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Absiract- In this paper, the modified simple equation method with the aid of Maple is used to obtain new exact traveling
wave solutions of the system of shallow water wave equations, modified Benjamin-Bona-Mahony equation and
nonlinear dynamics of microtubules-A new model. When these parameters are taken special values, the solitary wave
solutions are derived from the exact traveling wave solutions. It is shown that the modified simple equation method
provides an effective and a more powerful mathematical tool for solving nonlinear evolution equations in mathematical
physics. Comparison between our results and the wellknown results will be presented.
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. INTRODUCTION

No one can deny the important role which played by the nonlinear partial
differential equations in the description of many and a wide variety of phenomena not
only in physical phenomena, but also in plasma, fluid mechanics, optical fibers, solid state
physics, chemical kinetics and geochemistry phenomena. So that, during the past five
decades, a lot of method was discovered by a diverse group of scientists to solve the
nonlinear partial differential equations. For example, tanh - sech method [2]-[4], extended
tanh - method [5]-[7], sine - cosine method [8]-[10], homogeneous balance method [11], the
exp(¢ (¢))-expansion Method [12], Jacobi elliptic function method [13]-[16], F-expansion
method [17]-[19], exp-function method [20] and [21], trigonometric function series method
[22], (%/)—expansion method [23]-[26], the modified simple equation method [27]-[32]
and so on.

The objective of this article is to apply the modified simple equation method for
finding the exact traveling wave solution of some nonlinear partial differential equations,
namely the system of shallow water wave equations [33], modified Benjamin-Bona-
Mahony equation [34] and nonlinear dynamics of microtubules-A new model [35], which
play an important role in mathematical physics.

The rest of this paper is organized as follows: In section 2, we give the description
of the modified simple equation method. In section 3, we use this method to find the
exact solutions of the nonlinear evolution equations pointed out above. In section 5,
conclusions are given.
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[I.  DESCRIPTION OF THE MODIFIED SIMPLE EQUATION METHOD

Consider the following nonlinear evolution equation

F(u, ug, Ug, Uy, Ut Ugg, Uyy-...) = 0, (2.1)
where F is a polynomial in w(x,t) and its partial derivatives in which the highest order
derivatives and nonlinear terms are involved. In the following, we give the main steps of
this method [27]-[32]:
Step 1. We use the wave transformation

u(z,y,t) =u(§), E=(z+y—ct), (2.2)

where ¢ is a nonzero constant, to reduce Eq.(2.1) to the following ODE:

where P is a polynomial in w(¢)and its total derivatives, while ' = d%-

!

Step 2. Suppose that the solution of Eq.(2.3) has the formal solution:
k
] | (2.4)

N
()
u@) =y A
g) l©

where A, are arbitrary constants to be determined, such that Ax # 0, while the
function 4 (¢) is an unknown function to be determined later, such that 1/ # 0.

Step 3. Determined the positive integer N in Eq.(2.4) by considering the homogenous
balance between the highest order derivatives and the nonlinear terms in Eq.(2.3).
Moreover precisely, we define the degree of u(§) as D (u(£)) =m, which gives rise to
degree of other expression as follows:

d d s
() -nen oo () e eern

Step 4. Substitute Eq.(2.4) into Eq.(2.3), we calculate all the necessary derivative
uw',u”,.... of the function u(¢) and we account the function ¢(§). As a result of this
substitution, we get a polynomial of ¢ =J(j=0,1,2,...). In this polynomial, we gather
all terms of the same power of ¢ 7(j = 0,1,2,...), and we equate with zero all coe cient of
this polynomial. This operation yields a system of equations which can be solved to find
Ay and ¥(&). Consequently, we can get the exact solution of Eq.(2.1).

[1I.  APPLICATION

Here, we will apply the modified simple equation method described in sec.2 to find
the exact traveling wave solutions and then the solitary wave solutions for the following
nonlinear systems of evolution equations.

a) Example 1: The system of shallow water wave equations
We first consider the system of the shallow water wave equation|33]

{ ug + (uv)m + Vzae = 0,

vt + Uy + vv, = 0. (3.1)

Using the wave transformation u(z,t) = (), = (r—ct) carries the partial
differential equation (3.1) into the ordinary differential equaion:

{ —cu' +vu' +uv' +0" =0, (3.2)

u — v + v’ =0,
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Notes

Integrating once the second ordinary differential equation with zero constant of

integration, we get 9
U = CU — ?
Substituting Eq.(3.3) into the rst equation of Eq.(3.2) we obtain

02
V" + (3ev — - = A’ = 0.

Integrating Eq.(3.4) and neglecting the constant of integration, we obtain

3 1
v+ 5602 — 51)3 — v =0.

