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Abstract-

 

The paper is concerned with two dimensional deformation in a homogeneous, transversely isotropic 
thermoelastic solids without energy dissipation and with two temperatures due to various sources. Assuming the 
disturbances to be harmonically time-dependent, the transformed solution is obtained in the frequency domain. The 
application of a time harmonic concentrated and distributed sources have been considered to show the utility of the 
solution obtained. The transformed components of displacements, stresses and conductive temperature distribution so 
obtained are inverted numerically using a numerical inversion technique. Effect of anisotropy and two temperature on 
the resulting  expressions are depicted graphically.
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I.

 

Introduction

 

Thermoelasticity with two temperatures is one of the non classical theories of 
thermomechanics of elastic solids. The main difference of this theory with respect to the 
classical one is a thermal dependence. During the last few decades, an intense amount of 
attention has been paid to the theories of generalized thermoelasticity as they attempt to 
overcome the shortcomings of the classical coupled theory of thermoelasticity, i.e., infinite speed 
of propagation of thermoelasticity disturbances, unsatisfactory

 

response of a solid body to short 
laser action, and poor description of thermoelastic behaviour at low temperature.   

 

Green and Naghdi [5] and [6]  proposed  three  new thermoelastic theories based on an 
entropy equality rather than usual entropy inequality and  proposed three models which are 
subsequently referred to as GN-I, II, and III models. The linearised version of model-I  
corresponds to classical Thermoelastic model.  In model -II, the internal rate of production 
entropy is taken to be identically zero implying no dissipation of  thermal energy . This model 
admits un-damped thermoelastic waves in a thermoelastic material and is best known as theory 
of thermoelasticity without energy dissipation. The principal feature of this theory is in contrast 

to classical thermoelasticity associated with Fourier’s law of heat conduction, the heat flow does 
not involve energy dissipation. This theory permits the transmission of heat as thermal waves 
at finite speed. Model-III includes the previous two models as special cases and admits 
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dissipation of energy in general. In context of Green and Naghdi   model many applications 
have been found. Chandrasekharaiah and Srinath [1] discussed the thermoelastic waves without 
energy dissipation in an unbounded body with a spherical cavity.                                                                          

Youssef [18] constructed a new theory of generalized thermoelasticity by taking into 
account  two-temperature generalized thermoelasticity theory for a homogeneous and isotropic 
body without energy dissipation.  Youssef [22] also obtained variational principle of two 
temperature thermoelasticity without energy dissipation. Chen and Gurtin [2], Chen et al. [3] 
and [4] have formulated a theory of heat conduction in deformable bodies which depends upon 

two distinct temperatures, the conductive temperature 𝜑𝜑  and the thermo dynamical 
temperature T. For time independent situations, the difference between these two temperatures 
is proportional to the heat supply, and in absence of heat supply, the two temperatures are 
identical. For time dependent problems, the two temperatures are different, regardless of the 

presence of heat supply. The two temperatures T, 𝜑𝜑   and   the strain are found to have 
representations in the form of a travelling wave plus  a response, which occurs instantaneously 
throughout the body.  

Warren and Chen [17] investigated the wave propagation in the two temperature theory 
of thermoelasticity. Quintanilla [16] proved some theorems in thermoelasticity with two 
temperatures. Youssef AI-Lehaibi [19] and Youssef AI -Harby [20] investigated various problems 
on the basis of two temperature thermoelasticity. Kumar and Deswal [8] studied   the surface 
wave propagation in a micropolar thermoelastic medium without energy dissipation. Kaushal, 
Kumar and Miglani [9] discussed response of frequency domain in generalized thermoelasticity 
with two temperatures. Sharma and Kumar [12] discussed elastodynamic response and 
interactions of generalised thermoelastic diffusion due  to inclined load. Sharma, Kumar and 
Ram[13] discussed  dynamical  behaviour of generalized thermoelastic diffusion with two 
relaxation times in frequency domain. Kumar and Kansal [10] discussed propagation of 
cylindrical Rayleigh waves in a transversely isotropic thermoelastic diffusive solid half-space.  
Kumar, Sharma and Garg [11] analyzed effect of two temperature on reflection coefficient in 
micropolar thermoelastic media with and without energy dissipation. No attempt has been 
made so far to examine the thermomechanical response in transversely isotropic thermoelastic 
solid with two temperature and without energy dissipation in frequency domain.   

The deformation at any point of the medium is useful to analyze the deformation field 
around mining tremors and drilling into the crust of earth. It can also contribute to the 
theoretical consideration of the seismic and volcanic sources since it can account for the 
deformation field in the entire volume surrounding the source region. The purpose of the 
present paper is to determine the expression for components of displacement, normal stress, 
tangential stress and conductive temperature, when the time -harmonic mechanical or thermal 
source is applied, by applying Integral transform techniques. The present model is useful for 
understanding the nature of interaction between mechanical and thermal fields since most of 
the structural elements of heavy industries are often subjected to mechanical and thermal 
stresses at an elevated temperature.  

II.  Basic  Equations  

Following Youssef [21] the constitutive relations and field equations in absence of body 
forces and heat sources are  

                                     𝑡𝑡𝑖𝑖𝑖𝑖 = 𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑒𝑒𝑖𝑖𝑖𝑖 − 𝛽𝛽𝑖𝑖𝑖𝑖 𝑇𝑇                                                      (1) 

                                                            𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑒𝑒𝑖𝑖𝑖𝑖 ,𝑖𝑖 − 𝛽𝛽𝑖𝑖𝑖𝑖 𝑇𝑇,𝑖𝑖 = 𝜌𝜌𝑢𝑢�̈�𝑖                                               (2) 

                                                               𝐾𝐾𝑖𝑖𝑖𝑖 𝜑𝜑,𝑖𝑖𝑖𝑖 = 𝛽𝛽𝑖𝑖𝑖𝑖 𝑇𝑇0𝑒𝑒𝑖𝑖𝑖𝑖̈ + 𝜌𝜌𝐶𝐶𝐸𝐸�̈�𝑇                                          (3) 

Where   

                                             𝑇𝑇 = 𝜑𝜑 − 𝑎𝑎𝑖𝑖𝑖𝑖 𝜑𝜑,𝑖𝑖𝑖𝑖                                                     (4) 
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                                                                𝛽𝛽𝑖𝑖𝑖𝑖 = 𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝛼𝛼𝑖𝑖𝑖𝑖                                                            (5) 

                                                          𝑒𝑒𝑖𝑖𝑖𝑖 = 1
2
�𝑢𝑢𝑖𝑖 ,𝑖𝑖 + 𝑢𝑢𝑖𝑖 ,𝑖𝑖�     𝑖𝑖, 𝑖𝑖 = 1,2,3                                          (6) 

Here  

𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 (𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 )  are elastic parameters, 𝛽𝛽𝑖𝑖𝑖𝑖  is the thermal tensor, 𝑇𝑇 is 

the temperature, 𝑇𝑇0 is the reference temperature, 𝑡𝑡𝑖𝑖𝑖𝑖  are the components of stress tensor, 𝑒𝑒𝑖𝑖𝑖𝑖   are 

the components of strain tensor,𝑢𝑢𝑖𝑖 are the displacement components, 𝜌𝜌 is the density, 𝐶𝐶𝐸𝐸 is the 

specific heat, 𝐾𝐾𝑖𝑖𝑖𝑖    𝑎𝑎𝑖𝑖𝑖𝑖  are the two temperature parameters, 𝛼𝛼𝑖𝑖𝑖𝑖  is the 

coefficient of linear thermal expansion. 

