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Recently, many authors have studied Lorentzian ��Sasakian manifold [1] and
Lorentzian ��Kenmotsu manifolds [7] ; [3] : S.S.Pujar and V.J.Khairnar [12] have
initiated the study of Lorentzian Trans-Sasakian manifolds and studied the basic
results with some of its properties. Earlier to this, S.S.Pujar [13] has initiated the
study of ��Lorentzian, ��Sasakian manifold [3] and ��Lorentzian ��Kenmotsu
manifolds [4] :
In 2010, S.S.Shukla and D.D. Singh [14] have introduced the notion of "�trans-

Sasakian manifolds and studied its basic results and using these results some of
its properties were studied. Earlier to this in 1969 Takahashi [16] had introduced
the notaion of almost contact metric manifold equipped with pseudo Riemannian
metric. In particular he studied the Sasakian manifolds equipped with Riemannian
metric g. These inde�nite almost contact metric manifolds and inde�nite Sasakian
manifolds are also known as "�almost contact metric manifolds and "�Sasakian
manifolds respectively.
Recently, it has been observed that there does not exists a light like surface in

the "�Sasakian manifolds ([8], [16]). On the other hand in almost para contact
manifold de�ned by Motsumoto [6] , the semi Riemannian manifold has the index
1 and the structure vector �eld � is always a time like. This motivated Tripathi
et. al [8] to introduce "�almost para contact structure where the vector �eld � is
space like or time like according as " = 1 or " = �1:
In 1970, S.I.Goldberg et. al [10] introduced the notion of a non-invariant hyper-

surfaces of an almost contact manifold in which the transform of a tangent vector
of the hypersurface by the (1; 1) structure tensor �eld � de�ning the almost contact
structure is never tangent to the hypersurface.
The notion of (f; g; u; v; �) -structure was given by K.Yano [4] : It is well known

that a hypersurface of an almost contact metric manifold always admits a (f; g; u; v; �)
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)

-structure ([5] [2]). Goldberg et. al [10] proved that there always exists a (f; g; u; v; �)
-structure on a non-invariant hypersurface of an almost contact metric manifold.
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II. Preliminaries

They also proved that there does not exist invariant hypersurface of a contact mani-
fold. R.Prasad [9] studied the non-invariant hypersurfaces of a trans-Sasakian man-
ifolds. Non-invariant hypersurfaces of nearly trans-Sasakian manifold have been
studied by S.Kishor et. al [11] : In the present paper, we study the non-invariant
hypersurfaces of ��Lorentzian trans-Sasakian manifolds.

A (2n+ 1) dimensional manifold fM; is said to be the ��almost contact metric
manifold if it admits a (1; 1) tensor �eld �, a structure tensor �eld �; a 1�form �;
and an inde�nite metric g such that

(2.1)�2 = I + � 
 �; � (�) = �1; � � � = 0; � � � = 0

(2.2)g (�; �) = ��; � (X) = �g (X; �)

(2.3)g (�X; �Y ) = g (X;Y ) + �� (X) � (Y )

(2.4)g (X;�Y ) = g (�X; Y )

for all X;Y 2 TfM; where � is such that �2 = 1:
The above structure (�; �; �; g; �) on fM is called the ��Lorentzian structure onfM .
A ��Lorentzian manifold with structure (�; �; �; g; �) is said to be ��Lorentzian

trans-Sasakian manifold fM of type (�; �) if it satis�es the condition

(2.5)
�eOX��Y = � fg (X;Y ) � � �� (Y )Xg+ � fg (�X; Y ) � � �� (Y )�Xg

for any vector �elds X and Y on fM: where eO is the operator of covariant di¤er-
entiation with respect to g. From above, we have

(2.6)eOX� = � (���X � � (X + � (X) �))

and

(2.7)
�eOX��Y = �g (�X; Y ) + � fg (X;Y ) + �� (X) � (Y )g

A hypersurface of an almost contact metric manifold fM is called a non-invariant
hypersurface, if the transform of a tangent vector of the hypersurface under the
action of (1; 1) tensor �eld � de�ning the contact structure is never tangent to the
hypersurface. Let X be a tangent vector on non-invariant hypersurface of an almost
contact metric manifold fM , then �X is never tangent to the hypersurface.

