0

)
′ = c5exp (±c ξ) ,ψ

c5 = 2c4
cA1

= ±c4
c

=
±c2
c
exp (±c ξ) + c6,ψ

c4, c5 c6

v = ±2c

[
exp (±c ξ)

exp (±c ξ) + c6

]
,

v(9,10) = ±c
[
1± tanh

( c
2
ξ
)]
,

Notes



 

(3.28)

 

•

 

If c6

 

= 1, c

 

> 0

 

(3.29)

 

•

 

While, if c6

 

= 1, c

 

<

 

0 

(3.30)

 

b)

 

Example 2: Modified Benjamin-Bona-Mahony equation

 

The modified Benjamin-Bona-Mahony(MBBM)equation [34] is in the form,

 

 

(3.31)

 

where a and b are positive constants. Using the transformation 
 to reduce Eq.(3.31) to the following ordinary di_erential equation

 

(3.32)

 

Integrating Eq.(3.32) with zero constant of integration we obtain

 

(3.33)

 

hence, Eq.(3.33) take the form:

 

 

(3.34)

 

when, and . Balancing with in Eq.(3.34) yield, (N

 

+ 2

 

= 3N
 

(N

 

= 1).  So that, we have the  same  formal  solution  of  Eq.(3.5).  Substituting 
Eq.(3.6) and

 

its derivative into Eq.(3.34) and collecting all term with the same power of 

 

  we get:

 

 

(3.35)

 

(3.36)

 

  

(3.37)

 

(3.38)

 

From Eqs.(3.35) and (3.38), we deduce that

 

Let us discuss the following cases. 

case 1.

 

when 

 

in this case, we deduce from Eqs.(3.36) and (3.37) that

 
 

 

(3.39)

 

and

 

(3.40)
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v(11,12) = ±c
[
1∓ tanh

( c
2
ξ
)]
.

v(13,14) = ±c
[
1± coth

( c
2
ξ
)]
,

v(15,16) = ±c
[
1∓ coth

( c
2
ξ
)]
.

ut + ux + au2ux + buxxt = 0,

u (x, t) = u (ξ); (ξ = x+ kt (

ku′ + u′ + au2u′ + bku′′′ = 0,

(k + 1)u+
a

3
u3 + bku′′ = 0,

u− αu3 + βu′′′ = 0,(
α = −a

3(k+1)

) (
β = bk

(k+1)

)
u′′ u3

(
⇒

−3, −2, −1, 0ψ ψ ψ ψ

−3 : A1
′3 [−αA2

1 + 2β
]

= 0,

−2 : −3A1
′ [αA0A1

′+ βψ′′
]

= 0,

−1 : A1

[ ′ (1− 3αA2
0

)
+ βψ′′′

]
= 0,

0 : A0

[
1− αA2

0

]
= 0.

ψ ψ

ψ ψ ψ

ψ ψ

ψ

A1 = ±
√

2β

α
, A0 = ±

√
1

α
, and A0 = 0.

A0 6= 0.

′ =
−β

αA0A1

′′,ψ

′ =
β

3αA2
0 − 1

,ψ

ψ

If c6 = 1, c < 0, we get•

Notes



(3.41)

where and ( 0). Integrating Eq.(3.41) and using Eq.(3.39), 

We deduce that

(3.42)

where and consequently, we get  

(3.43)

where c7, c8 and c9 are arbitrary constant of integration.
Substituting Eq.(3.42) and (3.43) into Eq.(3.6) we have the exact traveling wave solution

(3.44)

when c7 = , we obtain c8 = E2. So that we get the solitary wave solutions
• If c9 = 1,

(3.45)

• If c9 = -1,

(3.46)

case 2. when 
In this case, we deduce from Eqs.(3.36) and (3.37) that = 0, and hence this case will be
rejected. 

c) Example 3: Nonlinear dynamics of microtubules- A new model
We consider the nonlinear dynamical equation of motion [35]

(3.47)

where m, k, l, q, A, B and are arbitrary constants to be determined later. It is well 
known that, for a given wave equation, a traveling wave is a solution which depends 
upon and only through a unified variable ( ), where and are constants. 
This allows us to obtain the final dimensionless ordinary differential equation

