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On Asteroid Engineering 
Olaf Lechtenfeld 

Abstract- I pose the question of maximal Newtonian surface 
gravity on a homogeneous body of a given mass and volume 
but with variable shape. In other words, given an amount of 
malleable material of uniform density, how should one shape it 
in order for a microscopic creature on its surface to experience 
the largest possible weight? After evaluating the weight on an 
arbitrary cylinder, at the axis and at the equator and 
comparing it to that on a spherical ball, I solve the variational 
problem to obtain the shape which optimizes the surface 
gravity in some location. The boundary curve of the 
corresponding solid of revolution is given by ( 2 + 2 )3 − (4 )2 
= 0 or (θ) = 2 cos θ, and the maximal weight (at = = 0) 
exceeds that on a solid sphere by a factor of 5, which is 
an increment of 2.6%. Finally, the values and the achievable 
maxima are computed for three other families of shapes. 

I. Introduction 

n the spring of 1996 I was visiting the City College of 
New York for a month, in order to pursue a research 
project with Stuart Samuel, who was a professor at 

City University of New York at the time, and to run in the 
100th Boston marathon. Several evenings and part of 
weekends I’d spend with our mutual friend Pascal 
Gharemani, a tennis coach and instructor at Trinity 
School (a private high school on West 91st Street in 
Manhattan). Typically we would go dining, visit places or 
fly kites. Pascal had an Iranian background but grew up 
in Versailles near Paris before moving to the US. My wife 
and I had come to know him during my postdoc years at 
City College (1987–90), when we would meet weekly at 
various restaurants in the Columbia University 
neighborhood for an evening of French conversation. 
He was important for our socialization in Manhattan and 
had grown into a good friend. Pascal was a very curious 
individual, with a great sense of humor and always 
ready to engage in discussions about savoir vivre, 
philosophy, and the natural sciences. Regarding the 
latter, he regularly pondered phenomena and questions 
which involved physics. Lacking a formal science 
training, he would go to great lengths and try his 
physicist friends for explanations. 

So one evening in 1996 he shared his musings 
about the gravitational force of a long and 
homogeneous rod, as it is felt by a (say, minuscule) 
creature crawling on its surface. Clearly, the mass points 
in its neighborhood are mainly responsible for creating 
the force. On one hand, at the end of the rod, the nearby 
mass is fewer than elsewhere, but it is all pulling roughly  
 

 

in the same direction. On the other hand, around the 
middle part of the rod, twice as much mass points are 
located near the creature, yet their gravitational forces 
point to almost opposing directions and hence tend to 
cancel each other out. So which location gives more 
weight to the mini-bug? Where along the rod is its 
surface gravity largest? 

This was a typical ‘Pascal question’, and my 
immediate response was: “That’s an easy one. Let me 
just compute it.” Well, easier said then done. For the 
mid-rod position the resulting integrals were too tough 
to perform on the back of an envelope. To simplify my 
life, I persuaded Pascal to modify the problem. Let us 
vary not the position of the bug but the geometry of its 
planet: keep the bug sitting on the top of a cylinder, and 
compare a long rod with a slim disk of the same volume 
and mass. Then it was not too hard to calculate the 
surface gravity as a function of the ratio of the cylinder’s 
diameter to its length. To our surprise, in a narrow 
window of this parameter the weight of the bug exceeds 
the value for a spherical ball made from the same 
material. This finding inspired us to generalize the 
question to another level: Given a bunch of 
homogeneous material (fixed volume and density, 
hence total mass), for which shape is the gravitational 
force somewhere on its surface maximized? Thus, the 
idea of “asteroid engineering” was born. 

 

 

 

 

  
 
 
 
 
 
 
 
 
 
 
 

1 In 2002, the problem also occurred in a physics quizz page [ ] and 
later in the textbook [ ]. For a similar recent treatment, see [ ]. 
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After solving the problem and comparing the 
result with a few other geometries, I put the calculations 
aside and forgot about them. Four years later, when 
teaching Mathematical Methods for physics freshmen, I 
was looking for a good student exercise in variational 
calculus. Coming across my notes from 1996, I realized 
they can be turned into an unorthodox, charming and 
slightly challenging homework problem. And so I did, 
posing the challenge in the summer of 2000 [1] and 
again in 2009 [2], admittedly with mixed success.1 But 
let the reader decide!
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Figure 1

 

: Geometry of massive cylinder

 
II.