(3.3)

(3.4)

(3.5)

Balancing v”and v* in Eq.(3.5) yields, (N + 2 = 3N) = (N = 1). So that, by using

Eq.(2.4) we get the formal solution of Eq.(3.5)
/
v=Ay+ A1 <%) .

(3.6)

Substituting Eq.(3.6) and its derivative into Eq.(3.5) and collecting all term with the

same power of 2, 2 ¢ Y0 we get:

v Ay <1 - ;ﬁ) =0,
g A [—:w” + oA (e Ao)] =0,
Yt Ay [W +’ <3CA0 — gA(% — 02>] =0,

-1 3
¢O : Ag [2‘4(2) + §cA0 — 02} =0.

From Egs.(3.7) and (3.10), we deduce that
A1 =22, Ay =0, Ag=cand Ay = 2c.
Let us discuss the following cases.

Case 1. If Ay #0.
In this case, we deduce from Eqs.(3.8) and (3.9) that :

;. "
¥ = 02+%A%—3cAow ’
and

"

"
T T Y
Egs.(3.11) and (3.12) yield

n

—n E07
c2+%A373cA0
A —LAoA,
(Ey =0) whilst, when ( Ag =2c ) it make (Ey = Fc+#0) Integrating (3.13) and
(3.12), we deduce that

where (Eo = £ 0) = consequently, when (Ag =c ) is rejected since it

Y = czezp (Fcf),

(3.7)

(3.11)

(3.12)

(3.13)
make

using

(3.14)
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where ¢y = m = % , and consequently, we get
2 2

Y= %exp(ﬂFc{) + cs, (3.15)

where c1, c2 and ¢3 are arbitrary constants.
Substituting (3.14) and (3.15) into Eq.(3.6), we have the exact traveling wave solution:

exp (Fc) ]

— (3.16
exp (Fc&) + c3

v—2c:F2c[

when ¢, = 1, we obtain ¢, = E0. So that we get the solitary wave solutions
e [fes=1landec>0

Va2 =2cFc [1 F tanh (gf)} ; (3.17)
e while,if ¢, =1and ¢ <0

V34 =2cFcC [1 + tanh (%f)] , (3.18)
e Ifg=-1,andc>0
Vs.6) = 2¢F ¢ [1 F coth (g{)] , (3.19)
e while,if ¢ =-1,and c < 0
vrg) =2¢Fc¢ [1 =+ coth (g&)] . (3.20)

Case 2. If Ay =0.
In this case, we deduce from Egs.(3.8) and (3.9) that :

1 (3.21)
d w/ — 672 Qﬁ”,
an
2
W = E@/}"‘ (3.22)
Egs.(3.21) and (3.22) yield o
— = Lk, (3.23)

where (El =2 =dc# 0) integrating (3.23) and using (3.22), we deduce that

w’ = csexp (£cf), (3.24)
where ¢; = 62%41 = % , and consequently, we get
:|:CQ

W= —eap (£c&) + cs, (3.25)

where ¢4, ¢5 and ¢g are arbitrary constants.
Substituting (3.24) and (3.25) into Eq.(3.6), we have the exact traveling wave solution:

exp (e
vmre |G 320
when ¢, = &, we obtain ¢, = E,. So that we get the solitary wave solutions
o Ifg =1 ¢> 0, we get
V(9,10) = +c [1 + tanh (g{)] , (3.27)
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e Ifg =1, ¢<0, weget
C
V(11,12) = +c [1 F tanh (§€>] .
o Ifg=1,¢>0

v(13,14) = EC [1 + coth (gf)} ,
e While, ifg,=1,¢<0

V(15,16) = *C {1 F coth (gf)} .

b) Example 2: Modified Benjamin-Bona-Mahony equation

(3.28)

(3.29)

(3.30)

The modified Benjamin-Bona-Mahony(MBBM )equation [34] is in the form,

up + Uy + auuy + bugy = 0,

(3.31)

where a and b are positive constants. Using the transformation w (z,t) = u (£); (¢ = = + kt)

to reduce Eq.(3.31) to the following ordinary di'erential equation
ku' + ' + auu + bku” =0,

Integrating Eq.(3.32) with zero constant of integration we obtain
(k+ Du + §u3 + bku” = 0,

hence, Eq.(3.33) take the form:

u—au 4 fu" =0,

(3.32)

(3.33)

