

GLOBAL JOURNAL OF SCIENCE FRONTIER RESEARCH: H ENVIRONMENT & EARTH SCIENCE Volume 15 Issue 1 Version 1.0 Year 2015 Type : Double Blind Peer Reviewed International Research Journal Publisher: Global Journals Inc. (USA) Online ISSN: 2249-4626 & Print ISSN: 0975-5896

# Relations between Sea Surface Roughness, Wind Speed at 10m, and Wave Parameters during a Tropical Cyclone

By Professor S. A. Hsu

Louisiana State University, United States

*Abstract-* Measurements of wind and wave parameters during Hurricanes Kate and Lili and Typhoons Man-Yi and Krosa are analyzed. It is found that the wave characteristics are similar in both hurricane and typhoon. Relations amongst sea surface roughness, wind speed at 10m, and wave parameters are also formulated and presented for engineering applications.

Keywords: sea surface roughness, waves during a tropical cyclone, hurricane kate, hurricane lili, typhoon man-yi, and typhoon krosa.

GJSFR-H Classification : FOR Code: 300899



Strictly as per the compliance and regulations of :



© 2015. Professor S. A. Hsu. This is a research/review paper, distributed under the terms of the Creative Commons Attribution. Noncommercial 3.0 Unported License http://creativecommons.org/licenses/by-nc/3.0/), permitting all non commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

Professor S. A. Hsu

*Abstract*- Measurements of wind and wave parameters during Hurricanes Kate and Lili and Typhoons Man-Yi and Krosa are analyzed. It is found that the wave characteristics are similar in both hurricane and typhoon. Relations amongst sea surface roughness, wind speed at 10m, and wave parameters are also formulated and presented for engineering applications.

*Keywords:* sea surface roughness, waves during a tropical cyclone, hurricane kate, hurricane lili, typhoon man-yi, and typhoon krosa.

#### I. INTRODUCTION

n the atmospheric boundary layer under hurricane conditions at sea, the logarithmic wind profile is valid (Hsu, 2003) so such

$$U10 = (U^*/k)Ln (10/Zo)$$
 (1)

According to Taylor and Yelland (2001),

 $Zo/Hs = 1200* (Hs/Lp) ^ 4.5$  (2)

$$Lp = (g/2\pi) Tp^{2} = 1.56 Tp^{2}$$
(3)

Where U10 is the wind speed at 10m, U\* is the friction velocity, k (=0.4) is the von Karman constant, Zo is the aerodynamic roughness length, Hs is the significant wave height, Lp is the dominant wave length, g (=9.8 m/s<sup>2</sup>) is the gravitational acceleration, and Tp is the dominant wave period.

In air-sea interaction studies, particularly the wind-wave interaction for engineering applications such as estimation of design winds and waves,on-site measurements ofU10, Hs, and Tp are needed but are not normally available. It is therefore the purpose of this research to find relations amongst these parameters so that if one of these parameters is known, one may use these relations to estimate the other.

#### II. METHODS AND DATA ANALYSIS

Simultaneous measurements of wind and wave parameters are available during Hurricane Kate in November 1985. The dataset is provided in Table 1. In order to investigate the wind-wave interaction, the effects of swell need to be minimized. According to Drennan et al (2005), the criterion to do so is to set that

Wherethe parameter, Hs/Lp, is called wave steepness.

Table 1 indicates that the maximum U10 was 47.3m/s (with gust to 58.5m/s) and Hs was 10.7m at 17UTC on November 20 in 1985 at the National Data Buoy Center (NDBC) Buoy 42003 in the Gulf of Mexico.

2015

Year

| Hour U10 Gust                                             |                      |
|-----------------------------------------------------------|----------------------|
| In November 1985 (Data source: www.ndbc.noaa.gov), see    | text for explanation |
| Table 1 : Measurements of wind and wave parameters at Buo | y 42003 during Kate  |

|     | Hour, | U10, | Gust, |       |         | _     |
|-----|-------|------|-------|-------|---------|-------|
| Day | UTC   | m/s  | m/s   | Hs, m | Tp, sec | Hs/Lp |
| 18  | 0     | 8.1  | 8.9   | 1.2   | 5.9     | 0.022 |
| 18  | 2     | 8.2  | 8.9   | 1.1   | 5.9     | 0.020 |
| 18  | 5     | 7.7  | 8.4   | 1.1   | 5.9     | 0.020 |
| 18  | 7     | 7.7  | 8.4   | 1.1   | 5.9     | 0.020 |
| 18  | 16    | 8.9  | 9.9   | 1.5   | 6.3     | 0.024 |
| 18  | 17    | 9.2  | 10.4  | 1.5   | 6.3     | 0.024 |
| 18  | 18    | 9.5  | 10.4  | 1.5   | 6.3     | 0.024 |
| 18  | 19    | 8.9  | 10.4  | 1.6   | 6.3     | 0.026 |
| 18  | 20    | 8.7  | 9.4   | 1.6   | 6.7     | 0.023 |