III. Formulation and Solution of the Problem 

We consider a homogeneous, transversely isotropic thermoelastic body initially at 

uniform  temperature  𝑇𝑇0 . We take a rectangular Cartesian co-ordinate system  (𝑥𝑥1, 𝑥𝑥2, 𝑥𝑥3) with 

𝑥𝑥3 axis pointing normally into the half space, which is thus represented by 𝑥𝑥3 ≥ 0. We consider 

the plane such that all particles on a line parallel to 𝑥𝑥2 −axis are equally displaced, so that  the 

field component 𝑢𝑢2 = 0 and  𝑢𝑢1,𝑢𝑢3 and 𝜑𝜑  are independent of 𝑥𝑥2 .we have used appropriate 
transformations following Slaughter [14] on the set of equations (1)-(3) to derive the equations 
for transversely isotropic thermoelastic solid with two temperature and without energy 
dissipation and we restrict our analysis to the two dimensional problem with  

                                        𝑢𝑢�⃗ = (𝑢𝑢1, 0,𝑢𝑢3)                                                      (7) 

       𝑐𝑐11
𝜕𝜕2𝑢𝑢1
𝜕𝜕𝑥𝑥1

2 + 𝑐𝑐44
𝜕𝜕2𝑢𝑢1
𝜕𝜕𝑥𝑥3

2 + (𝑐𝑐13 + 𝑐𝑐44) 𝜕𝜕2𝑢𝑢3
𝜕𝜕𝑥𝑥1𝜕𝜕𝑥𝑥3

− 𝛽𝛽1
𝜕𝜕
𝜕𝜕𝑥𝑥1

�𝜑𝜑 − �𝑎𝑎1
𝜕𝜕2𝜑𝜑
𝜕𝜕𝑥𝑥1

2 + 𝑎𝑎3
𝜕𝜕2𝜑𝜑
𝜕𝜕𝑥𝑥3

2�� = 𝜌𝜌 𝜕𝜕2𝑢𝑢1
𝜕𝜕𝑡𝑡2                  (8) 

         (𝑐𝑐13 + 𝑐𝑐44) 𝜕𝜕2𝑢𝑢1
𝜕𝜕𝑥𝑥1𝜕𝜕𝑥𝑥3

+ 𝑐𝑐44
𝜕𝜕2𝑢𝑢3
𝜕𝜕𝑥𝑥1

2 + 𝑐𝑐33
𝜕𝜕2𝑢𝑢3
𝜕𝜕𝑥𝑥3

2   − 𝛽𝛽3
𝜕𝜕
𝜕𝜕𝑥𝑥3

�𝜑𝜑 − �𝑎𝑎1
𝜕𝜕2𝜑𝜑
𝜕𝜕𝑥𝑥1

2 + 𝑎𝑎3
𝜕𝜕2𝜑𝜑
𝜕𝜕𝑥𝑥3

2�� = 𝜌𝜌 𝜕𝜕2𝑢𝑢3
𝜕𝜕𝑡𝑡2               (9) 

     𝑖𝑖1
𝜕𝜕2𝜑𝜑
𝜕𝜕𝑥𝑥1

2 + 𝑖𝑖3
𝜕𝜕2𝜑𝜑
𝜕𝜕𝑥𝑥3

2 = 𝑇𝑇0
𝜕𝜕2

𝜕𝜕𝑡𝑡 2  �𝛽𝛽1
𝜕𝜕𝑢𝑢1
𝜕𝜕𝑥𝑥1

+ 𝛽𝛽3
𝜕𝜕𝑢𝑢3
𝜕𝜕𝑥𝑥3

� + 𝜌𝜌𝐶𝐶𝐸𝐸
𝜕𝜕2

𝜕𝜕𝑡𝑡 2 �𝜑𝜑 − �𝑎𝑎1
𝜕𝜕2𝜑𝜑
𝜕𝜕𝑥𝑥1

2 + 𝑎𝑎3
𝜕𝜕2𝜑𝜑
𝜕𝜕𝑥𝑥3

2��                    (10) 

𝑡𝑡11 = 𝑐𝑐11𝑒𝑒11 + 𝑐𝑐13𝑒𝑒33 − 𝛽𝛽1𝑇𝑇 

𝑡𝑡33 = 𝑐𝑐13𝑒𝑒11 + 𝑐𝑐33𝑒𝑒33 − 𝛽𝛽3𝑇𝑇 

                                                                                        𝑡𝑡13 = 2𝑐𝑐44𝑒𝑒13                                              (11) 

where 

𝑒𝑒11 = 𝜕𝜕𝑢𝑢1
𝜕𝜕𝑥𝑥1

 ,        𝑒𝑒33 = 𝜕𝜕𝑢𝑢3
𝜕𝜕𝑥𝑥3

 ,    𝑒𝑒13 = 1
2
�𝜕𝜕𝑢𝑢1
𝜕𝜕𝑥𝑥3

+ 𝜕𝜕𝑢𝑢3
𝜕𝜕𝑥𝑥1

�, ,  𝑇𝑇 = 𝜑𝜑 − �𝑎𝑎1
𝜕𝜕2𝜑𝜑
𝜕𝜕𝑥𝑥1

2 + 𝑎𝑎3
𝜕𝜕2𝜑𝜑
𝜕𝜕𝑥𝑥3

2� 

𝛽𝛽𝑖𝑖𝑖𝑖 = 𝛽𝛽𝑖𝑖𝛿𝛿𝑖𝑖𝑖𝑖   ,           𝐾𝐾𝑖𝑖𝑖𝑖 = 𝐾𝐾𝑖𝑖𝛿𝛿𝑖𝑖𝑖𝑖  
𝛽𝛽1 = (𝑐𝑐11+𝑐𝑐12)𝛼𝛼1 + 𝑐𝑐13𝛼𝛼3 ,       𝛽𝛽3 = 2𝑐𝑐13𝛼𝛼1 + 𝑐𝑐33𝛼𝛼3  