(3.34)

when, (a = *7“) and (ﬁ = (kbf1)>' Balancing «” with 3 in Eq.(3.34) yield, (V4 2=3N)

3(k+1)

= (N =1). So that, we have the same formal solution of Eq.(3.5). Substituting
Eq.(3.6) and its derivative into Eq.(3.34) and collecting all term with the same power of

Y73 P72 T Y0 we get:
Y A® [—adl + 28] =0,

Y2 —3AW [aAgAry + Y] =0,
Yl Ar [y (1-3add) + By =0,
¢?: Ag [1—adf] =0.
From Egs.(3.35) and (3.38), we deduce that

/2 /1
A== ﬁ, Ag =+4/—, and Ag = 0.
« «

Let us discuss the following cases.

case 1. when Ag # 0.
in this case, we deduce from Egs.(3.36) and (3.37) that

—p
I "
d] N OdA(]Al w ’
and
B
r_
= 3aA3 -1’

(3.35)

(3.36)

(3.37)

(3.38)

(3.39)

(3.40)
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Eqgs.(3.39) and (3.40) yield.
}ﬂ

o = B, (3.41)
where (E2 = % - % £ 0) and (8 >0). Integrating Eq.(3.41) and using Eq.(3.39),

We deduce that

, —2
= —— 3.42
where (68 = O;{Z‘Xl = =y 25 ) and consequently, we get
_ —GsV20 —2 (3.43)
v=" ey (2e) +an

where ¢, ¢ and ¢, are arbitrary constant of integration.
Substituting Eq.(3.42) and (3.43) into Eq.(3.6) we have the exact traveling wave solution

-2
exp | =&
w=ny L 2 (m) ’ (3.44)
@ VR | (1) v
when ¢, = % , we obtain ¢ = Ei,. So that we get the solitary wave solutions
o Ifg=1,
23 1 1\
— 4,/ E 1— tanh [ —— (3.45)
U(1,2) o + 03 [ an ( Tﬂ£>_ )
o Ifg=-1,
23 1 1\
U(3,4) = o + %08 [1 — coth (m5> ) (3.46)

case 2. when Ag =0
In this case, we deduce from Eqs.(3.36) and (3.37) that ¢/ = 0, and hence this case will be
rejected.

¢) Example 3: Nonlinear dynamics of microtubules- A new model
We consider the nonlinear dynamical equation of motion [35]

0%z 0%z

m— — kI*>~——= —qE — Az + B2> + 'ygi =0, (3.47)

2
ot? Ox?

where m, k, I, g, A, B and 7 are arbitrary constants to be determined later. It is well
known that, for a given wave equation, a traveling wave z(§) is a solution which depends
upon z and t only through a unified variable ({ = kz — wt), where x and w are constants.
This allows us to obtain the final dimensionless ordinary differential equation

au” — pu' —u+ uw— o =0, (3.48)

where

U = —, = 7771 i kl2ﬁ2 Z = —Uu, p= L ando = 7(]
\/ o .
d ’ A ’ B ’ A /A

Balancing between u” and v? yield, (V + 2 = 3N) = (N= 1). So that, we have the
same formal solution of Eq.(3.5). Substituting Eq.(3.6) and its derivative into Eq.(3.48)

and collecting all of the term with the same power of W3 2 T 0 we get:

© 2015 Global Journals Inc. (US)
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¢_3 : Alg[/?) [2a + Aﬂ =0,

(3.49)

U7 An)f [=3af +¢ (p+ 340A1)] =0, (3.50)
vt Ay [a — py" — o (1 - 347)] =0, (3.51)
wO . Ag—AO—UZO. (352)
From Egs. (3.49) and (3.52), we deduce that
A1 = £V —2a, where a < 0,
1 1
Ay == 6/1()8(7—}—12\/—124—81024—2 3
6 V1080 + 1212 + 81 02
and
-1 1
Ay= — {’/10804—12\/—12—1—8102— 3
12 V1080 + 12V/—=12 + 8102
V3 (1\3/10804—12 —1248l02 — 2 ! .
2 \6 V1080 + 12/~=12 + 81 02
where (—12 + 810?) > 0.
So that, we deduce from Eqs.(3.50) and (3.51) that
r 3a "
Y= 7P+A0A1¢ ; (3.53)
and
ap” — py!" — (1= 343) ¢ =0, (3.54)
and hence, Egs. (3.53) and (3.54) yield
/"
Y _ g, (3.55)
B 2) w//
where F3 = <Z + i%jfjl > )
Integrating Eq.(3.55) and using (3.53), we deduce that
Y’ = ciexp (E3€), (3.56)
where ci11 = pfgfxff’m , and consequently, we get
11
= —exp(F3€) + ¢
v Es P(Est) + erz (3.57)
where ¢, ¢;; and ¢, are arbitrary constants of integration.
Substituting Egs.(3.56) and (3.57) into (3.6), we have the exact solution:
exp (E5€) ]
=Ag £ E3v—2
TR “ [63?17 (E3&) +c12]’ (3:58)
when ¢; = £}, we have the solitary wave solutions.
e Ifcia=1 FE3>0
(3.59)