 

Surface

 

Gravity

 

of a

 

Homogeneous 
Massive Cylinder

 
It is textbook material how to compute the 

Newtonian gravitational field generated

 

by a 
given three-dimensional static mass distribution . 
In the absence of symmetry

 

arguments, it involves a 
three-dimensional integral collecting the contributions

 

 

(2.1)

 produced by the masses at positions ′, with  
denoting the gravitational constant. For the

 
case of a 

solid homogeneous body of volume and total mass 
, clearly is

 
constant, and one gets

 

(2.2) 

where 
 

is the unit vector pointing from the 
observer (at ) to the mass point at . The

 
surface 

gravity (specific weight of a probe) located somewhere 
on the surface 

 
of my solid

 
is obtained by simply 

restricting to . 
One might think of simplifying the task by 

computing the gravitational potential rather
 

than the 
field, since the corresponding integral is scalar and 
appears to be easier. However,

 
evaluating the surface 

gravity then requires taking a gradient in the end and 
thus keeping

 
at least an infinitesimal dependence on a 

coordinate normal to the surface. Retaining this
 

additional parameter until finally computing the 
derivative of the potential with respect to

 

it before setting 
it to zero yields no calculational gain over a direct 
computation of . 

The original question of Pascal concerned a 
cylindrical rod, whose length and radius

 

I denote by 

 
and , respectively, so that . The integral 
above has dimension

 

of length, and I shall scale out a 
factor of 

 

to pass to dimensionless quantities. For the

 
remaining dimensionless parameter I choose the ratio of 
diameter to length of the cylinder,

 

, see Fig. 1. I 
shall frequently have to express some of the four 
quantities , , and in terms of a pair of the others, 
so let me display the complete table of the relations,

 

 

 

 
(2.3)

 

Pascal’s problem was to compare for this 
cylinder the surface gravity at the symmetry axis

 
point to 

the one at a point on the mid-circumference or equator. 
Let me treat both cases in

 
turn.

 

a)
 

Surface gravity at the axis
 

Naturally I employ cylindrical coordinates ( )
 for 

 
and  put the  symmetry  axis  point

 
in the origin. 

With = 0 the expression ( ) then becomes
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On Asteroid Engineering

~G(~r

(

ρ(~r′

(

d ~G(~r,~r′) = γ ρ(~r′)
~r′−~r

|~r′−~r|3 d
3~r′

~r′ γ

B V
M ρ(~r′) = M/V

~G(~r) = γ M
V

∫

B

d3~r′
~e~r′−~r

(~r′−~r)2
,

~e~r′−~r
~r ~r′

∂B
~r ∂B

~G

ℓ
a V = πa2ℓ

ℓ

t := 2a/ℓ

ℓa t V

a = ℓ t/2 =
√

V/(πℓ) = 3

√

V t/(2π)

ℓ = 2a/t = V/(πa2) = 3

√

4V/(πt2)

t = 2a/ℓ = 2πa3/V =
√

4 V/(πℓ3)

V = πa2ℓ = 2πa3/t = πℓ3t2/4 .

z, ρ, φ
~r′

~r 2.2



 

(2.4)

 

The 

 

and integrals are elementary,

 

 

(2.5)

 

 
    

(2.6)

 

  

 

 

 
  

 

(2.7)

 

where the shape function depends on dimensionless parameters like only. For the case at

 

hand, I obtain

 

(2.8)

 

The asymptotic behavior for a thin rod (

 

0) and for a thin disk ( ) takes the form

 

 

(2.9)
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~G(0) = γ M
V

∫ ℓ

0

dz

∫ a

0

dρ ρ

∫ 2π

0

dφ (z2 + ρ2)−3/2
(

ρ cosφ
ρ sinφ
−z

)

= −2π γ M
V

∫ ℓ

0

dz

∫ a

0

dρ
ρ z

(z2 + ρ2)3/2
~ez =: −Ga ~ez .