Author: Louisiana State University, Baton Rouge, LA. e-mail: sahsu@lsu.edu

| 18 | 21 | 9.6  | 10.4 | 1.6  | 7.1  | 0.020 |
|----|----|------|------|------|------|-------|
| 18 | 22 | 9.7  | 10.4 | 1.6  | 7.1  | 0.020 |
| 18 | 23 | 9.8  | 10.4 | 1.7  | 7.1  | 0.022 |
| 19 | 0  | 10.2 | 11.5 | 1.7  | 6.7  | 0.024 |
| 19 | 1  | 8.8  | 9.9  | 1.6  | 6.7  | 0.023 |
| 19 | 2  | 9.2  | 9.9  | 1.5  | 6.7  | 0.021 |
| 19 | 3  | 9.4  | 10.4 | 1.5  | 6.7  | 0.021 |
| 19 | 4  | 9.8  | 11   | 1.5  | 6.7  | 0.021 |
| 19 | 5  | 9.2  | 10.4 | 1.5  | 6.3  | 0.024 |
| 19 | 6  | 9.2  | 11   | 1.4  | 6.7  | 0.020 |
| 19 | 7  | 11.7 | 13.1 | 1.5  | 6.3  | 0.024 |
| 19 | 8  | 10.7 | 12.5 | 1.6  | 5.6  | 0.033 |
| 19 | 9  | 11   | 13.1 | 1.8  | 5.9  | 0.033 |
| 19 | 10 | 10.4 | 11.5 | 1.6  | 6.7  | 0.023 |
| 19 | 11 | 11.4 | 12.5 | 1.9  | 6.3  | 0.031 |
| 19 | 12 | 9.9  | 11.5 | 1.9  | 6.7  | 0.027 |
| 19 | 13 | 9.4  | 10.4 | 2    | 7.1  | 0.025 |
| 19 | 14 | 10.3 | 11   | 2.1  | 7.7  | 0.023 |
| 19 | 15 | 11   | 13.6 | 2.2  | 7.1  | 0.028 |
| 19 | 16 | 10.8 | 12.5 | 2    | 7.1  | 0.025 |
| 19 | 17 | 11.2 | 13.1 | 2    | 7.7  | 0.022 |
| 19 | 18 | 12   | 13.6 | 2    | 7.7  | 0.022 |
| 19 | 19 | 12.5 | 14.1 | 2    | 7.7  | 0.022 |
| 19 | 20 | 13.2 | 15.7 | 2    | 7.7  | 0.022 |
| 19 | 21 | 13.6 | 15.2 | 2    | 7.1  | 0.025 |
| 19 | 22 | 13.3 | 15.7 | 2.4  | 7.1  | 0.031 |
| 19 | 23 | 13.6 | 15.2 | 2.3  | 7.1  | 0.029 |
| 20 | 0  | 12   | 14.1 | 2.4  | 7.7  | 0.026 |
| 20 | 1  | 10.8 | 12.5 | 2.3  | 7.7  | 0.025 |
| 20 | 2  | 12   | 14.1 | 2.4  | 7.7  | 0.026 |
| 20 | 3  | 13.4 | 15.7 | 2.6  | 7.7  | 0.028 |
| 20 | 4  | 14.3 | 16.2 | 2.6  | 7.7  | 0.028 |
| 20 | 5  | 16.9 | 19.9 | 2.7  | 7.7  | 0.029 |
| 20 | 6  | 16.2 | 18.8 | 3.1  | 7.7  | 0.034 |
| 20 | 7  | 16.6 | 21.9 | 3.7  | 8.3  | 0.034 |
| 20 | 8  | 20   | 24   | 4.6  | 11.1 | 0.024 |
| 20 | 9  | 21.6 | 26.7 | 5.5  | 11.1 | 0.029 |
| 20 | 10 | 24.1 | 29.3 | 5.4  | 11.1 | 0.028 |
| 20 | 12 | 23.1 | 27.2 | 7.4  | 14.3 | 0.023 |
| 20 | 13 | 23.6 | 28.7 | 7.5  | 12.5 | 0.031 |
| 20 | 14 | 26   | 31.9 | 7.2  | 12.5 | 0.030 |
| 20 | 15 | 29.3 | 37.1 | 8.6  | 14.3 | 0.027 |
| 20 | 16 | 35.9 | 43.4 | 9.4  | 12.5 | 0.039 |
| 20 | 17 | 47.3 | 58.5 | 10.7 | 12.5 | 0.044 |
| 20 | 19 | 36.5 | 47.6 | 7.1  | 11.1 | 0.037 |
| 20 | 20 | 35.5 | 47.6 | 6.6  | 9.1  | 0.051 |
| 20 | 21 | 29.9 | 37.6 | 6    | 10   | 0.038 |