up = Ag = E?’\gm [1 + tanh (%ﬁ)] .
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e While, if c1o =1, E3 <0

N/ — 3.60
ug—AoiM[l—tanh <E?’§)} (3.60)
2 2
o Ifcio=-1,FE3>0
s = Ag + Z3V20 V2_20‘ [1 + coth <b;3g>} . (3.61)

e While, if c12= -1, E3 <0
ug = Ap = Egé% [1 — coth <l;3§>] . (362)

e Note that:

All the obtained results have been checked with Maple 16 by putting them back
into the original equation and found correct.

IV. PHYSICAL INTERPRETATIONS OF THE SOLUTIONS

In this section, we depict the graph and signify the obtained solutions to each of
the system of shallow water wave equations, modified Benjamin-Bona-Mahony equation
and nonlinear dynamics o microtubules-a new model. Now, we will discuss all possible

physical signi'cances for parameter. For this value of parameter ¢ > 0 the solution v(y)

and v(2) in Eq.(3.17) represent kink shape soliton solution also when parameter ¢ < 0 the
solution v(3) and v in Eq.(3.18) represent kink shape soliton solution, when parameter

¢ > Othe solution v(5) and v@e) in Eq.(3.19) represent singular soliton solution while,
when parameter ¢ < Othe solution v(7y and vs) in Eq.(3.20) represent dark singular
soliton solution, when parameter ¢ > Othe solution v@g) and v@0) in Eq.(3.27) represent
kink shape soliton solution also when parameter ¢ < Othe solution v(11) and wv(2) in
Eq.(3.28) represent kink shape soliton solution, when parameter ¢ > Othe solution v(13)

and va4) in Eq.(3.29) represent singular soliton solution also when parameter ¢ < Othe
solution Y(15) and v@e) in Eq.(3.30) represent dark singular soliton solution, when
parameter 3= 2, a= 4, k= 1 the solution (1) and up) in Eq.(3.45) represent kink shape
soliton solution, when parameter 8 = 2, o= 4,k = 1 the solution u@) in Eq.(3.46)
represent dark singular soliton solution and u@) in Eq.(3.46) represent bell singular

soliton solution, when parameter o= -2 A;=2,0=1, Ag=1.32, p=—10, B3 = 10.87
the solution wug) and wugp) in Eq.(3.59) represent kink shape soliton solution, when
parameter o= -2, A1 =2,0=1, Ag =132, p=4, B3 =-3.07 the solution u@z and
u(4) in Eq.(3.60) represent kink shape soliton solution, when parameter o= -2, A; =2,
o=1, Ap =132, p = —10, E3 = 10.87 the solution u¢) in Eq.(3.61) represent dark singular
shape soliton solution and u) in Eq.(3.61) represent singular bell shape soliton solution,
and when parameter o = -2, 4, =2, 0 =1, A4g = 1.32 =4, F3 = —3.07 the solution
u7) in Eq.(3.62) represent dark singular shape soliton solution and wueg) in Eq.(3.62)
represent bell singular shape soliton solution.

© 2015 Global Journals Inc. (US)
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t X

V,(x.t) >When = (c=2)

(a) (b)
Eq.(3.17) Eq.(3.17)

Figure 1 : The Solitary wave solution of Eqs.(3.17)

V3(x t) = When = (c=-2) vy(x.t) = When = (c=-2)
(a) (b)
Eq.(3.18) Eq.(3.18)

Figure 2 : The Solitary wave solution of Egs.(3.18)
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3. % 10V

2% 105

1% 10

-
21

Vi(x t) = When = (c=2)

(a)
Eq.(3.19)

-2n

Vg(x.t) =When = (c=2)

(b)
Eq.(3.19)

Figure 3 : The Solitary wave solution of Egs.(3.19)

2n 2x
Vz(xt) > When = (c=-2)

(a)
Eq.(3.20)

Eq.(3.20)