(3.48)

where 

Balancing between and yield, (N + 2 = 3N)    (N = 1). So that, we have the 
same formal solution of Eq.(3.5). Substituting Eq.(3.6) and its derivative into Eq.(3.48) 

and collecting all of the term with the same power of    we get:  

© 2015    Global Journals Inc.  (US)
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′′′

′′ = E2,
ψ
ψ(

E2 =
1−3αA2

0
αA0A1

= −2√
2β
6= 0
)

β >

′ = c8exp

(
−2√
2β
ξ

)
,ψ(

c8 = −βc7
αA0A1

= −c7
√
2β

2

)
=
−c8
√

2β

2
exp

(
−2√
2β
ξ

)
+ c9,ψ

u = ±
√

2β

α
∓ 2√

2αβ

 exp
(
−2√
2β
ξ
)

exp
(
−2√
2β
ξ
)

+ c9

 ,
2
β

u(1,2) = ±
√

2β

α
∓ 1√

2αβ

[
1− tanh

(
1√
2β
ξ

)]
,

u(3,4) = ±
√

2β

α
∓ 1√

2αβ

[
1− coth

(
1√
2β
ξ

)]
,

A0 = 0
ψ′

m
∂2z

∂t2
− kl2 ∂

2z

∂x2
− qE −Az +Bz3 + γ

∂z

∂t
= 0,

γ

z (ξ (

x t ξ = κx− ωt κ ω

αu′′ − ρu′ − u+ u3 − σ = 0,

u′ =
du

dξ
, α =

mω2 − kl2κ2

A
, z =

√
A

B
u , ρ =

γω

A
andσ =

qE

A
√

A
B

.

u′′ u3 ⇒

−3, −2, −1, 0ψ ψ ψ ψ

Eqs.(3.39) and (3.40) yield.

Notes



  

 

(3.51)

 

(3.52)

 

From Eqs. (3.49) and (3.52), we deduce that

 

and

 

where 

So that, we deduce from Eqs.(3.50) and (3.51) that

 

 

(3.53)

 

and

 

(3.54)

 

and hence, Eqs. (3.53) and (3.54) yield

 

 

(3.55)

 

where 

Integrating Eq.(3.55) and using (3.53), we deduce that

 

 

(3.56)

 

where , and consequently, we get

 

 

(3.57)

 

where c10, c11

 

and c12

 

are arbitrary constants of integration.

 

Substituting Eqs.(3.56) and (3.57) into (3.6), we have the exact solution:

 

 

(3.58)

 

when c11

 

= E3, we have the solitary wave solutions.

 

•

 

If 

 

 

(3.59)

 

  

  

  

  

        

75

G
lo
ba

l
Jo

ur
na

l
of

Sc
ie
nc

e
Fr

on
tie

r
R
es
ea

rc
h 

  
  
  
 V

ol
um

e
X
V
 I
ss
ue

  
  
  
er

sio
n 

I
V

IV
Y
ea

r
20

15

© 2015    Global Journals Inc.  (US)

  
 F
)

)
The Modified Simple Equation Method and its Applications in Mathematical Physics and Biology

−1 : A1

[
αψ′′′ − ρψ′′ − ′ (1− 3A2

0

)]
= 0,

0 : A3
0 −A0 − σ = 0.

ψ ψ

ψ

A1 = ±
√
−2α, where α < 0,

A0 =
1

6

3

√
108σ + 12

√
−12 + 81σ2 + 2

1
3
√

108σ + 12
√
−12 + 81σ2

A0 =
−1

12

3

√
108σ + 12

√
−12 + 81σ2 − 1

3
√

108σ + 12
√
−12 + 81σ2

±
√

3

2

1

6

3

√
108σ + 12

√
−12 + 81σ2 − 2

1
3
√

108σ + 12
√
−12 + 81σ2

)
.)(

−12 + 81σ2
)
> 0.

′ =
3α

ρ+A0A1

′′,

αψ′′′ − ρψ′′ −
(
1− 3A2

0

) ′
= 0,

ψ ψ

ψ

′′′

′′ = E3,
ψ
ψ

E3 =

(
ρ
α +

3(1−3A2
0)

ρ+3A0A1

)
.