| 20 | 22 | 23   | 27.7 | 5.6 | 8.3 | 0.052 |
|----|----|------|------|-----|-----|-------|
| 20 | 23 | 22.2 | 26.7 | 5.3 | 9.1 | 0.041 |
| 21 | 0  | 20.9 | 26.7 | 4.8 | 9.1 | 0.037 |
| 21 | 1  | 20.8 | 24.6 | 4.5 | 10  | 0.029 |
| 21 | 2  | 21.5 | 26.1 | 4.4 | 9.1 | 0.034 |
| 21 | 3  | 20.4 | 24.6 | 4.3 | 10  | 0.028 |
| 21 | 4  | 22.2 | 26.7 | 3.8 | 7.7 | 0.041 |
| 21 | 5  | 22.7 | 27.2 | 5.1 | 9.1 | 0.039 |
| 21 | 6  | 19.2 | 22.5 | 5.2 | 9.1 | 0.040 |
| 21 | 7  | 16.7 | 19.9 | 4.5 | 9.1 | 0.035 |
| 21 | 8  | 16.1 | 18.8 | 4.5 | 10  | 0.029 |
| 21 | 9  | 15.2 | 18.3 | 4.3 | 10  | 0.028 |
| 21 | 10 | 14.6 | 16.7 | 4.3 | 10  | 0.028 |
| 21 | 11 | 15   | 19.3 | 3.9 | 9.1 | 0.030 |
| 21 | 12 | 14   | 17.2 | 3.7 | 9.1 | 0.029 |
| 21 | 13 | 13.4 | 15.7 | 3.9 | 9.1 | 0.030 |
| 21 | 14 | 13.9 | 16.7 | 4.6 | 10  | 0.029 |
| 21 | 15 | 13.8 | 15.7 | 3.8 | 9.1 | 0.029 |
| 21 | 16 | 12.3 | 14.1 | 4.1 | 10  | 0.026 |
| 21 | 17 | 13.4 | 15.2 | 3.9 | 9.1 | 0.030 |
| 21 | 18 | 12.2 | 14.6 | 4.1 | 10  | 0.026 |
| 21 | 19 | 11.2 | 14.6 | 3.7 | 10  | 0.024 |
| 21 | 20 | 10.2 | 12   | 3.6 | 10  | 0.023 |
| 21 | 21 | 10.4 | 12.5 | 3.4 | 9.1 | 0.026 |
| 21 | 22 | 10.6 | 12   | 3.4 | 8.3 | 0.032 |
| 21 | 23 | 9.4  | 12.5 | 3.3 | 10  | 0.021 |
|    |    |      |      |     |     |       |

Based on the dataset as listed in Table 1, a relation between Hs and Tp is found and presented in Fig.1, which is

So that, from Eq.(3),

Now, substituting Eq. (6) into Eq. (2), we get

Therefore,

Hence

Eq. (9) is also shown in Fig. 2.

Similar results for Typhoon Man-Yi are presented in Figs.3 and 4 based on the dataset provided in Table 2.