Figure 4 - The Solitary wave solution of Eqs.(3.20)

© 2015 Global Journals Inc. (US)

Notes



THE MODIFIED SIMPLE EQUATION METHOD AND ITS APPLICATIONS IN MATHEMATICAL PHYSICS AND BIOLOGY

Notes '

Vy(xt) > When = (c=4)

(a) (b)
Eq.(3.27) Eq.(3.27)

ViplXt) S When = (c=4)

Figure 5 - The Solitary wave solution of Eqs.(3.27)
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2x 2z
2n 2=n
vyp(xt) = When = (c=-4) Via(%.t) = When = (c=-4)
(a) (b)
Eq.(3.28) Eq.(3.28)

Figure 6 : The Solitary wave solution of Eqs.(3.28)
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9.% 101
8. x 10"+
7.% 1014
6% 10"
5.% 10"
‘4. % 10"+
3% 104
2% 104
1104

vu(x,';:] S>When=(c=4) V(X t) > When > (c=4)
(a) (b)
Eq.(3.29) Eq.(3.29)

Figure 7 The Solitary wave solution of Egs.(3.29)

2

T ™

n

2n 2n
Vi5(%.t) When = (c=-4) Vi5(%.t] >When 5[1:1:—4]
(a) (b)
Eq.(3.30) Eq.(3.30)

Figure 8 - The Solitary wave solution of Egs.(3.30)
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u,(xt) >When = (0=4.f=2.4=1) u,(xt) >When = (0=4.f=24=1)
(a) (b)
Eq.(3.45) Eq.(3.45)

Figure 9 : The Solitary wave solution of Eqs.(3.45)

u,(x,t) >When = (0=4.f=24=1) u,(xt) >When = (0=4.f=24=1)
(a) (b)
Eq.(3.46) Eq.(3.46)

Figure 10 : The Solitary wave solution of Egs.(3.46)
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Notes

e
TeTeseen:

-2 -2
uy(x.t) >When = (00=-2.4 =2.0=14 =132 p=- 10) U,(xt) SWhen = (0=-24=20=14=132p= 10)
(a) (b)
Eq.(3.59) Eq.(3.59)

Figure 11 : The Solitary wave solution of Egs.(3.59)

u3(x,t) 2 When = (o=-2.4 =2.0= 14 =132p =4) uy(xt) > When = (0=-2.4 =2.0=1L4=132p= 4)
(a) (b)
Eq.(3.60) Eq.(3.60)

Figure 12 : The Solitary wave solution of Egs.(3.60)
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*
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)
"5

7.% 1015

ug(x. t) >When s(a:—z,A! =20=14=132p =—10)

(a)
Eq.(3.61)

ug(xt) > When 3(&=—2,A1 =20=1,4=132p =—10)

(b)
Eq.(3.61)

Figure 13 : The Solitary wave solution of Eqgs.(3.61)

12x 10"

1.x 10'%7]

9] £.x 10"+

i"‘ :g:t w 6.% 101

s-: 10" it

s. < 104] 2.% 10"

l. x 10" i
2x w":

-2n

u,(xt) S When = (00=-2.4 =2.0=1.4,=132,p=4) ug(x.t) SWhen = (0.=-2.4 =2,9=1.4=132,p=4)

(b)
Eq.(3.62)

(a)
Eq.(3.62)

Figure 14 : The Solitary wave solution of Eqs.(3.62)

V. CONCLUSION

The modified simple equation method has been successfully used to find the exact
traveling wave solutions of some nonlinear evolution equations. As an application, the
traveling wave solutions for the system of shallow water wave equations, modified
Benjamin-Bona-Mahony equation and nonlinear dynamics of microtubules-a new model
which have been constructed using the modified simple equation method. Let us compare
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between our results obtained in the present article with the well-known results obtained
by other authors using different methods as follows: Our results of the system of shallow
water wave equations, modified Benjamin-Bona-Mahony equation and nonlinear dynamics
of microtubules-A new model are new and different from those obtained in [[33]; [36] and
[37]], [[34]; [38] and [39]] and [[35] and [40]]. and also we can see [39] which is considered a
special case of modified Benjamin-Bona-Mahony equation when a = 1. It can be
concluded that this method is reliable and propose a variety of exact solutions NPDEs.
The performance of this method is effective and can be applied to many other nonlinear
evolution equations. Figs.[l—14] represent the solitary traveling wave solution for the
system of shallow water wave equations, modified Benjamin-Bona-Mahony equation and
nonlinear dynamics of microtubules A new model.
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