′ = c11exp (E3ξ) ,

=
c11
E3

exp (E3ξ) + c12

ψ

ψ

c11 = 3αc10
ρ+3A0A1

u = A0 ± E3

√
−2α

[
exp (E3ξ)

exp (E3ξ) + c12

]
,

c12 = 1, E3 > 0

u1 = A0 ±
E3

√
−2α

2

[
1 + tanh

(
E3

2
ξ

)]
.

(3.49)

(3.50)

−3 : A1
′3 [2α+A2

1

]
= 0,ψ

−2 : A1
′ [−3α ′′ + ′ (ρ+ 3A0A1)

]
= 0,ψ ψ ψ

ψ

ψ

Notes



•

 

_While, if 

 

(3.62)

 

•

 

Note that:

 

All the obtained results have been checked with Maple 16 by putting them back 
into the

 

original equation and found correct.

 

IV.

 

Physical

 

Interpretations

 

of the Solutions

 

In this section, we depict the graph and signify the obtained solutions to each of 
the system

 

of shallow water wave equations, modified Benjamin-Bona-Mahony equation 
and nonlinear dynamics

 

o microtubules-a new model. Now, we will discuss all possible 

physical signi_cances for

 

parameter. For this value of parameter c >

 

0 the solution 

and in Eq.(3.17) represent

 

kink shape soliton solution also when parameter c < 0 the 
solution and in Eq.(3.18) represent

 

kink shape soliton solution, when parameter 

c >

 

0the solution and in Eq.(3.19)

 

represent singular soliton solution while, 

when parameter c <

 

0the solution and in

 

Eq.(3.20) represent dark singular 

soliton solution, when parameter c >

 

0the solution and in Eq.(3.27) represent 

kink shape soliton solution also when parameter c <

 

0the solution and 

 

in 

Eq.(3.28) represent kink shape soliton solution, when parameter c >

 

0the solution

and in Eq.(3.29) represent singular soliton solution also when parameter c <

 

0the

 

solution 

 

and in Eq.(3.30) represent dark singular soliton solution, when 
parameter = 2, = 4 = 1

 

the solution and in Eq.(3.45) represent kink shape 
soliton solution,

 

when parameter = 2, = 4 = 1 the solution in Eq.(3.46) 
represent dark singular

 

soliton solution and in Eq.(3.46) represent bell singular 

soliton  solution,  when parameter

  

the solution and in Eq.(3.59)

 

represent kink shape soliton solution, when 

parameter 

 

the  solution and 

u(4) in Eq.(3.60) represent kink shape soliton solution, when  parameter 

 

 the solution in Eq.(3.61)

 

represent dark singular 

shape soliton solution and in Eq.(3.61) represent singular bell shape

 

soliton solution, 

and when  parameter 

 

the  solution 

in Eq.(3.62) represent dark singular shape soliton solution and in Eq.(3.62)

 

represent bell singular shape soliton solution.
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c12 = −1, E3 < 0

u4 = A0 ±
E3

√
−2α

2

[
1− coth

(
E3

2
ξ

)]
.

v(1)
v(2)

v(3) v(4)
v(5) v(6)

v(7) v(8)

v(9) v(10)

v(11) v(12)

v(13)
v(14)

v(15) v(16)
β α , k u(1) u(2)

β α , k u(3)
u(4)

α = −2, A1 = 2, σ = 1, A0 = 1.32, ρ = −10, E3 = 10.87

u(1) u(2)

α = −2, A1 = 2, σ = 1, A0 = 1.32, ρ = 4, E3 = −3.07 u(3)

α = −2, A1 = 2

σ = 1, A0 = 1.32, ρ = −10, E3 = 10.

,

87 u(5)
u(6)

α = −2, A1 = 2, σ = 1, A0 = 1.32 = 4, E3 = −3.07
u(7) u(8)

While, if 

(3.60)

If 

(3.61)

c12 = 1, E3 < 0

u2 = A0 ±
E3

√
−2α

2

[
1− tanh

(
E3

2
ξ

)]
.

c12 = −1, E3 > 0

u3 = A0 ±
E3

√
−2α

2

[
1 + coth

(
E3

2
ξ

)]
.