In the above equations we use the contracting subscript notations (1 → 11,2 → 22,3 →
33, 4 → 23, 5 → 13,6 → 12) to relate  

                                                             𝑐𝑐𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖  𝑡𝑡𝑡𝑡  𝑐𝑐𝑚𝑚𝑚𝑚                                              (12) 

The initial and regularity conditions are given by 

𝑢𝑢1(𝑥𝑥1, 𝑥𝑥3, 0) = 0 =  𝑢𝑢1̇(𝑥𝑥1, 𝑥𝑥3, 0)  
𝑢𝑢3(𝑥𝑥1, 𝑥𝑥3, 0) = 0 =  𝑢𝑢3̇(𝑥𝑥1, 𝑥𝑥3, 0)     
                                                                                                                             

                                                                                                                              
𝜑𝜑(𝑥𝑥1, 𝑥𝑥3, 0) = 0 =  �̇�𝜑

(𝑥𝑥1, 𝑥𝑥3, 0)       For       𝑥𝑥3 ≥ 0,    − ∞ < 𝑥𝑥1 < ∞                                      (13)
 

𝑢𝑢1(𝑥𝑥1, 𝑥𝑥3, 𝑡𝑡) = 𝑢𝑢3(𝑥𝑥1, 𝑥𝑥3, 𝑡𝑡) = 𝜑𝜑(𝑥𝑥1, 𝑥𝑥3, 𝑡𝑡) = 0 𝑓𝑓𝑡𝑡𝑓𝑓 𝑡𝑡 > 0 𝑤𝑤ℎ𝑒𝑒𝑚𝑚 𝑥𝑥3 → ∞                                 (14)
 

Assuming the harmonic behaviour as 
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is the materialistic constant ,



                                    (𝑢𝑢1,𝑢𝑢3,𝜑𝜑)(𝑥𝑥1, 𝑥𝑥3, 𝑡𝑡) = (𝑢𝑢1,𝑢𝑢3,𝜑𝜑)( 𝑥𝑥1, 𝑥𝑥3)𝑒𝑒𝑖𝑖𝑖𝑖𝑡𝑡                            (15)  

where  𝑖𝑖   is the angular frequency.  
To facilitate the solution, following dimensionless quantities are introduced:  

𝑥𝑥1
′ = 𝑥𝑥1

𝐿𝐿
 ,  𝑥𝑥3

′ = 𝑥𝑥3
𝐿𝐿
  ,  𝑢𝑢1

′ = 𝜌𝜌𝑐𝑐1
2

𝐿𝐿𝛽𝛽1𝑇𝑇0
𝑢𝑢1,  𝑢𝑢3

′ = 𝜌𝜌𝑐𝑐1
2

𝐿𝐿𝛽𝛽1𝑇𝑇0
𝑢𝑢3,  𝑇𝑇 ′ = 𝑇𝑇

𝑇𝑇0
 , 𝑡𝑡 ′ = 𝑐𝑐1

𝐿𝐿
𝑡𝑡  ,𝑡𝑡33

′ = 𝑡𝑡33
𝛽𝛽1𝑇𝑇0

,  

𝑡𝑡31
′ = 𝑡𝑡31

𝛽𝛽1𝑇𝑇0
 , 𝜑𝜑′ = 𝜑𝜑

𝑇𝑇0  
 , 𝑎𝑎1

′ = 𝑎𝑎1
𝐿𝐿
 ,   𝑎𝑎3

′ = 𝑎𝑎3
𝐿𝐿
,   𝐹𝐹1

′ = 𝐹𝐹1
𝛽𝛽1𝑇𝑇0

, 𝐹𝐹2
′ = 𝐹𝐹2

𝑇𝑇0
,    𝑖𝑖′ = 𝑖𝑖

𝐿𝐿
                            (16)  

where 𝑐𝑐1
2 = 𝑐𝑐11

𝜌𝜌   
   and 𝐿𝐿  is a constant of dimension of length.  

The equations (8)-(10) with the aid of (12) ,(15) and (16)   recast into the following 
form (after suppressing the primes)  

                     
𝜕𝜕2𝑢𝑢1
𝜕𝜕𝑥𝑥1

2 + 𝛿𝛿1
𝜕𝜕2𝑢𝑢1
𝜕𝜕𝑥𝑥3

2 + 𝛿𝛿2
𝜕𝜕2𝑢𝑢3
𝜕𝜕𝑥𝑥1𝜕𝜕𝑥𝑥3

− �1 − �𝑎𝑎1
𝜕𝜕2

𝜕𝜕𝑥𝑥1
2 + 𝑎𝑎3

𝜕𝜕2

𝜕𝜕𝑥𝑥3
2��

𝜕𝜕𝜑𝜑
𝜕𝜕𝑥𝑥1

= −𝑖𝑖2𝑢𝑢1                   (17)  

             𝛿𝛿4
𝜕𝜕2𝑢𝑢3
𝜕𝜕𝑥𝑥3

2 + 𝛿𝛿1
𝜕𝜕2𝑢𝑢3
𝜕𝜕𝑥𝑥1

2 + 𝛿𝛿2
𝜕𝜕2𝑢𝑢1
𝜕𝜕𝑥𝑥1𝜕𝜕𝑥𝑥3

− 𝑝𝑝5 �1 − �𝑎𝑎1
𝜕𝜕2

𝜕𝜕𝑥𝑥1
2 + 𝑎𝑎3

𝜕𝜕2

𝜕𝜕𝑥𝑥3
2��

𝜕𝜕𝜑𝜑
𝜕𝜕𝑥𝑥3

== −𝑖𝑖2𝑢𝑢3                  (18)  

           
𝜕𝜕2𝜑𝜑

 𝜕𝜕𝑥𝑥1
2 + 𝑝𝑝3

𝜕𝜕2𝜑𝜑
𝜕𝜕𝑥𝑥3

2 + ζ1𝑖𝑖
2 𝜕𝜕𝑢𝑢1
𝜕𝜕𝑥𝑥1

+ ζ2𝑖𝑖
2 𝜕𝜕𝑢𝑢3
𝜕𝜕𝑥𝑥3

= −ζ3  �1 − �𝑎𝑎1
𝜕𝜕2

𝜕𝜕𝑥𝑥1
2 + 𝑎𝑎3

𝜕𝜕2

𝜕𝜕𝑥𝑥3
2��𝑖𝑖2𝜑𝜑                     (19)  

where  

𝛿𝛿1 = 𝑐𝑐44
𝑐𝑐11

  ,  𝛿𝛿2 = 𝑐𝑐13 +𝑐𝑐44
𝑐𝑐11

  , 𝛿𝛿4 = 𝑐𝑐33
𝑐𝑐11

 , 𝑝𝑝5 = 𝛽𝛽3
𝛽𝛽1

 , 𝑝𝑝3 = 𝑖𝑖3
𝑖𝑖1

, ζ1 = 𝑇𝑇0𝛽𝛽1
2

𝑖𝑖1𝜌𝜌
 , ζ2 = 𝑇𝑇0𝛽𝛽3𝛽𝛽1
𝑖𝑖1𝜌𝜌

 ,  ζ3 = 𝐶𝐶𝐸𝐸𝑐𝑐11
𝑖𝑖1

 