Let M be a non-invariant hypersurface of an almost contact metric manifold.
Now, if we de�ne the following

(2.8)�X = fX + u (X) N̂ ;

(2.9)�N̂ = �U;

(2.10)� = V + �N̂; � = �
�
N̂
�
;

(2.11)� (X) = v (X) ;
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where, f is a (1; 1) tensor �eld, u; v are 1�form, N̂ is a unit normal to the
hypersurface, X 2 TM and u (X) 6= 0, then we get an induced
(f; g; u; v; �)�structure on M satisfying the conditions

(2.12)f2 = �I + u
 U + v 
 V;

(2.13)fU = ��V; fV = �U;

(2.14)u � f = �v; v � f = ��u;

(2.15)u (U) = 1� �2; u (V ) = v (U) = 0; v (V ) = 1� �2;

(2.16)g (fX; fY ) = g (X;Y � u (X)u (Y )� v (X) v (Y )) ;

(2.17)g (X; fY ) = �g (fX; Y ) ; g (X;U) = u (X) ;

(2.18)g (X;V ) = v (X) ;

for all X;Y 2 TM; where � = �
�
N̂
�
:

The Gauss and Weingarten formulae are given by

(2.19)eOXY = OXY + � (X;Y ) N̂ ;

(2.20)eOXN̂ = �AN̂X;

for all X;Y 2 TM; where eO and O are the Riemannian and induced Riemannian
connections on fM andM respectively and N̂ is the unit normal vector in the normal
bundle T?M: In this formula � is the second fundamental form on M related to
AN̂ by

� (X;Y ) = g
�
AN̂X;Y

�
; for all X;Y 2 TM:

:Let M be a non-invariant hypersurface with (f; g; u; v; �)�structure
of ��Lorentzian trans-Sasakian manifold fM: Then

(3.1)
�eOX��Y= (OXf)Y�u (Y )�AN̂X�+� (X;Y )U + ((OXu)Y + � (X; fY )) N̂

(3.2)
�eOX��Y = (OXv)Y � �� (X;Y )

(3.3)eOX� = OXV � �AN̂X + (� (X;V ) +X�) N̂

III. Some Properties of Non-Invariant Hypersurfaces

Lemma 1. 
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Proof. Consider�eOX��Y =
�eOX�Y �� � �eOXY �

= eOX �fY + u (Y ) N̂�� ��OXY + � (X;Y ) N̂�
= eOX (fY ) + eOX �u (Y ) N̂�� � (OXY )� � (X;Y )��N̂�

Notes



 
 

 
 

 
 
 
 
 
 
 
 
 
 

= OX (fY ) + � (X; fY ) N̂ + u (Y )
�eOXN̂�+ �eOXu (Y )� N̂ � f (OXY )

�u (OXY ) N̂ + � (X;Y )U

which gives�eOX��Y = (OXf)Y � u (Y )
�
AN̂X

�
+ � (X;Y )U + ((OXu)Y + � (X; fY )) N̂

Also we have,�eOX��Y = eOX� (Y )� � �eOXY �
= eOX (v (Y ))� � �OXY + � (X;Y ) N̂�
= OX (v (Y )) + � (X; v (Y )) N̂ � � (OXY )� � (X;Y ) �

�
N̂
�

= OX (v (Y ))� v (OXY )� �� (X;Y )�eOX��Y = (OXv)Y � �� (X;Y )
Further, consider

eOX� = OX� + � (X; �) N̂
= OXV + OX�N̂ + � (X;V ) N̂

= OXV + �OXN̂ + (X�) N̂ + � (X;V ) N̂

which gives

eOX� = OXV � �AN̂X + (� (X;V ) +X�) N̂
�

: Let M be a non-invariant hypersurface with (f; g; u; v; �)�structure
of ��Lorentzian trans-Sasakian manifold fM: Then

(3.4)� (X; �)U = ��f2X � ��u (X)U + ��f (X) + f (OX�)

(3.5)u (OX�) = ���u (fX)� ��u (X)

Proof. :Consider �eOX�� � = eOX�� � � �eOX��
= �� (� (���X � � (X + � (X) �)))

or �eOX�� � = ��f2X + ��u (fX) N̂ � ��u (X)U + ��f (X) + ��u (X) N̂

and we know that the relation�eOX�� � = eOX�� � � �eOX��
= ��

�
OX� + � (X; �) N̂

�
= �� (OX�) + � (X; �)U

= �f (OX�)� u (OX�) ^N + � (X; �)U

from above two equation,we have

�f (OX�)� u (OX�) N̂ + � (X; �)U = ��f2X + ��u (fX) N̂ � ��u (X)U

+��f (X) + ��u (X) N̂

Theorem 1. 
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: Let M be a non-invariant hypersurface with (f; g; u; v; �)�structure
of ��Lorentzian trans-Sasakian manifold fM: Then

(OXf)Y = u (Y )
�
AN̂X

�
� � (X;Y )U + � (g (X;Y )V � �v (Y )X) (3.6)

+� (g (fX; Y )V � �v (Y ) fX)

(3.7)(OXu)Y = ��g (X;Y ) + � (�g (fX; Y )� �u (X) v (Y ))� � (X; fY )

(3.8)OXV = �AN̂X � ��fX � �� (X + v (X)V )