ρ z

Ga = 2πγ M
V

∫ ℓ

0

dz

∫ a

0

dρ
ρ z

(z2 + ρ2)3/2
= 2πγ M

V

∫ ℓ

0

dz
[ z
√

z2 + ρ2

]a

0

= 2πγ M
V

∫ ℓ

0

dz
{

1− z√
z2 + a2

}

= 2πγ M
V

[

z −
√
z2 + a2

]ℓ

0

= 2πγ M
V

{

ℓ+ a−
√
ℓ2 + a2

}

= 2πγ M
V
ℓ
{

1 + t
2
−

√

1 + t2

4

}

.

Ga = 2πγ M
V
a
{

1− a
2ℓ
+ . . .

}

and Ga = 2πγ M
V
ℓ
{

1− ℓ
2a

+ . . .
}

,

G = (numerical factor) × γ M V −2/3 (shape function) ,

t

Ga = 25/3π2/3 γM V −2/3 t−2/3
{

1 + t
2
−

√

1 + t2

4

}

.

t → t → ∞

Ga = 25/3π2/3 γM V −2/3 ×







1
2
t1/3 − 1

8
t4/3 + 1

128
t10/3 +O(t16/3) for t → 0

t−2/3 − t−5/3 + t−11/3 +O(t−17/3) for t → ∞
.

It is a bit curious that the result is symmetric under the exchange of and , and so in the thin rod    ( 0) and thin 
disk ( 0) limits one finds that

respectively, with fixed of course.
Apart from the linear dependence on the gravitational constant and the mass density , the surface 

gravity must carry a dimensional length factor, which choose to be the cylinder length . However, , and are 
obviously related, and for comparing different shapes of the same mass and volume it is preferable to eliminate in 
favor of and . The resulting expression for the surface gravity has the universal form

ℓ a a →
ℓ →

a2ℓ = V/π
γ M

V
ℓ ℓ t V

ℓ
V t

b) Surface gravity at the equator
This is the harder case, as it lacks the cylindrical symmetry. Naturally putting the origin of the cylindrical 

coordinate system at the cylinder’s center of mass, hence , the surface gravity integral ( ) reads~r = (a, 0, 0)⊤

~G(a) = γ M
V

∫ ℓ/2

−ℓ/2

dz

∫ a

0

dρ ρ

∫ 2π

0

dφ
(

[ρ cosφ− a]2 + [ρ sinφ]2 + z2
)−3/2

(

ρ cosφ−a
ρ sinφ

z

)

2.2



after substituting cos and using the definition 2

 

 
 

 
  

  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2 :

 

Cylinder surface gravity on symmetry axis and mid-circumference
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On Asteroid Engineering

Gm = γ M
V
ℓ

∫ 1

0

dv

∫ 2π

0

dφ
v (1− v cosφ)/(1 + v2 − 2 v cosφ)
√

ℓ2/(4a2) + 1 + v2 − 2 v cos φ

= 2 γ M
V
ℓ

∫ 1

0

dv

∫ 1

−1

dw
v (1− v w)/(1 + v2 − 2 v w)

√

(1− w2)(t−2 + 1 + v2 − 2 v w)
,

(2.11)

φ = w a/ℓ = t.

The remaining double integrals leads to lengthy expressions in terms of complete elliptic integrals, which I 
do not display here. For it diverges logarithmically. It is possible,however, to extract the limiting behavior for 

0 as

(2.12)

which in leading order surprisingly agrees with that of .

t→ ∞
t →

Gm = 2π γ M
V
a
{

1−O(a
ℓ
)
}

,

Ga

(2.10)

where I employed the symmetry and substituted and for a dimensionless integral. The 
integration is elementary,

= γ M
V

∫ ℓ/2

−ℓ/2

dz

∫ a

0

dρ ρ

∫ 2π

0

dφ
ρ cosφ− a

(z2 + a2 + ρ2 − 2 aρ cosφ)3/2
~ex

= 2 γ M
V
ℓ

∫ 1/2

0

du

∫ 1

0

dv

∫ 2π

0

dφ
v (v cosφ− 1)

u2ℓ2/a2 + 1 + v2 − 2 v cosφ)3/2
~ex =: −Gm ~ex ,

z↔ −z z = u ℓ ρ = v a u



 

(2.19)

 

for

  

0

 

and 

  

0, respectively. Numerical analysis shows that (see Fig. 2) attains

 

a maximum at

  

(2.20)
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(2.18)

for 0 and 0, respectively.