Applying Fourier transform defined by  

                                           𝑓𝑓(ξ, 𝑥𝑥3,𝑖𝑖) = ∫ 𝑓𝑓(̅𝑥𝑥1, 𝑥𝑥3,𝑖𝑖)𝑒𝑒𝑖𝑖ξ𝑥𝑥1𝑑𝑑𝑥𝑥1
∞
−∞                                (20)  

on equations (17)-(19), we obtain a system of 3 homogeneous equations in terms of 𝑢𝑢�1  , 𝑢𝑢�3  and  

𝜑𝜑�  which yield a non trivial solution  if determinant of the coefficient (𝑢𝑢�1  , 𝑢𝑢�3  ,𝜑𝜑�  ) vanishes i.e. 
we obtain the following characteristic equation  

                                             � 𝑑𝑑
6

𝑑𝑑𝑥𝑥3
6 + 𝑄𝑄 𝑑𝑑4

𝑑𝑑𝑥𝑥3
4 + 𝑅𝑅 𝑑𝑑2

𝑑𝑑𝑥𝑥3
2 + 𝑆𝑆� (𝑢𝑢�1,𝑢𝑢�3,𝜑𝜑�) = 0                         (21)  

𝑄𝑄 = 1
𝑃𝑃

(ξ2𝐸𝐸 + 𝐹𝐹)  

𝑅𝑅 = 1
𝑃𝑃

(𝐺𝐺ξ4 + 𝐻𝐻ξ2 + 𝐼𝐼)  

𝑆𝑆 = 1
𝑃𝑃

(𝐽𝐽ξ6 + 𝐿𝐿ξ4 + 𝑀𝑀ξ2 + 𝑁𝑁)    
 

Where 𝑃𝑃 = 𝛿𝛿1(−𝛿𝛿4ζ3𝑎𝑎3𝑖𝑖2 − 𝛿𝛿4𝑝𝑝3 + ζ2𝑝𝑝5𝑎𝑎3𝑖𝑖2)
 

𝐸𝐸 = 𝑖𝑖2�ζ3𝑎𝑎3(𝛿𝛿4 + 𝛿𝛿1𝑏𝑏1 − 𝛿𝛿2
2) + ζ3𝑎𝑎1 − ζ2(𝑝𝑝5𝑎𝑎3 + 𝛿𝛿1𝑝𝑝5𝑎𝑎1) + 𝛿𝛿4𝑝𝑝5𝑎𝑎3ζ1 + 𝛿𝛿4𝑎𝑎3�ζ2 − ζ1�� +

𝑝𝑝3(𝛿𝛿4 + 𝛿𝛿1𝑏𝑏1 − 𝛿𝛿2
2) + 𝛿𝛿1𝛿𝛿4  

𝐹𝐹 = 𝑖𝑖4�ζ3𝑎𝑎3(𝛿𝛿4 − 𝛿𝛿1) + 𝛿𝛿1𝛿𝛿4ζ2𝑝𝑝5𝑎𝑎3� + 𝑖𝑖2{𝑝𝑝3(𝛿𝛿4 − 𝛿𝛿1) + 𝛿𝛿1𝛿𝛿4�ζ3 − 𝛿𝛿1ζ2𝑝𝑝5�}  
𝐺𝐺 = 𝑖𝑖2{𝑎𝑎1�ζ2𝑝𝑝5 − 𝑝𝑝5ζ1𝛿𝛿2 − 𝛿𝛿2ζ2 + ζ1𝛿𝛿4 − 𝛿𝛿1

2ζ3 − 𝑎𝑎3𝛿𝛿4 + ζ3𝛿𝛿2
2� + 𝑎𝑎3�−𝛿𝛿1ζ3 + 𝛿𝛿1ζ1� − 𝛿𝛿1𝑝𝑝3 − 𝛿𝛿1

2 −
𝛿𝛿4 + 𝛿𝛿2

2}  
𝐻𝐻 = 𝑖𝑖4�𝑎𝑎3�𝛿𝛿1ζ3 + ζ3 − ζ1� + 𝑎𝑎1�ζ3𝛿𝛿4 + 𝛿𝛿1ζ3�� + 𝑖𝑖2{𝑝𝑝5�ζ2 − ζ1𝛿𝛿2 − 𝑎𝑎1ζ2ζ2� − ζ2𝛿𝛿2 + ζ1𝛿𝛿4 +
𝑝𝑝3�ζ1 + 1� − 𝛿𝛿1

2ζ3 + 𝛿𝛿1 + 𝛿𝛿4 − ζ3𝛿𝛿4 + ζ3𝛿𝛿2
2}  

𝐼𝐼 = −𝑖𝑖6ζ3𝑎𝑎3 − 𝑖𝑖4(ζ2𝑝𝑝5 + 𝑝𝑝3 − 𝛿𝛿1ζ3 + ζ3𝛿𝛿4)  
𝐽𝐽 = 𝑎𝑎1𝛿𝛿1𝑖𝑖2�ζ3 − ζ1� + 𝛿𝛿1  

𝐿𝐿 = 𝑖𝑖4�𝑎𝑎1ζ1 − 𝑎𝑎1ζ3 − 𝛿𝛿1ζ3𝑎𝑎1� +  𝑖𝑖2(𝛿𝛿1ζ3 − 𝛿𝛿1 − 𝛿𝛿1ζ1 − 1)  
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Notes

Thermomechanical Response of Transversely Isotropic Thermoelastic Solids with Two Temperature and 
without Energy Dissipation Due to Time Harmonic Sources



𝑀𝑀 = 𝑖𝑖6ζ3𝑎𝑎1 + 𝑖𝑖4(−ζ3𝛿𝛿1 − ζ3 + 1 + ζ1)  
𝑁𝑁 = 𝑖𝑖6ζ3  

The roots of the equation (21) are ±λ𝑖𝑖  ( 𝑖𝑖 = 1,2,3) satisfying   the radiation condition 

that 𝑢𝑢�1,𝑢𝑢�3,𝜑𝜑� → 0 𝑎𝑎𝑎𝑎 𝑥𝑥3 → ∞, the solution of the equation (21) can be written as 