(5)

(6)

(7)

(8)

(9)



*Figure 1 :* A relation between significant wave height, Hs, and dominant wave period, Tp, at NDBC Buoy 42003 during Hurricane Kate in November 1985 (see Table 1)



Figure 2 : A relation between sea surface roughness, Zo, and Hs during Kate

| Day | UTC | Hs, m | Tp, sec | Hs/Lp | Ln(Hs) | Ln(10/Zo) |
|-----|-----|-------|---------|-------|--------|-----------|
| 7   | 13  | 1.4   | 5       | 0.036 | 0.34   | 9.8       |
| 7   | 15  | 1.5   | 6       | 0.027 | 0.41   | 11.1      |
| 7   | 16  | 1.4   | 5       | 0.036 | 0.34   | 9.8       |
| 7   | 17  | 1.4   | 6       | 0.025 | 0.34   | 11.5      |
| 7   | 18  | 1.5   | 6       | 0.027 | 0.41   | 11.1      |
| 7   | 19  | 1.5   | 6       | 0.027 | 0.41   | 11.1      |
| 7   | 20  | 1.6   | 7       | 0.021 | 0.47   | 12.1      |
| 7   | 21  | 1.5   | 6       | 0.027 | 0.41   | 11.1      |

*Table 2 :* Wave measurements at 52200 near Guam during Typhoon Man-Yi In July 2007by Scripps Institution of Oceanography (www.ndbc.noaa.gov)

| 7 | 22 | 1.6 | 7  | 0.021 | 0.47 | 12.1 |
|---|----|-----|----|-------|------|------|
| 7 | 23 | 1.6 | 7  | 0.021 | 0.47 | 12.1 |
| 8 | 0  | 1.7 | 7  | 0.022 | 0.53 | 11.8 |
| 8 | 1  | 1.7 | 7  | 0.022 | 0.53 | 11.8 |
| 8 | 3  | 1.6 | 7  | 0.021 | 0.47 | 12.1 |
| 8 | 6  | 2   | 8  | 0.020 | 0.69 | 12.1 |
| 8 | 7  | 2   | 6  | 0.036 | 0.69 | 9.5  |
| 8 | 8  | 2.3 | 8  | 0.023 | 0.83 | 11.3 |
| 8 | 9  | 2.3 | 8  | 0.023 | 0.83 | 11.3 |
| 8 | 10 | 2.7 | 8  | 0.027 | 0.99 | 10.5 |
| 8 | 11 | 2.9 | 8  | 0.029 | 1.06 | 10.1 |
| 8 | 12 | 3.1 | 8  | 0.031 | 1.13 | 9.7  |
| 8 | 13 | 3.3 | 8  | 0.033 | 1.19 | 9.4  |
| 8 | 14 | 3.1 | 8  | 0.031 | 1.13 | 9.7  |
| 8 | 15 | 3.5 | 8  | 0.035 | 1.25 | 9.0  |
| 8 | 16 | 3.5 | 8  | 0.035 | 1.25 | 9.0  |
| 8 | 17 | 3.5 | 9  | 0.028 | 1.25 | 10.1 |
| 8 | 18 | 3.7 | 9  | 0.029 | 1.31 | 9.8  |
| 8 | 19 | 4.2 | 9  | 0.033 | 1.44 | 9.1  |
| 8 | 20 | 4.9 | 9  | 0.039 | 1.59 | 8.2  |
| 8 | 21 | 5.5 | 10 | 0.035 | 1.70 | 8.6  |
| 8 | 22 | 5.3 | 11 | 0.028 | 1.67 | 9.6  |
| 8 | 23 | 6.2 | 10 | 0.040 | 1.82 | 7.9  |
| 9 | 0  | 6.8 | 11 | 0.036 | 1.92 | 8.3  |
| 9 | 1  | 6.3 | 10 | 0.040 | 1.84 | 7.8  |
| 9 | 2  | 7   | 11 | 0.037 | 1.95 | 8.1  |
| 9 | 3  | 6.5 | 11 | 0.034 | 1.87 | 8.5  |
| 9 | 4  | 7   | 11 | 0.037 | 1.95 | 8.1  |
| 9 | 5  | 6.8 | 11 | 0.036 | 1.92 | 8.3  |
| 9 | 6  | 6.2 | 11 | 0.033 | 1.82 | 8.8  |
| 9 | 7  | 6   | 11 | 0.032 | 1.79 | 8.9  |
| 9 | 8  | 6   | 11 | 0.032 | 1.79 | 8.9  |
| 9 | 9  | 5.4 | 11 | 0.029 | 1.69 | 9.5  |
| 9 | 10 | 5.4 | 10 | 0.035 | 1.69 | 8.7  |
| 9 | 11 | 5.2 | 10 | 0.033 | 1.65 | 8.9  |
| 9 | 12 | 5.3 | 11 | 0.028 | 1.67 | 9.6  |
| 9 | 13 | 5.2 | 11 | 0.028 | 1.65 | 9.7  |
| 9 | 14 | 5   | 11 | 0.026 | 1.61 | 9.9  |
| 9 | 15 | 5.7 | 10 | 0.037 | 1.74 | 8.4  |
| 9 | 16 | 4.8 | 11 | 0.025 | 1.57 | 10.2 |
| 9 | 17 | 4.6 | 11 | 0.024 | 1.53 | 10.4 |
| 9 | 18 | 4.6 | 11 | 0.024 | 1.53 | 10.4 |
| 9 | 19 | 5   | 11 | 0.026 | 1.61 | 9.9  |
| 9 | 20 | 4.7 | 10 | 0.030 | 1.55 | 9.4  |
| 9 | 21 | 4.6 | 11 | 0.024 | 1.53 | 10.4 |

