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Teukolsky equation are the consequences of perturbation equation fer Kerr-
de Sitter geometry with the separability of angular and radial parts respec-
tively. Carter[1] was the first to discover that the scalar wave function is
separable. Other consideration is the 1

2 spin electromagnetic field, gravita-
tional perturbations and gravitino for the Kerr-de Sitter class of geometry.

The Teukolsky equation is applicable in he study of black holes in gen-
eral. The solutions of the equation are in most cases expressed as series
solutions of some specialized functions. This approach has been carried out
by so many researchers say Teukolsky (1973), Breuer et all (1977), Frackerell
and Crossman (1977), Leahy and Unruh (1979), Chakrabarti (1984), Siedel
(1989), Suzuki et all (1989) just to mention but few. Although Teukolsky
equation has five singular points one irregular with four regular points. By
some confluent process, these singular points are reduced to four coinciding
with the singular points of Heun’s equation.

The objective of this work is to obtain polynomial solutions for the de-
rived Tuekolsky equation through its conversion to Heun’s equation through
rational polynomials of degree at most 2. New solutions in terms of the ra-
tional polynomials are obtained.

The paper is organized as follows; The first section deals with the in-
troduction of Teukolsky equation as described in [19]. The second section
deals with the derivation of Teukolsky using the work of [19]. The third
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Abstract- The perturbation equation of masseless fields for Kerr-de Sitter geometry are written in form of seperable 
equations as in[19] called the Radial Teukolsky equation. The Radial Teukolsky equation is converted to General Heun's 
equation with singularities coinciding through some conuent process of one of five singularities. As in [17], [18] rational 
polynomials of at most degree two are introduced.



 
 

 
 

 
 
 
 
 
 
 
 
 
 

section has to do with the derivation of Radial Teukolsky and its conversion
to Heun’s equation. The fourth section has to do with Heun’s differential
equation and its transformation to hypergeometric differential equation via
rational polynomials of at most degree two.

Tekolsky equation was derived using the Kerr(-Newman)-de Sitter geome-
tries.

ds2 = −p2(dr
2

∆r
+
dθ2

∆θ
)−

∆θ sin2 θ

(1 + α)2p2
[adt− (r2 + a2)dϕ]2 +

∆r

(1 + α)2ρ2
(dt− a sin2 θdϕ)2, (1)

where

∆r = (r2 + a2)(1− a

ar2
r2)− 2Mr +Q2 =

− α
a2

(r − r+)(r − r−)(r − r′+)(r − r′−)

∆θ = 1 + a cos2 θ, α =
Λa2

3
, ρ̄ = r + ia cos θ and ρ2 = ρ̄ρ̄, (2)

where Λ is the cosmological constant, M is the mass of the black hole, Mr
its radial momentum and Q its charge. The electromagnetic field due to the
charge of the black hole was given by

Aµdx
µ = − Qr

(1 + α)2ρ2
(dt− a sin2 θdϕ). (3)

In particular, the following vectors were adopted as the null tetrad,

ιµ = (
(1 + α)(r2 + a2)

∆r
, 1, 0,

a(1 + α)

∆r
),

nµ =
1

2ρ2
((1 + α)(r2 + a2),−∆r, 0, a(1 + α)),

mµ =
1

p̄
√

2∆θ
(ia(1 + α) sin θ, 0,∆θ,

i(1 + α)

sin θ
)m̄µ = m∗µ. (4)

It was assumed that the time and azimuthal dependence of the fields has
the form e−i(ωt−mϕ),the tetrad components of derivatives and the electro-
magnetic field were

ιµ = D0, n
µ∂µ =

∆r

2ρ̄
D†0, m

µ∂µ =

√
∆θ√
2ρ̄
L†0,

mµ∂µ =

√
∆θ√
2p̄∗

L0, ι
µAµ = −Qr

∆r
, nµAµ = −Qr

2ρ2
,

mµAµ = m̄µAµ = 0, (5)

where

Dn = ∂r −
ı(1 + α)K

∆r
+ n

∂r∆r

∆r
, D†n = ∂r +

ı(1 + α)K

∆r
+ n

∂r∆r

∆r
,

II. The Teukolsky Equation [19]
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(6)

with K = ω(r2 + a2)− am and H = −aω sin θ + m
sin θ .