For the equatorial position’s surface gravity I do not have an analytic expression, only its limiting forms

the weight on the cyclinder’s axis exceeds that on the reference ball! Indeed, its maximal value is attained at

(2.17)

The asymptotic behavior is easily deduced to be

ta = 1
4
(9−

√
17) ≈ 1.21922 ⇒ Ga

Gb

∣

∣

max
= Ga

Gb
(ta) ≈ 1.00682 .

Ga

Gb
= 3

√

9π
2

a

V 1/3

(

1−O
(

a3

V

)

)

and
Ga

Gb
= 3

√

9π
2

ℓ

V 1/3

(

1− O
(

√

ℓ3

V

)

)

,

a → ℓ →

Gm

Gb
∼ 3

√

9π
2

a

V 1/3
≈ 2.41799

a

V 1/3
and

Gm

Gb
∼ 0.36813

ℓ

V 1/3

∣

∣

∣
log

ℓ

V 1/3

∣

∣

∣

a → ℓ → Gm/Gb

tm ≈ 1.02928 ⇒ Gm

Gb

∣

∣

max
≈ 1.00619 .

for the axis position, see Fig. 2. Surprisingly, in the interval

(2.16)t ∈
[

4
9
(2
√
13−5) , 3

2

]

≈
[

0.98271 , 1.50000
]

Furthermore, for any given shape in an asymptotic regime, the equatorial position is superior to the axis one. 
Only in the interval is our mini-bug heavier on the axis.

III. Which Shape Maximizes the Surface Gravity?

This finding suggests the question: Can one do better than the cylinder with a clever choice of shape? It 
turns the problem into a variational one. Suppose I have by some means discovered the homogeneous body 
which, for fixed mass and volume, yields the maximally possible gravitational pull in some location on its surface. 
Without loss of generality I can put this point to the origin of my coordinate system and orient the solid in such a way 
that its outward normal in this point aims in the positive direction, so gravity pulls downwards as is customary. 

 1.  10948. t . 2. 8215482154

B̄

z

(2.14)

Hence, the relation of the cylindrical to the spherical surface gravity is

(2.15)
Ga

Gb
= 2π

(

π
4

)−1/3
t−2/3

{

1+ t
2
−
√

1 + t2

4

}/

(

4π
3

)2/3
=

3
√
18 t−2/3

{

1+ t
2
−
√

1 + t2

4

}

,

c) Comparison with a spherical ball
To get a feeling for these results, it is natural to compare them with the surface gravity of a homogeneous 

ball of the same mass and density, thus of radius

(2.13)

The surface gravity of the latter is well known,

M

rb =
(

4π
3

)−1/3
V 1/3 .

~G(rb) = −Gb ~er

Gb = γ M/r2b = γ M
V

4π
3
rb =

(

4π
3

)2/3
γ M V −2/3 .
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the surface gravity functional ( ) then reads

(3.4)

(3.5)

Figure 3 : Parametrization of surface of revolution ∂B

~G[R] = γ M
V

∫

B

d3~r

r2
1
2
(~e~r + S~e~r) =: −G[R]~ez ,

G[R] = 2π γ M
V

∫ 1

0

d cos θ

∫ R(θ)

0

dr cos θ = 2π γ M
V

∫ 1

0

d cos θ R(θ) cos θ .

(3.1)

(3.2)

(3.3)

∂B =
{

R(θ)(sin θ cosφ, sin θ sinφ,− cos θ)⊤
∣

∣ 0 ≤ θ ≤ π
2
, 0 ≤ φ < 2π

}

,

(

1
R(θ)

)′′
+ 1

R(θ)
≥ 0 .