Relations between Sea Surface Roughness, Wind Speed at 10m, and Wave Parameters during a Tropical Cyclone

| 9  | 22 | 5.4 | 11 | 0.029 | 1.69 | 9.5  |
|----|----|-----|----|-------|------|------|
| 9  | 23 | 5.4 | 11 | 0.029 | 1.69 | 9.5  |
| 10 | 0  | 4.3 | 11 | 0.023 | 1.46 | 10.8 |
| 10 | 1  | 3.9 | 10 | 0.025 | 1.36 | 10.5 |
| 10 | 11 | 2.6 | 9  | 0.021 | 0.96 | 11.7 |
| 11 | 18 | 1.1 | 5  | 0.028 | 0.10 | 11.2 |
| 11 | 19 | 1.2 | 6  | 0.021 | 0.18 | 12.3 |
| 11 | 20 | 1.1 | 5  | 0.028 | 0.10 | 11.2 |
| 11 | 21 | 1.1 | 6  | 0.020 | 0.10 | 12.8 |
| 11 | 23 | 1.1 | 5  | 0.028 | 0.10 | 11.2 |



Figure 3 : A relation between Hs and Tp at Buoy 52200 near Guam during Typhoon Man-Yi in July 2007 (see Table2)





#### III. Results

According to Eq. (1) we need to find a relation between U10 and U\* before we can find the relation between U10 and Hs. This is accomplished by employing the sonic anemometer measurements made over the North Sea during storms (for details, see Geernaertet al.1987). The results are presented in Fig.5, so that

$$U^* = 0.0195 U10 \ ^{-} 1.285 \tag{10}$$

A comparison of Eqs. (1) and (10) is presented in Fig. 6. Since they are nearly identical, we can say that both equations are useful. Now, from Eqs. (1), (9), and (10), we derive the relation between U10 and Hs as follows:

$$U10 = (21/(12.7 - 2.2 \text{ Ln (Hs)})) ^ 3.5$$
(11)

Eq. (11) is presented in Fig.7, which is further simplified as

$$Hs = 0.27 U10$$
 (12)

Since the coefficient of determination,  $R^2$  (= 0.99), is almost perfect, Eq.(12) is recommended for practical applications.



*Figure 5 :* A relation between U\* and U10 as measured during Storms over the North Sea by sonic anemometers (Data source: Geernaert et al., 1987)



Figure 6: A comparison of Eqs. (1) and (10) using the dataset provided in Table 1



Figure 7: A simplification of Eq. (11)

#### IV. VERIFICATIONS

Using the data provided in Table3, Eq. (11) is verified as shown in Fig.8.





*Table 3 :* Measurements of wind, wave, and atmospheric pressure at NDBC Buoy 42001 duringHurricane Lili in October 2002 (Data source: www.ndbc.noaa.gov), see text for explanations

| Day | Hour<br>UTC | Wind direction | U10m<br>m/s | Gust<br>m/s | Hs<br>m | Tp<br>second | Hs/Lp | Pressure<br>hPa |
|-----|-------------|----------------|-------------|-------------|---------|--------------|-------|-----------------|
| 1   | 15          | 63             | 6.9         | 8.2         | 1.02    | 5.56         | 0.021 | 1015.4          |
| 1   | 17          | 79             | 7.5         | 8.8         | 1.08    | 5.88         | 0.020 | 1014.9          |
| 1   | 19          | 68             | 9           | 10.5        | 1.2     | 6.25         | 0.020 | 1013.4          |
| 1   | 22          | 66             | 9.4         | 11.5        | 1.48    | 6.67         | 0.021 | 1012.4          |
| 1   | 23          | 77             | 9.5         | 10.8        | 1.29    | 4.35         | 0.044 | 1012.4          |