Using the Newman-Penrose formalism it was shown that perturbation equa-
tion in the Kerr-de sitter geometry are separable for massless spin 0, 1

2 ,1,32
and 2 fields. Similarly in the Kerr-Newman-de sitter space those for spin
0,12 fields are also separable. The separated equations for fields with spin s
and charge e were given by

[
√

∆θL
†
1−s
√

∆θLs

−2(1 + α)(2s− 1)aω cos θ − 2α(s− 1)(2s− 1) cos2 θ + λ]Ss(θ) = 0

[∆rD1D
†
s + 2(1 + α)(2s− 1)ıω − 2α

a2
(s− 1)(2s− 1)

+
−2(1 + α)eQKr + ıseQr∂r∆r + e2Q2r2

∆r
− 2ıseQ− λ]Rs(r) = 0. (7)

It was shown in [19] that the Teukolsky equations can be transformed to the
Heun’s equation by factoring out a single regular singularity.

From (7), the radial teukolsky equation is explictly written by{
∆−sr

d

dr
∆s+1
r

d

dr
+

1

∆r

[
(1 + α)2

(
K − eQr

1 + α

)2(
K − eQr

1 + α

)d∆r

dr

]
+4ıs(1 + α)ωr − 2α

a2
(s+ 1)(2s+ 1)r2 + 2s(1− α)− sıseQ− λ

}
R = 0, (8)

This equation has five regular singularities at r±, r′± and ∞ which are as-

signed such that r± → M ±
√
M2 − a2 −Q2 = r0± and r′± → ± a√

α
in the

limit α→ 0(Λ→ 0). By using the new vriable

z =
(r+ − r′−
r+ − r−

)(r − r−
r − r′−

)
,

equation (8) becomes an equation which has regular singularities at 0, 1, zr, z∞
and ∞,

zr =
(r+ − r′−
r+ − r−

)(r′+ − r−
r′+ − r′−

)
,

z∞ =
r+ − r′−
r+− r−

.

Again we can factor out the singularity at z = z∞ by the transformation as

Ra(z) = zB1(z − 1)B2(z − zr)B3(z − z∞)2s+1g(z)

B1 =
1

2

{
− s± ı

[2(1 + α)a2(ω(r2− + a2)− am− eQr−
1+α )

α(r′+ − r−)(r′− − r−)(r+ − r−)
− ıs

]}

III. Transformation of Teukolsky Equation to Heun's Equation [19]

a) Radial Teukolsky equation
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Ln = ∂θ +
ı(1 + α)H

∆θ
+ n

∂θ(
√

∆θ sin θ)√
∆θ sin θ

,

L†n = ∂θ −
ı(1 + α)H

∆θ
+ n

∂θ(
√

∆θ sin θ)√
∆θ sin θ

,
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B2 =
1

2

{
− s± ı

[2(1 + α)a2(ω(r2+ + a2)− am− eQr+
1+α )

α(r′+ − r+)(r′− − r+)(r− − r+)
− ıs

]}

B3 =
1

2

{
− s± ı

[2(1 + α)a2(ω(r2+ + a2)− am− eQr′+
1+α )

α(r′− − r+)(r′− − r+)(r+ − r+)
− ıs

]}
. (9)

Then g(z)satisfies the Heun’s equation as{ d2

dz2
+
[2B1 + s+ 1

z
+

2B2 + s+ 1

z − 1
+

2B3 + s+ 1

z − zr

] d
dz

+
σ+σ−z + ν

z(z − 1)(z − zr)

}
g(z) = 0, (10)

where

σ± = B1 +B2 +B3 + 2s

+
1

2

{
− s± ı

[2(1 + α)a2
(
ω(r

′2
− + a2)− am− eQr′−

1+α

)
(r+ − r′−)(r− − r′−)(r′+− r′−)

− ıs
]}

ν =
2a4(1 + α)2(r+ − r+)2(r+ − r′−)2(r− − r′−)(r′+ − r′−)

α2D(r+ − r−){
− ω2r3−(r+r− − 2r+r

′
+ + r−r

′
+) + 2aω(aω −m)r−(r+r

′
+ − r2−)

−a2(aω −m)2(2r− − r+ − r′+)

+
eQ

1 + α
[ωr2−(r+r− + r2− − 3r+r

′
+ + r−r

′
+)

−a(aω −m)(r+r− − 3r2− + r+r
′
+ + r−r

′
+)]

+
( eQ

1 + α

)2
r−(−r2− + r+r

′
+)
}

+
2ısa2(1 + α)