(3.9)� (X;V ) = ���u (X)� ���v (X)�X�

(3.10)(OXv)Y = �� (X;Y ) + �g (fX; Y ) + � fg (X;Y )� �v (X) v (Y )g

Euating tangential and normal parts on both side, we get

� (X; �)U = ��f2X � ��u (X)U + ��f (X) + f (OX�)
and

u (OX�) = ���u (fX)� ��u (X)
�

Proof. : Using (2:8) ; (2:10) in (2:5) and (3:1) we obtain

(OXf)Y � u (Y )
�
AN̂X

�
+ � (X;Y )U + ((OXu)Y + � (X; fY )) N̂

= �g (X;Y )V + ��g (X;Y ) N̂ � ��v (Y )X + �g (fX; Y )V

+��g (fX; Y ) N̂ � ��v (Y ) fX � ��v (Y )u (X) N̂

Equating tangential and normal parts in the above equation, we get (3:6) and
(3:7) respectively.
Using equation (2:6) ; (2:8) and (2:11) we get,

eOX� = ���fX � ��u (X) N̂ � ��X � ��v (X)V � ���v (X) N̂

and also we have,

eOX� = OXV � �AN̂X + (� (X;V ) +X�) N̂

Equating the tangential and normal part of the above two equation, we get
(3:8) and (3:9) :

In last using (2:7) ; (2:8) and (3:2) we get (3:10) �
:Let M be a non-invariant hypersurface with (f; g; u; v; �)�structure

of ��Lorentzian trans-Sasakian manifold fM: Then�eOX��Y = � (g (X;Y )V � �v (Y )X) + � (g (fX; Y )V � �v (Y ) fX)

+ f� (�g (X;Y )) + � (�g (fX; Y )� �u (X) v (Y ))g N̂ (3.11)

Proof. :Consider�eOX��Y =
�eOX�Y �� � �eOXY �

= eOX �fY + u (Y ) N̂�� ��OXY + � (X;Y ) N̂�
= eOX (fY ) + eOX �u (Y ) N̂�� � (OXY )� � (X;Y )��N̂�
= OX (fY ) + � (X; fY ) N̂ + u (Y )

�eOXN̂�+ �eOXu (Y )� N̂ � f (OXY )

�u (OXY ) N̂ + � (X;Y )U

Theorem 2. 

Theorem 3. 
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which gives

(3.12)
�eOX��Y = (OXf)Y � u (Y )

�
AN̂X

�
+ � (X;Y )U + ((OXu)Y + � (X; fY )) N̂

and we have also from (3:6) and (3:7)

(OXf)Y = u (Y )
�
AN̂X

�
� � (X;Y )U + � (g (X;Y )V � �v (Y )X) (3.13)

+� (g (fX; Y )V � �v (Y ) fX)
and

(3.14) (OXu)Y = ��g (X;Y ) + � (�g (fX; Y )� �u (X) v (Y ))� � (X; fY )

now equation (3:12) ; (3:13) ; and (3:14) enables us to deduce (3:11) �

:LetM be a totally umbilical noninvariant hypersurface with (f; g; u; v; �)�structure
of ��Lorentzian trans-Sasakian manifold. Then it is totally geodesic if and only if

(3.15) ��u (X) + ���v (X) +X� = 0

Proof. :From equation (2:6) we have,eOX� = � (���X � � (X + � (X) �))

Using (2:8) and (2:11) in above equation we geteOX� = ���fX � ��u (X) N̂ � ��X � ��v (X)V
����v (X) N̂

Equating the normal parts of above equation and equation (3:3) we obtain

(3.16) � (X;V ) = ���u (X)� ���v (X)�X�

If M is totally umbilical, then AN̂ = �I
where � is Kahlerian metric

� (X;Y ) = g
�
AN̂X;Y

�
= g (�X; Y ) = �g (X;Y )

(3.17)� (X;V ) = �g (X;V ) = �v (X)

Then, from (3:13) and (3:14) we get

��u (X) + ���v (X) +X�+ �v (X) = 0

If M is totally geodesic, i.e. � = 0
then,

��u (X) + ���v (X) +X� = 0
�

:Let M be a non-invariant hypersurface with (f; g; u; v; �)�structure
of ��Lorentzian trans-Sasakian manifold fM: If U is parallel, then we have

(3.18)f
�
AN̂X

�
+ ���X + ���fX = 0

Proof. :Consider �eOX�� N̂ = eOX ��N̂�� ��eOXN̂�
Using (2:9) ; (2:19) and (2:20) we get

(3.19)
�eOX�� N̂ = �OXU + f

�
AN̂X

�
and from (2:5) we write�eOX�� N̂ = �

n
g
�
X; N̂

�
� � ��

�
N̂
�
X
o
+ �

n
g
�
�X; N̂

�
� � ��

�
N̂
�
�X

o

Theorem 4. 

Theorem 5. 
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Using (2:10) in above equation we get,

(3.20)
�eOX�� N̂ = ����X � ����X

Using (3:19) and (3:20), we get

OXU = ���X + ����X + f
�
AN̂X

�
= ���X + f

�
AN̂X

�
+ ���fX + ���u (X) N̂

If U is parallel,then OXU = 0

���X + f
�
AN̂X

�
+ ���fX + ���u (X) N̂ = 0

Now, equating the tangential part, we have the result. �
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