| 2 | 0  | 75  | 9.5  | 10.7 | 1.34  | 5.88  | 0.025 | 1012.5 |
|---|----|-----|------|------|-------|-------|-------|--------|
| 2 | 1  | 74  | 11.7 | 13.2 | 1.5   | 6.25  | 0.025 | 1012.3 |
| 2 | 2  | 64  | 11.9 | 13.7 | 1.58  | 5     | 0.041 | 1012.7 |
| 2 | 3  | 62  | 10.9 | 13.8 | 1.72  | 5.88  | 0.032 | 1012.8 |
| 2 | 4  | 58  | 12.1 | 14.5 | 1.91  | 5.88  | 0.035 | 1012.7 |
| 2 | 5  | 54  | 11.8 | 14.5 | 2     | 6.67  | 0.029 | 1012.1 |
| 2 | 6  | 57  | 11.5 | 13.2 | 2.13  | 7.69  | 0.023 | 1011.2 |
| 2 | 7  | 64  | 12.7 | 14.8 | 2.17  | 7.69  | 0.024 | 1010.6 |
| 2 | 8  | 53  | 12.5 | 14.6 | 2.41  | 7.69  | 0.026 | 1009.1 |
| 2 | 10 | 67  | 13.5 | 16.1 | 2.73  | 7.14  | 0.034 | 1008.1 |
| 2 | 11 | 55  | 14.9 | 19.1 | 3.31  | 9.09  | 0.026 | 1007.4 |
| 2 | 12 | 49  | 14.8 | 17.4 | 3.98  | 10.81 | 0.022 | 1006.6 |
| 2 | 15 | 44  | 16.5 | 20.6 | 4.88  | 12.12 | 0.021 | 1004.8 |
| 2 | 16 | 48  | 16.1 | 23.4 | 5.35  | 12.12 | 0.023 | 1003.3 |
| 2 | 17 | 63  | 23.3 | 28.9 | 6.66  | 13.79 | 0.022 | 1000.3 |
| 2 | 18 | 61  | 26.7 | 32.8 | 7.65  | 12.9  | 0.029 | 995.1  |
| 2 | 19 | 59  | 32   | 39.1 | 8.88  | 13.79 | 0.030 | 984.6  |
| 2 | 20 | 103 | 47.2 | 65.6 | 10.22 | 13.79 | 0.034 | 956.1  |
| 2 | 21 | 158 | 33.7 | 40.5 | 11.2  | 12.9  | 0.043 | 975.4  |
| 2 | 22 | 178 | 25.1 | 32.5 | 7.29  | 10.81 | 0.040 | 988.4  |
| 2 | 23 | 190 | 20.7 | 24.5 | 5.69  | 9.09  | 0.044 | 994.2  |
| 3 | 0  | 195 | 19.5 | 26.3 | 4.61  | 10.81 | 0.025 | 998    |
| 3 | 1  | 200 | 17   | 21.5 | 4.33  | 7.14  | 0.054 | 1001.1 |
| 3 | 2  | 199 | 16.2 | 20.3 | 3.77  | 6.67  | 0.054 | 1003.6 |
| 3 | 3  | 191 | 16   | 19.2 | 3.43  | 7.69  | 0.037 | 1004.9 |
| 3 | 4  | 190 | 15.4 | 18   | 3.18  | 6.67  | 0.046 | 1006.7 |
| 3 | 5  | 186 | 13.8 | 16.6 | 3.38  | 6.67  | 0.049 | 1007.2 |
| 3 | 6  | 192 | 12.1 | 14.1 | 3.14  | 7.14  | 0.039 | 1007.4 |
| 3 | 7  | 184 | 14.2 | 16.6 | 3.08  | 7.14  | 0.039 | 1007.2 |
| 3 | 8  | 192 | 12.3 | 15.1 | 2.8   | 6.67  | 0.040 | 1007.2 |
| 3 | 9  | 191 | 10.5 | 12   | 2.67  | 6.67  | 0.038 | 1007.6 |
| 3 | 11 | 176 | 10.4 | 12.6 | 2.66  | 8.33  | 0.025 | 1009.3 |
| 3 | 12 | 169 | 9.1  | 10.6 | 2.79  | 8.33  | 0.026 | 1009.7 |
| 3 | 13 | 176 | 7.2  | 8.9  | 3.09  | 7.69  | 0.033 | 1010.9 |
| 3 | 15 | 171 | 8.3  | 10   | 2.65  | 8.33  | 0.024 | 1012.1 |
| 3 | 16 | 177 | 7.6  | 9.8  | 3.01  | 8.33  | 0.028 | 1012.2 |
| 3 | 17 | 174 | 7    | 8.3  | 2.71  | 7.14  | 0.034 | 1012.2 |
| 3 | 18 | 165 | 6.3  | 7.3  | 2.43  | 7.14  | 0.031 | 1012.1 |
| 3 | 19 | 170 | 5.5  | 6.4  | 2.62  | 6.67  | 0.038 | 1011.5 |
| 3 | 20 | 162 | 4.9  | 5.7  | 2.43  | 7.14  | 0.031 | 1011.2 |
| 4 | 1  | 152 | 5.9  | 7.1  | 1.84  | 7.14  | 0.023 | 1011.8 |
| 4 | 17 | 125 | 2.8  | 3.7  | 1.09  | 5.26  | 0.025 | 1015.7 |
| 4 | 20 | 111 | 4.5  | 5.2  | 1.08  | 5.26  | 0.025 | 1014.5 |
| 4 | 22 | 115 | 3.9  | 4.5  | 1.01  | 5.26  | 0.023 | 1014.2 |