[
ω(r−r

′
− + a2)− am− eQ

1+α

r−+r′−
2

]
(r+ − r−)(r′+ − r′−)(r− − r′−)

+(s+ 1)(2s+ 1)
[ 2r

′2
−

(r+ − r−)(r′+ − r′−)
− z∞

]
−2B1(zrB2 +B3)− (s+ 1)[(1 + zr)B1 + zrB2 +B3]

− a2

α(r+ − r−)(r′+ − r′−)
[−λ− 2ıseQ+ 2s(1− α)]. (11)

Here D is the discriminant of

∆r = 0

D = (r+ − r−)2(r+ − r′+)2(r+ − r′−)2(r− − r′+)2(r− − r′−)2(r′+ − r′−)2

=
16a10

α5

{
(1− α)3[M2 − (1− α)(a2 +Q2)]

+
α

a2
[−27M4 + 36(1− α)M2(a2 +Q2)

4
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In this section, we transform the Heun’s equation derived above to hyperge-
ometric differential equation with three singularities and back again to the
Heun’s solutions with polynomial terms.

The hypergeometric equation has three regular singular points. Heun’s
equation has four regular points. The problem of conversion from Heun’s
equation to hypergeometric equation has been treated in the works of K.Kuiken[17].
The purpose of this work is to derive some forms solution to the Heun’s equa-
tion via some rational transformation as stated earlier. The steps taken shall
be conversion of Heun’s function to the hypergeometric function then taken
the derivatives, and through a push and pull back process we arrive back to
a new Heun;s function different from the original Heun’s function.

Every homogenous linear second order differential equation with four
regular singularities can be transformed into (10) with the assumption that
2B1 + s+ 1 = γ, 2B2 + s+ 1 = δ, 2B3 + s+ 1 = ε, ρ± = αβ, ν = q, z = t
and zr = d as defined above, and read as

d2u

dt2
+ (

γ

t
+

δ

t− 1
+

ε

t− 1
)
du

dt
+

αβt− q
t(t− 1)(t− d)

u = 0, (13)

where {α, β, γ, δ, ε, d, q}(d 6= 0, 1) are parameters, generally complex and ar-
bitrary, linked by FUSCHAIN constraint α+β+1 = γ+δ+ε. This equation
has four regular singular points at {0, 1, a,∞} , with the exponents of these
singular being respectively, {0, 1,−γ}, {0, 1,−ε} and {α, β}. The equation
(13) is called Heun’s equation.

The Hypergeometric equation

z(1− z)d
2u

dt2
+ [c− (a+ b+ 1)z]

dy

dz
− aby = 0, (14)

has three regular singular points. in the above (13), it has been shown that
these two equation above can be transformed to one another via six rational
polynomial z = R(t) , where R(t) = t2, 1−t2, (t−1)2, 2t−t2(2t−1)2, 4t(1−t).
The following parameter relations were deduced.

For the polynomial R(t) = t2

• α+β = 2(a+ b), αβ = 4ab, γ = −1 + 2c, δ = 1 +a+ b− c, δε = δ, q = 0
and d = −2.

For the polynomial R(t) = 1− t2

• α + β = 2(a + b), αβ = 4ab, γ = −1− 2c+ 2a+ 2b, δ = c, ε = δ, q = 0
and d = 12.

For the polynomial R(t) = 2t− t2

IV. Heun's Equation to Hypergeometric Via Rational Polynomial

Transformations
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The sign ambiguity in B2 or B3 are related to the boundary condition at
the horizon or at the de Sitter horizon, respectively. We can either one of
signs of B1

−8(1− α)2(a2 +Q2)2]− 16α2

a4
(a2 +Q2)3

}
. (12)
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• α+β = 2(a+b), αβ = 4ab, γ = c, δ = 1−2c+2a+2b, ε = δ = c, q = 4ab
and d = 2.

For the polynomial R(t) = (2t− 1)2

• α+β = 2(a+b), αβ = 4ab, γ = −1+a+b−c, δ = γ, δ = ε = −1, q = 4ab
and d = 1

2 .

For the polynomial R(t) = 4t(1− t)2

• α+ β = 2(a+ b), αβ = 4ab, γ = c, δ = γ, δ = 1− 2c+ 2a+ 2b, q = 2ab
and d = 1

2 .