•

•

Notes



 
 
 
 

(a)

 

Eq.(3.17)

 

(b)

 

Eq.(3.17)

 

Figure 1 :

 

The Solitary wave solution of Eqs.(3.17)

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(a)

 

Eq.(3.18)

 

(b)

 

Eq.(3.18)

 

Figure 2 :

 

The Solitary wave solution of Eqs.(3.18)
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Notes



 
 
 
 
 

(a)

 

Eq.(3.20)

 

(b)

 

Eq.(3.20)

 

Figure 4 :

 

The Solitary wave solution of Eqs.(3.20)
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(a) (b)

Eq.(3.19) Eq.(3.19)

Figure 3 : The Solitary wave solution of Eqs.(3.19)

Notes
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(a)

Eq.(3.27)

(b)

Eq.(3.27)

Figure 5 : The Solitary wave solution of Eqs.(3.27)

(a)

Eq.(3.28)

(b)

Eq.(3.28)

Figure 6 : The Solitary wave solution of Eqs.(3.28)

Notes
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(a)
Eq.(3.29)

(b)
Eq.(3.29)

Figure 7 : The Solitary wave solution of Eqs.(3.29)

(a)

Eq.(3.30)

(b)

Eq.(3.30)

Figure 8 : The Solitary wave solution of Eqs.(3.30)

Notes



 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
 

  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
 

  

  

 
 

  

 
 

 
 

 
 

        

81

G
lo
ba

l
Jo

ur
na

l
of

Sc
ie
nc

e
Fr

on
tie

r
R
es
ea

rc
h 

  
  
  
 V

ol
um

e
X
V
 I
ss
ue

  
  
  
er

sio
n 

I
V

IV
Y
ea

r
20

15

© 2015    Global Journals Inc.  (US)

  
 F
)

)
The Modified Simple Equation Method and its Applications in Mathematical Physics and Biology

(a)

Eq.(3.46)

(b)

Eq.(3.46)

Figure 10 : The Solitary wave solution of Eqs.(3.46)

(a)

Eq.(3.45)

(b)

Eq.(3.45)

Figure 9 : The Solitary wave solution of Eqs.(3.45)

Notes



(a)

Eq.(3.59)

(b)

Eq.(3.59)

Figure 11 : The Solitary wave solution of Eqs.(3.59)

Eq.(3.60)

(b)

Eq.(3.60)

Figure 12 : The Solitary wave solution of Eqs.(3.60)
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(a)
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(a)

Eq.(3.61)

(b)

Eq.(3.61)

Figure 13 : The Solitary wave solution of Eqs.(3.61)

(a)

Eq.(3.62)

(b)

Eq.(3.62)

Figure 14 : The Solitary wave solution of Eqs.(3.62)

The Modified Simple Equation Method and its Applications in Mathematical Physics and Biology

V. Conclusion

The modified simple equation method has been successfully used to find the exact 
traveling wave solutions of some nonlinear evolution equations. As an application, the 
traveling wave solutions for the system of shallow water wave equations, modified 
Benjamin-Bona-Mahony equation and nonlinear dynamics of microtubules-a new model 
which have been constructed using the modified simple equation method. Let us compare 
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Notes



between our results obtained in the present article with the well-known results obtained 
by other authors using different methods as follows: Our results of the system of shallow 
water wave equations, modified Benjamin-Bona-Mahony equation and nonlinear dynamics 
of microtubules-A new model are new and different from those obtained in [[33]; [36] and 
[37]], [[34]; [38] and [39]] and [[35] and [40]]. and also we can see [39] which is considered a 
special case of modified Benjamin-Bona-Mahony equation when = 1. It can be

The Modified Simple Equation Method and its Applications in Mathematical Physics and Biology
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concluded that this method is reliable and propose a variety of exact solutions NPDEs. 
The performance of this method is effective and can be applied to many other nonlinear 
evolution equations. Figs.[1 14]  represent the solitary traveling  wave solution for the 
system of shallow water wave equations, modified Benjamin-Bona-Mahony equation and 
nonlinear dynamics of microtubules A new model.
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