Further verification of Eq. (12) for a typhoon is presented as follows:

According to the Joint Typhoon Warning Center (see Fig.9), on 6 October 2007, Super Typhoon Krosa was near northeastern Taiwan. The wind speed was 125kts (or 64m/s). Substituting this value into Eq. (12), we get the maximum significant wave height to be approximately 17m. Now, according to Liu et al. (2008), the maximum trough-to-crest wave height was measured to be 32.3m by a data buoy near northeast Taiwan in the western Pacific that was operating during the passage of Krosa. According to the World Meteorological Organization (1998), the maximum trough-to-crest wave height may be statistically approximated by 1.9 times the significant wave height. Therefore, the maximum significant wave height is 32.3/1.9 = 17m during Typhoon Krosa near NE Taiwan. Since this value is identical to that of 17m as obtained from Eq. (12), we can say that Eq. (12) is further verified under a typhoon condition.



*Figure 9 :* Best Track of Super Typhoon Krosa in October 2007 (http://www.usno.navy.mil/NOOC/nmfc-ph/RSS/jtwc/atcr/2007atcr.pdf)

### V. Conclusions

On the basis of aforementioned analyses and discussions, it is concluded that

- There are no appreciable differences in wave characteristics during a hurricane or a typhoon, indicating that the knowledge gained from hurricanes can be applied to typhoons;
- Significant wave height, Hs, and dominant wave period are related thru Eq. (5);
- (3) Sea surface roughness and Hs are related thru Equations (7) and (9);
- (4) The friction velocity and the wind speed at 10m are related thru Eq. (10), and finally,

(5) The wind speed at 10m and Hs are related thru Eq. (11) and for practical use thru Eq. (12).

#### References Références Referencias

- 1. Drennan, W.M., P.K. Taylor and M.J. Yelland, 2005: Parameterizing the sea surface roughness, Journal of Physical Oceanography, 35, 835-848.
- 2. Geernaert, G. L., S. E. Larsen, and F. Hansen, 1987: Measurements of the wind stress, heat flux, and turbulence intensity during storm conditions over the North Sea, Journal of Geophysical Research, 92, C12, 13,127-13,139.
- 3. Hsu, S. A., 2003: Estimating overwater friction velocity and exponent of power-law wind profile from gust factor during storms, Journal of

Waterway, Port, Coastal, and Ocean Engineering, Vol. 129 (4), 174-177.

- Liu, P.C., H.S.Chen, D.-J.Doong, C.C. Kao, andY.-G. Hsu, 2008: Monstrous ocean waves during Typhoon Krosa, AnnalesGeophysicae, 26, 1327-1329.
- 5. Taylor, P. K., and M. J. Yelland, 2001: The dependence of sea surface roughness on the height and steepness of the waves, Journal of Physical Oceanography, 31, 572-590.
- 6. World Meteorological Organization, 1998:Guide to Wave Analysis and Forecasting, Second Edition, WMO No-702, Geneva, p10.

## This page is intentionally left blank