Assuming H(d, q, α, β, γ, δ, ε; t) = Rs(t); s = 1 . . . 14 are solutions of the
Radial Teukolsky in terms of Heun’s with polynomial factor and 2F1(a, b; c; z =
R(t)) are representative forms of the solutions of (13) and (14) respective,
together with parameters above relations can be established between these
two forms via the polynomials data given above. We provide an answer to
this in this paper. Indeed, we provide that the derivative of the solution of
Heun’s can be expressed in terms of another Heun’s solution giving rise to
new solutions of Teukolsky Radial equation.

In this section we shall apply the relation above in obtaining the derive
solutions via these polynomial transformations. let D = d

dt be a differential

operator. Since D2F1(a, b; c; z = R(t)) = R′(t)abc 2F1(a + 1, b + 1; c + 1; z =
R(t)) and through a push and pull back processes we have the following
possible solutions for the Teukolsky Radial equation;

1. For polynomial R(t) = t2.

[a] Using c = (γ+1)
2 , we get

DH(−1, 0;α, β, γ, δ, ε; t)

=
αβt

γ + 1
2F1(

β + 2

2
,
α+ 2

2
,
γ + 3

2
;R(t) = t2)

=
αβt

γ + 1
H(−1, 0;α+ 2, β + 2, γ + 2,

α+ β − γ + 3

2
,
α+ β − γ + 3

2
; t)

= R1(t). (15)

[b] Using c = 1− δ + a+ b, we get

DH(−1, 0;α, β, γ, δ, ε; t)

V. Main Results

a) New Derived Solutions of Radial Teukolsky Equation
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=
αβt

α+ β + 2(1− δ)2
F1(

β + 2

2
,
α+ 2

2
, α+ β − 2(2− δ);R(t) = t2)

=
αβt

γ + 1
×

H(−1, 0;α+ 2, β + 2, γ + 2,
α+ β − γ + 3

2
,
α+ β − γ + 3

2
; t)

Notes



 
 

 
 

 
 
 
 
 
 
 
 
 
 

By changing δ to ε, similar expression can be obtained.

2. For the polynomial R(t) = 1− t2.
[a] Using δ = c, we get

DH(−1, 0;α, β, γ, δ, ε; t)

=
αβt

2δ
2F1(

β + 2

2
,
α+ 2

2
; δ + 1;R(t) = t2)

=
αβt

2δ
H(−1, 0, α+ 2, β + 2, α+ β,−2δ + 3, δ + 1, δ + 1; t)

= R3(t). (17)

[b] DH(−1, 0;α, β, γ, δ, ε; t)

=
αβt

2δ
2F1(

β + 2

2
,
α+ 2

2
; ε+ 1;R(t) = 1− t2)

=
αβt

2δ
H(−1, 0, α+ 2, β + 2, α+ β,−2ε+ 3, ε+ 1, ε+ 1; t)

= R4(t). (18)

[c] Using c = 1− γ + 2a+ 2b we obtain

DH(−1, 0;α, β, γ, δ, ε; t) =

− αβt

α+ β + 2(1− δ)
×

2F1(
β + 2

2
,
α+ 2

2
,
α+ β − γ + 3

2
;R(t) = 1− t2)

=
αβt

α+ β + 2(1− δ)
×

H(−1, 0;α+ 2, β + 2, γ + 2,
α+ β − γ + 3

2
,
α+ β − γ + 3

2
)

= R5(t). (19)

3. For the polynomial R(t) = 2t− 2t2.

[a] Using c = 1− a+ b− γ we obtain

DH(2, αβ, α, γ, δ, ε; t) =
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=
αβt

α+ β + 2(1− δ)

×H(−1, 0;α+ 2, β + 2, α+ β − 2δ + 1, 1 + δ, 1 + δ; t) = R2(t). (16)

αβ(1− t)
2γ

2F1(
β + 2

2
,
α+ 2

2
; γ + 1;R(t) = 2t− t2)

=
αβ(1− t)

2γ
×

H(2, (β + 2)(α+ 2);α+ 2, β + 2, γ + 1, α+ β − 2γ + 3, η; t)

= R6(t)

Notes



 
 

 
 

 
 
 
 
 
 
 
 
 
 

where η =
α+ β − 2γ + 3

2
. (20)

[b] DH(2, αβ, α, γ, δ, ε; t)

=
αβ(1− t)

2γ
2F1(

β + 2

2
,
α+ 2

2
;
α+ β + 2(2− γ)

2
;R(t) = 2t− t2)

=
αβ(1− t)

2γ
×

H(2, (α+ 2)(β + 2);α+ 2, β + 2, γ + 1, α+ β − 2γ + 3, γ + 1; t)

= R7(t). (21)

By changing γ to ε, we can obtain similar expression.