                                            𝑢𝑢�1 = 𝐴𝐴1𝑒𝑒−λ1𝑥𝑥3 + 𝐴𝐴2𝑒𝑒−λ2𝑥𝑥3 + 𝐴𝐴3𝑒𝑒−λ3𝑥𝑥3                              (22) 

                                         𝑢𝑢�3 = 𝑑𝑑1𝐴𝐴1𝑒𝑒−λ1𝑥𝑥3 + 𝑑𝑑2𝐴𝐴2𝑒𝑒−λ2𝑥𝑥3 + 𝑑𝑑3𝐴𝐴3𝑒𝑒−λ3𝑥𝑥3                       (23) 

                                      𝜑𝜑� = 𝑖𝑖1𝐴𝐴1𝑒𝑒−λ1𝑥𝑥3 + 𝑖𝑖2𝐴𝐴2𝑒𝑒−λ2𝑥𝑥3 + 𝑖𝑖3𝐴𝐴3𝑒𝑒−λ3𝑥𝑥3                             (24) 

where  

                                                  𝑑𝑑𝑖𝑖 = −λ𝑖𝑖
3𝑃𝑃∗−λ𝑖𝑖𝑄𝑄∗

λ1
4𝑅𝑅∗+λ1

2𝑆𝑆∗+𝑇𝑇∗
   𝑖𝑖 = 1,2,3                                    (25) 

                                                   𝑖𝑖𝑖𝑖 = λ𝑖𝑖
2𝑃𝑃∗∗+𝑄𝑄∗∗             

λ1
4𝑅𝑅∗+λ1

2𝑆𝑆∗+𝑇𝑇∗
   𝑖𝑖 = 1,2,3                                   (26) 

Where 𝑃𝑃∗ = 𝑖𝑖ξ{(ζ1𝑝𝑝5𝑎𝑎3𝑖𝑖2 − 𝛿𝛿2�ζ3𝑎𝑎3𝑖𝑖2 + 𝑝𝑝3�} 

𝑄𝑄∗ = 𝛿𝛿2�ξ
2 + ζ3𝑖𝑖

2 + ζ3𝑖𝑖
2𝑎𝑎1ξ

2� − 𝑝𝑝5ζ1(1 + 𝑎𝑎1ξ
2)𝑖𝑖2  

𝑅𝑅∗ = ζ2𝑝𝑝5𝑎𝑎3𝑖𝑖2 − 𝛿𝛿4(ζ3𝑎𝑎3𝑖𝑖2 + 𝑝𝑝3)  

𝑆𝑆∗ = �ξ2 + ζ3𝑖𝑖
2 + ζ3𝑖𝑖

2𝑎𝑎1ξ
2�𝛿𝛿4 + �𝛿𝛿1ξ

2 − 𝑖𝑖2��𝑎𝑎3ζ3𝑖𝑖
2 + 𝑝𝑝3� − ζ2𝑝𝑝5𝑖𝑖2(1 + 𝑎𝑎1ξ

2)  

𝑇𝑇∗ = −�𝛿𝛿1ξ
2 − 𝑖𝑖2�(ξ2 + ζ3𝑖𝑖

2 + ζ3𝑖𝑖
2𝑎𝑎1ξ

2)  

𝑃𝑃∗∗ = −(ζ2𝛿𝛿2 − ζ1𝛿𝛿4)𝑖𝑖2𝑖𝑖ξ  

𝑄𝑄∗∗ = −ζ1𝑖𝑖
2(𝛿𝛿1ξ

2 − 𝑖𝑖2)                                                                                                                       

IV. Applications 

On the half-space surface(𝑥𝑥3 = 0) normal point force and thermal point source, which 
are assumed to be time harmonic, are applied.  We consider two types of boundary conditions, 
as follows 

Case 1. The normal force on the surface of half-space  
The boundary conditions in this case are 

(1)  𝑡𝑡33(𝑥𝑥1, 𝑥𝑥3, 𝑡𝑡)  = −𝐹𝐹1ψ1(𝑥𝑥)𝑒𝑒𝑖𝑖𝑖𝑖𝑡𝑡            

(2)   𝑡𝑡31(𝑥𝑥1, 𝑥𝑥3, 𝑡𝑡) = 0         

(3)
   
𝜕𝜕

 
𝜑𝜑(𝑥𝑥1,𝑥𝑥3,𝑡𝑡)
𝜕𝜕𝑥𝑥3

= 0         at  𝑥𝑥3 = 0                                                                           (27)               
                      

where 𝐹𝐹1  
 

is the magnitude of the force applied, ψ1(𝑥𝑥)  specify the source distribution function 

along 𝑥𝑥1

 

axis.

 

Case 2.

 

The thermal source on the surface of half-space 

 

When the plane boundary is stress free and subjected to thermal point source, the 
boundary conditions in this case are

 

(1)  𝑡𝑡33(𝑥𝑥1, 𝑥𝑥3, 𝑡𝑡) = 0                                      

 

(2)   𝑡𝑡31(𝑥𝑥1, 𝑥𝑥3, 𝑡𝑡) = 0

 

(3)
𝜕𝜕

 

𝜑𝜑(𝑥𝑥1,𝑥𝑥3,𝑡𝑡)
𝜕𝜕𝑥𝑥3

 = 𝐹𝐹2ψ1(𝑥𝑥)𝑒𝑒𝑖𝑖𝑖𝑖𝑡𝑡      at 𝑥𝑥3 = 0                                                              (28)                   
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Notes

Thermomechanical Response of Transversely Isotropic Thermoelastic Solids with Two Temperature and 
without Energy Dissipation Due to Time Harmonic Sources



 
 

a)  Green’s function  

To synthesize the Green’s function, i.e. the solution due to concentrated normal force 
and thermal source on the half-space is obtained by setting  

                                                           ψ1(𝑥𝑥) = 𝛿𝛿(𝑥𝑥)                                            (29)  

In equations (27) and (28). Applying the Fourier transform defined by (20) on the 
equation (29) gives  

                                                            𝜓𝜓�1(ξ) = 1                                                 (30)  

Subcase 1(a). Mechanical force  

Substitute the values of 𝑢𝑢�1,    𝑢𝑢� 3    𝑎𝑎𝑚𝑚𝑑𝑑   𝜑𝜑�  from (22)-(24) in the boundary conditions  (27) 
and with the aid of (1), (4)-(7), (12), (15) ,(16) and (20),we obtain the components of 
displacement, normal stress, tangential stress and conductive temperature  as  

                𝑢𝑢�1 = 𝐹𝐹1𝜓𝜓�1(ξ)
∆

�−𝑀𝑀11𝑒𝑒−λ1𝑥𝑥3 + 𝑀𝑀12𝑒𝑒−λ2𝑥𝑥3 −𝑀𝑀13𝑒𝑒−λ3𝑥𝑥3�𝑒𝑒𝑖𝑖𝑖𝑖𝑡𝑡                                   (31)  

                 𝑢𝑢�3 = 𝐹𝐹1𝜓𝜓�1(ξ)
∆

�−𝑑𝑑1𝑀𝑀11𝑒𝑒−λ1𝑥𝑥3 + 𝑑𝑑2𝑀𝑀12𝑒𝑒−λ2𝑥𝑥3 − 𝑑𝑑3𝑀𝑀13𝑒𝑒−λ3𝑥𝑥3�𝑒𝑒𝑖𝑖𝑖𝑖𝑡𝑡                        (32)  

         𝜑𝜑� = 𝐹𝐹1𝜓𝜓�1(ξ)
∆

�−𝑖𝑖1𝑀𝑀11𝑒𝑒−λ1𝑥𝑥3 + 𝑖𝑖2𝑀𝑀12𝑒𝑒−λ2𝑥𝑥3 − 𝑖𝑖3𝑀𝑀13𝑒𝑒−λ3𝑥𝑥3�𝑒𝑒𝑖𝑖𝑖𝑖𝑡𝑡                                    (33)  

                  𝑡𝑡33� = 𝐹𝐹1𝜓𝜓�1(ξ)
∆

�−∆11𝑀𝑀11𝑒𝑒−λ1𝑥𝑥3 + ∆12𝑀𝑀12𝑒𝑒−λ2𝑥𝑥3 − ∆13𝑀𝑀13𝑒𝑒−λ3𝑥𝑥3�𝑒𝑒𝑖𝑖𝑖𝑖𝑡𝑡                   (34)  

        𝑡𝑡31� = 𝐹𝐹1𝜓𝜓�1(ξ)
∆

�−∆21𝑀𝑀11𝑒𝑒−λ1𝑥𝑥3 + ∆22𝑀𝑀12𝑒𝑒−λ2𝑥𝑥3 − ∆23𝑀𝑀13𝑒𝑒−λ3𝑥𝑥3�𝑒𝑒𝑖𝑖𝑖𝑖𝑡𝑡                            (35)  

 where  

𝑀𝑀11 = ∆22∆33 − ∆32∆23  ,  𝑀𝑀12 = ∆21∆33 − ∆23∆31 ,   𝑀𝑀13 = ∆21∆32 − ∆22∆31  

𝑀𝑀21 = ∆12∆33 − ∆13∆22,  𝑀𝑀22 = ∆11∆33 − ∆13∆31,    𝑀𝑀23 = ∆11∆32 − ∆12∆31  

∆1𝑖𝑖=
𝑐𝑐31

𝜌𝜌𝑐𝑐1
2 𝑖𝑖ξ −

𝑐𝑐33

𝜌𝜌𝑐𝑐1
2 𝑑𝑑𝑖𝑖 λ𝑖𝑖 −

𝛽𝛽3

𝛽𝛽1
𝑖𝑖𝑖𝑖 +

𝛽𝛽3

𝛽𝛽1𝑇𝑇0
𝑎𝑎3𝑖𝑖𝑖𝑖 λ𝑖𝑖

2  −
𝛽𝛽3

𝛽𝛽1
𝑖𝑖𝑖𝑖 𝑎𝑎1ξ2,    𝑖𝑖 = 1,2,3  

∆2𝑖𝑖= −
𝑐𝑐44

𝜌𝜌𝑐𝑐1
2 λ𝑖𝑖 +

𝑐𝑐44

𝜌𝜌𝑐𝑐1
2 𝑖𝑖ξ𝑑𝑑𝑖𝑖     𝑖𝑖 = 1,2,3  

∆3𝑖𝑖= 𝑖𝑖𝑖𝑖  λ𝑖𝑖   𝑖𝑖 = 1,2,3  

∆= ∆11𝑀𝑀11−∆12𝑀𝑀12 + ∆13𝑀𝑀13
 

Subcase 2(a). Thermal source on the surface of half-space  

Making use of (1), (4)-(7), (12),(15) and (16)in B.C. (28) , and  applying Fourier 

Transform defined by (20) and substituting the values of 𝑢𝑢�1,    𝑢𝑢� 3   𝑎𝑎𝑚𝑚𝑑𝑑   𝜑𝜑�  from (22)-(24) in the 
resulting equations, we obtain the components of displacement, normal stress, tangential stress 

and conductive temperature  are as given by equations (31)-(35) with 𝑀𝑀11,  𝑀𝑀12
 𝑎𝑎𝑚𝑚𝑑𝑑  𝑀𝑀13

 replaced 

by 𝑀𝑀31,  𝑀𝑀32
 and 𝑀𝑀33

 respectively and 𝐹𝐹1
 replaced by  𝐹𝐹2.  

Where  𝑀𝑀31 = ∆12∆23 − ∆13∆22, 𝑀𝑀32 = ∆11∆23 − ∆13∆21, 𝑀𝑀33 = ∆11∆22 − ∆12                    (36)    

b).  Influence function  

The method to obtain the half-space influence function, i.e. the solution due to 
distributed load applied on the half space is obtained by setting  
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where 𝐹𝐹2   is the constant temperature applied on the boundary, ψ1(𝑥𝑥)  specify the source 
distribution function along 𝑥𝑥1 axis.  
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                                          ψ1(𝑥𝑥) = �1  𝑖𝑖𝑓𝑓  |𝑥𝑥| ≤ 𝑚𝑚
0 𝑖𝑖𝑓𝑓 |𝑥𝑥| > 𝑚𝑚

�                                             (37) 

In equations (27) and (28). The Fourier transforms of   𝜓𝜓1(𝑥𝑥) with respect to the pair 

(𝑥𝑥, 𝜉𝜉)  for the case of a uniform strip load of non dimensional width 2m applied at origin of co-

ordinate system 𝑥𝑥1 = 𝑥𝑥3 = 0  in the dimensionless form after suppressing the primes becomes 

                                      𝜓𝜓�1(ξ) = �2 sin(𝜉𝜉𝑚𝑚)
𝜉𝜉� �,𝜉𝜉 ≠ 0                                           (38) 

The expressions for displacement, stresses and conductive temperature can be obtained 

for uniformly distributed normal force and thermal source by replacing 𝜓𝜓�1(ξ) from (38) 
respectively in equations (31)-(35) along with (36) 

V. Particular Cases 

(i): If 𝑎𝑎1 = 𝑎𝑎3 = 0 , from  equations  (31)-(35) ,we obtain the corresponding expressions for 
displacement, stresses and conductive temperature in  thermoelastic solid without energy 
dissipation.  