[c] Using c = (1+δ)
2 , we get

DH(2, αβ, α, γ, δ, ε; t)

=
αβ(1− t)

2γ 2

F1(
β + 2

2
,
α+ 2

2
,
δ + 2

2
;R(t) = 2t− t2)

=
αβ(1− t)

2γ

×(2, (α+ 2)(β + 2);α+ 2, β + 2, ζ, δ + 2, ζ; t)

= R8(t).

where ζ =
α+ β − δ + 3

2
(22)

4. For polynomial R(t) = (1− t2)

[a]. Using c = (1+δ)
2 , we obtain

DH(2, αβ;α, β, γ, δ, ε; t)

=
αβ(t− 1)

δ + 1 2
F1(

β + 2

2
,
α+ 2

2
;
δ + 3

2
;R(t) = (t− 1)2)

αβ(t− 1)

δ + 1
×H(2, (α+ 2)(β + 2);α+ 2, β + 2, ζ, δ + 2, ζ; t)

= R9(t),

where ζ =
α+ β − δ + 3

2
. (23)

[b]. Using c = (1−γ+2a+2b)
2 , we get

DH(2, αβ;α, β, γ, δ, ε; t)
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=
αβ(t− 1)

α+ β − γ + 12

F1(
β + 2

2
,
α+ 2

2
;
α+ β − γ + 3

2
R(t) = (t− 1)2)

=
αβ(t− 1)

α+ β − γ + 1

Notes



 
 

 
 

 
 
 
 
 
 
 
 
 
 

×H(2, (β + 2)(α+ 2);α+ 2, β + 2,
γ + 3

2
, α+ β − 2γ + 3,

γ + 3

2
; t)

= R10(t). (24)

[c] By changing γ to ε in above, similar relation can be obtained.

5. For polynomial R(t) = (2t− 1)2.

[a]. Using c = 1+ε
2 = 1+δ

2

DH(
1

2
, αβ;α, β, γ, δ, ε; t)

=
2(2t− 1)αβ

(ε+ 1) 2

F1(
β + 2

2
,
α+ 2

2
;
ε+ 3

2
R(t) = (2t− 1)2)

=
2(2t− 1)αβ

(ε+ 1)

×(
1

2
,
(α+ 2)(β + 2)

2
;α+ 2, β + 2,

α+ β − ε− 1

2
, ε+ 2; t)

= R11(t). (25)

By changing ε to δ a similar expression can be obtained.

[b] Using c = −1 + a+ b− γ, we obtained

DH(
1

2
, αβ;α, β, γ, δ, ε; t)

=
2(2t− 1)αβ

(ε+ 1) 2

F1(
β + 2

2
,
α+ 2

2
;
α+ β − 2γ

2
R(t) = (2t− 1)2)

=
2(2t− 1)αβ

(ε+ 1)

×(
1

2
,
(α+ 2)(β + 2)

2
;α+ 2, β + 2, µ, µ, τ ; t)

= R12(t). (26)

where τ = α+ β − 2(γ − 1
2) and µ = α+β+2(1−γ)

2

6. For the polynomial R(t) = 4t(1− t)
[a] Using c = γ,we get

DH(
1

2
, αβ;α, β, γ, δ, ε; t)

=
(1− 2t)αβ

γ 2

F1(
β + 2

2
,
α+ 2

2
; γ + 1;R(t) = 4t(1− t))

  

1
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Notes

=
(1− 2t)αβ

γ

×H(
1

2
,
(α+ 2)(β + 2)

2
;α+ 2, β + 2, γ + 1, α+ β − 2γ + 3; t)



 
 

 
 

 
 
 
 
 
 
 
 
 
 

= R13(t). (27)

[b] Using c = (1−ε+2a+2b)
2

DH(
1

2
,
αβ

2
;β, α, γ, δ, ε, ; t)

=
(1− 2t)αβ

α+ β − ε+ 12

F1(
β + 2

2
,
α+ 2

2
;
α+ β − ε+ 3

2
R(t) = 4t(1− t))

=
(1− 2t)αβ

α+ β − ε+ 1

×(
1

2
,
(α+ 2)(β + 2)

2
;α+ 2, β + 2, γ, ω, ω, ε+ 2; t)

= R14(t), (28)

where

ω =
α+ β − ε+ 3

2
.

IV. Concluding Remarks and Suggestions
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