(ii) If we take  𝑎𝑎1 = 𝑎𝑎3 = 𝑎𝑎 , 𝑐𝑐11 = λ + 2𝜇𝜇 = 𝑐𝑐33,  𝑐𝑐12 = 𝑐𝑐13 = λ,  𝑐𝑐44 = 𝜇𝜇, 𝛽𝛽1 = 𝛽𝛽3 = 𝛽𝛽, 𝛼𝛼1 =
𝛼𝛼3 = 𝛼𝛼, 𝐾𝐾1 = 𝐾𝐾3 = 𝐾𝐾 in equations (31) − (35)  we obtain the corresponding expressions for 
displacements,  stresses and conductive temperature for isotropic thermoelastic solid without 
energy dissipation. 

VI. Inversion of the Transformation 

To obtain the solution of the problem in physical domain, we must invert the transforms 
in equations (31)-(35) . Here the displacement components, normal and tangential  stresses and 

conductive temperature are functions of  𝑥𝑥3  and the parameters of Fourier transforms  ξ     and 

hence are of the form f (ξ, 𝑥𝑥3 ). To obtain the function 𝑓𝑓(𝑥𝑥1, 𝑥𝑥3)  in the physical domain, we first 
invert the Fourier transform as used by Sharma, Kumar and Ram [13] using 

              𝑓𝑓(𝑥𝑥1, 𝑥𝑥3)= 1
2𝜋𝜋 ∫ 𝑒𝑒−𝑖𝑖ξ𝑥𝑥1∞

−∞ 𝑓𝑓(ξ, 𝑥𝑥3)𝑑𝑑ξ = 1
2𝜋𝜋 ∫ |cos(ξ𝑥𝑥1)𝑓𝑓𝑒𝑒 − 𝑖𝑖𝑎𝑎𝑖𝑖𝑚𝑚(ξ𝑥𝑥1)fo|∞

−∞ 𝑑𝑑ξ                 (39) 

Where 𝑓𝑓𝑒𝑒  𝑎𝑎𝑚𝑚𝑑𝑑 𝑓𝑓𝑡𝑡   are respectively the even and odd parts of  𝑓𝑓 (ξ, 𝑥𝑥3). The method for 

evaluating this integral is described in Press et al. [15] . It involves the use of Romberg’s 
integration with adaptive step size. This also uses the results from successive refinements of the 
extended trapezoidal rule followed by extrapolation of the results to the limit when the step size 
tends to zero. 

VII. Numerical Results and Discussion 

Copper material is chosen for the purpose of numerical calculation which is transversely 
isotropic. Physical data for a single crystal of copper is given by 

    
       

  

 

Following Dhaliwal and Singh [5], magnesium crystal is chosen for the purpose of  
numerical calculation(isotropic solid). In case of magnesium crystal like material for numerical 
calculations, the physical constants used are 

λ = 2.17 × 1010𝑁𝑁𝑚𝑚2,          𝜇𝜇 = 3.278 × 1010𝑁𝑁𝑚𝑚2  ,          
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𝑐𝑐11 = 18.78 × 1010 𝐾𝐾𝐾𝐾𝑚𝑚−1𝑎𝑎−2,  𝑐𝑐12 = 8.76 × 1010 𝐾𝐾𝐾𝐾𝑚𝑚−1𝑎𝑎−2,  𝑐𝑐13 = 8.0 × 1010 𝐾𝐾𝐾𝐾𝑚𝑚−1𝑎𝑎−2  

𝑐𝑐33 = 17.2 × 1010 𝐾𝐾𝐾𝐾𝑚𝑚−1𝑎𝑎−2,       𝑐𝑐44 = 5.06 × 1010 𝐾𝐾𝐾𝐾𝑚𝑚−1𝑎𝑎−2      𝐶𝐶𝐸𝐸 = 0.6331 × 103𝐽𝐽𝐾𝐾𝐾𝐾−1𝐾𝐾−1   

𝛼𝛼1 = 2.98 × 10−5𝐾𝐾−1,   𝛼𝛼3 = 2.4 × 10−5𝐾𝐾−1, 𝜌𝜌 = 8.954 × 103𝐾𝐾𝐾𝐾𝑚𝑚−3

𝑖𝑖1 = 0.02 × 102𝑁𝑁𝑎𝑎𝑒𝑒𝑐𝑐−2𝑑𝑑𝑒𝑒𝐾𝐾−1, 𝑖𝑖3 = 0.04 × 102𝑁𝑁𝑎𝑎𝑒𝑒𝑐𝑐−2𝑑𝑑𝑒𝑒𝐾𝐾−1
,           

𝐾𝐾 = . × 2𝑁𝑁𝑎𝑎𝑒𝑒𝑐𝑐−2𝑑𝑑𝑒𝑒𝐾𝐾−1020 10



𝑖𝑖1 = 3.58 × 1011𝑆𝑆−1         𝛽𝛽 = 2.68 × 106   𝑁𝑁𝑚𝑚−2𝑑𝑑𝑒𝑒𝐾𝐾−1 ,    𝜌𝜌 = 1.74 × 103𝐾𝐾𝐾𝐾𝑚𝑚−3   

𝑇𝑇0 = 298K,                         𝐶𝐶𝐸𝐸 = 1.04 × 103𝐽𝐽𝑖𝑖𝐾𝐾−1𝑑𝑑𝑒𝑒𝐾𝐾−1   

The values of normal displacement 𝑢𝑢3, normal force stress 𝑡𝑡33  , tangential stress 𝑡𝑡31  and 

conductive temperature 𝜑𝜑  for a transversely isotropic thermoelastic solid (TIT) and for isotropic 

thermoelastic solid (IT) are presented graphically for the non-dimensional frequencies ω=.25, 

ω=.5 and ω=.75. Two temperature parameter for (TIT) are taken as 𝑎𝑎1 = 0.03  and 𝑎𝑎3 = 0.05  

whereas for (IT) ,the two temperature parameter are taken as  𝑎𝑎1 = 𝑎𝑎3 = 0.04  

1). The solid line, small dashed  line and long dashed line , respectively corresponds to isotropic 

solid with frequencies ω=.25, ω=.5 and  ω=.75 respectively and  𝑎𝑎1 = 𝑎𝑎3 = 0.04  

2). The solid line with centre symbol circle , the small dashed line with centre symbol diamond 
and the long dashed line with centre symbol cross respectively  correspond to transversely 

isotropic solid with frequencies  ω=.25, ω=.5 and ω=.75 respectively and  𝑎𝑎1 = 0.03    and 

𝑎𝑎3 = 0.05  

a)  Normal  force on the surface of half-space  

i.  Concentrated force  

Fig.1 shows the variations of the normal displacement u3. The values of u3  (TIT),  follow  

oscillatory pattern for ω=.75 and for ω=.5, whereas for ω=.25,variations are very small owing 
to scale of graph. For u3(IT), corresponding to the three frequencies, behaviour

  is oscillatory 

with difference in the  magnitude. Fig.2 depicts the values of normal stress 𝑡𝑡33. Near the loading 

surface, the values of 𝑡𝑡33  (TIT) increase sharply corresponding to the three frequencies but 

away from the loading surface, these oscillate for ω=.5 and ω=.75, however for ω=.25, it is 

descending oscillatory.  For  𝑡𝑡33  (IT),  small variations  are observed corresponding to three 

frequencies.  Fig.3  describes the variations of  tangential stress 𝑡𝑡31. For both the mediums (i.e. 

IT and TIT ), variations in 𝑡𝑡31  are oscillatory for ω=.5 and ω=.75 where as for ω=.25, it 

increases near the loading surface and then decreases i.e. somehow oscillates.  Fig.4 interprets 

the variations of conductive temperature 𝜑𝜑  .The values of 𝜑𝜑  (IT), for ω=.25 and  ω=.5  increase 
sharply near the loading surface and then decrease i.e. are oscillatory with difference in 

magnitude whereas for ω=.75  it also oscillates with small magnitude.  𝜑𝜑  (TIT) shows small 

oscillations for ω=.5 and ω=.75 whereas variations for ω=.25 are very small in the whole range.  

ii.  Uniformly Distributed force  
Fig. 5-8 show the characteristics for uniformly distributed force. It is depicted from 

Fig.5-Fig.8 that the distribution curves for u3, normal stress 𝑡𝑡33, tangential stress 𝑡𝑡31  and 

conductive temperature 𝜑𝜑  for uniformly distributed force, follow  same trends as in case of 
concentrated force  for both the mediums  with difference in magnitudes in  their respective 
patterns.  

b)  Thermal source on the surface of half-space  

i.  Concentrated Thermal Source  
Fig.9 shows the variations of normal displacement u3  when concentrated thermal source 

is applied. It is depicted that the variations in u3  for both the mediums follow oscillatory 
pattern corresponding to the three frequencies with difference in their magnitude, except  for 

ω=.25 (TIT). In case ω=.25 (TIT), small variations are observed. Fig.10. explains variations of 

normal stress 𝑡𝑡33, near the loading surface, values of  𝑡𝑡33  (IT) increase, whereas a decrease is 

seen in 𝑡𝑡33(TIT) ,but away from the loading surface, behaviour is oscillatory in the whole range 
with difference in their magnitudes corresponding to the three frequencies. Fig.11 displays the 

picture about the behaviour of tangential stress 𝑡𝑡31, here for 𝑡𝑡31  (IT) ,there is a sharp increase in 

the range  0  x  ≤ 2   for ω=.5 and ω=.75 and afterwards pattern is oscillatory, whereas for 
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𝑡𝑡31(TIT), oscillatory pattern is observed in the whole range corresponding to these frequencies. 

For  ω=.25, different type of variations  are observed as compared with ω=.5 and ω=.75 .Fig. 

12 shows the movements of conductive temperature 𝜑𝜑 , here  for both the mediums oscillatory variations 

are depicted  for ω=.5 and ω=.75 whereas there are small variations for ω=.25(TIT) and 

movements are oscillatory for ω=.25  (IT). 

ii. Uniformly Distributed thermal source  

Fig.13 –Fig.16 show that variations in normal  displacement 𝑢𝑢3 , normal  stress 𝑡𝑡33 , 

tangential stress 𝑡𝑡31 and the conductive temperature 𝜑𝜑 for both the mediums are of similar 
pattern  as in case of concentrated thermal source with change in magnitude. In some figures, 
these appear as the mirror image of the figures of concentrated thermal source. 
 

 

 

 Figure 1
 

: Variation of Normal Displacement U3

 
with Distance X(Concentrated Force)

 

 
Figure 2 :

 
Variation of Normal Stress 𝑡𝑡33

 

with

 Distance X(Concentrated Force)

 
   

 

 

 

 

 

 
Figure 3 :

 

Variation of Tangential 

 

Figure 4

 

: Variation of Conductive 
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Figure 5 :

 

Variation of Normal Displacement U3

 

with Distance X( Uniformly Distributed  Force)

 

 

Figure 6 :

 

Variation of Normal Stress 𝑡𝑡33

 

with

Distance X( Uniformly Distributed  Force)

 
   

 

 

 

Figure 7 :

 

Variation of Tangential  Stress 𝑡𝑡31

 

with Distance X( Uniformly Distributed  Force)

 

 

Figure 8 :

 

Variation of Conductive Temperature 𝜑𝜑
with Distance X( Uniformly Distributed  Force)
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Figure 9 : Variation of Normal Displacement U3

 with  Distance X(Concentrated Thermal  Source)

 

 Figure 10 :  Variation of Normal Stress 𝑡𝑡33  with

 Distance X(Concentrated Thermal  Source)

 
   

 

 
 

 

Figure 11

 

: Variation of Tangential  Stress 𝑡𝑡31

 

with Distance X( Concentrated Thermal Source)

 

 

Figure 12

 

: Variation of Conductive Temperature 𝜑𝜑

 

with Distance X( Concentrated Thermal Source)
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Figure 13 :  Variation of Normal Displacement U3 
with Distance X(Uniformly Distributed Thermal  

Source)
 

 Figure 14  : Variation of Normal Stress 𝑡𝑡33  with

Distance X(Uniformly Distributed Thermal  
Source)

 
   

 

 

 

Figure 15

 

:

 

Variation of Tangential Stress 𝑡𝑡31

  with Distance X(Uniformly Distributed Thermal 
Source)

 

 

Figure 16

 

:

 

Variation of Conductive Temperature 𝜑𝜑
with Distance X(Uniformly Distributed Thermal 

Source)

 

  

From the graphs, it is observed that effect of anisotropy plays important role in 
the deformation of the body. As disturbance travels through the constituents of the 
medium, it suffers sudden changes resulting in an inconsistent/non uniform pattern of 
graphs. Anisotropy has significant impact on components of normal displacement, 
normal stress, tangential stress and conductive temperature. It  is observed from the 
figures(1-8) that the trends in the variations of the characteristics mentioned are similar 
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VII. Conclusion

with difference in their magnitude when the mechanical forces (i.e. concentrated or 
distributed forces)are applied , where as the trends are also similar when thermal sources 
(i.e. concentrated or distributed forces) are applied as is observed in figures (8-16). The 
trend of curves exhibits the properties of the medium and satisfies requisite condition of 
the problem. It can also contribute to the theoretical considerations of the seismic and 

Notes
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without Energy Dissipation Due to Time Harmonic Sources



  volcanic sources since it can account for deformation fields in the entire volume 
surrounding the source region.
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