S : (θ, φ) 7→ (θ, φ+π) ∼ (−θ, φ) ,

Expressing the surface gravity at this position for an arbitrary body as a functional of its shape, then must 
maximize this functional, under the constraint of fixed mass and volume. The following three features of the optimal 
shape are evident:

• It does not have any holes, so has just a single boundary component
• It is convex
• It is rotationally symmetric about the normal at the origin

These facts imply that the surface may be parametrized as in Fig. 3,

with 0 and  = 0 . The function ( which may be extended via completely describes 
the shape of the solid of revolution . It may be viewed as the boundary curve of the intersection of with the 
plane. Its convexity implies the condition

Employing the symmetry under reflection on the rotational axis,

B̄B

∂B

R(θ)≥ R(π
2

( R(θ (

R(−θ) =R(θ))
B B xz

2.2
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(3.12)

What does this curve look like? Let me pass to Cartesian coordinates in the plane,

(3.13)

which yields the sextic curve (cubic in squares)

(3.14)

R̄(θ) := Rλ̄(θ) = 2R0

√
cos θ with (2R0)

3 = 15
4π

V .

xz

R̄2 = (2R0)
2 cos θ = x2 + z2 and cos θ = z√

x2+z2
,

(x2 + z2)3 = (2R0)
4 z2 with R3

0 = 15
32π

V .

 

(3.15)r(z) = 2 |z|1/3 versus r(z) = 2 |z|1/2 for r(z)2 = x2 + z2 ,

The parameter only takes care of the physical dimensions and determines the overall size of the solid. In 
dimensionless coordinates it may be put to unity, which fixes the vertical diameter to be equal to 2 and allows for a 
comparison of my optimal curve with the unit circle,

with and . Since in the interval of question, my curve lies entirely outside the 
reference circle, touching it only twice on the axis. (Note that so the corresponding volumes differ.) Other 
than the sphere, my curve has a critical point: Due to near the origin, the curvature vanishes there. Clearly, the 
vertical extension of is    while its width is easily computed to be

R0

−z ∈ [0,2] r(z) ∈ [0,2] |z|1/3 ≥ |z|1/2
z R0 6= rb

z ∼x3

B̄ z= 2R0∆

It remains to compute the value of the Lagrange multiplier by inserting the solution into the constraint ,

(3.11)

yielding and hence the complete solution as displayed in Fig. 4,

so I immediately read off

(3.10)Rλ(θ) =
√

γ
λ
cos θ .

λ̄

M
!
= M [Rλ̄] = 2π

3
M
V

∫ 1

0

d cos θ
(

γ
λ̄
cos θ

)3/2
= 4π

15
M
V

(

γ
λ̄

)3/2
,

λ̄ =
(

4π
15V

)

2
/
3

γ

Rλ (3.6)

introducing a Lagrange multiplier (a real parameter to be fixed subsequently). More explicitly,

(3.8)

so = 0 clearly fixes the volume of to be equal to . Demanding that, for fixed but arbitrary, is stationary 
under any variation of the boundary curve,      ,determines :

(3.9)

λ

∂λU B V λ U
R 7→ R + δR R = Rλ

0 = δU [Rλ, λ] =

∫ 1

0

d cos θ δR(θ)
[

γ cos θ − λRλ(θ)
2
]

,

It is to be maximized with the mass (and thus the volume) kept fixed,

(3.6)

  

M [R] = M
V

∫

B

d3~r = 2π M
V

∫ 1

0

d cos θ

∫ R(θ)

0

r2dr = 2π
3

M
V

∫ 1

0

d cos θ R(θ)3
!
= M .

(3.7)2π M
V
U [R, λ] = G[R] − λ

(

M [R]−M
)

,

Such constrained variations are best treated by the method of Lagrange multipliers, which here instructs me to 
combine the two functionals to

U [R, λ ] =

∫ 1

0

d cos θ
[

γ R(θ) cos θ − 1
3
λR(θ)3

]

− λ V
2π

,
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Figure 5 : Conical segment of a spherical ball

IV. Other Shapes

Since the cylinder shape is already superior to the spherical one for maximizing surface gravity, it is 
interesting to explore a few other more or less regular bodies, to see how close they can get to the optimal value of 

1.02599. Let me discuss three cases which are fairly easy to parametrize in the  cylindrical  coordinates 
chosen.

3
5

3
√
5 ≈

Comparing with the spherical shape,

(3.18)
G[R̄]

Gb
= 3 · 5−2/3 = 3

5

3
√
5 ≈ 1.02599 .

Figure 4 : Optimal asteroid surface ∂B̄

I conclude that by homogeneous reshaping it is possible to increase the surface gravity of a spherical ball by at 
most 2.6% !

The shape of my optimal body vaguely resembles an apple, with the flatter side up.

My final goal is to calculate the maximal possible weight , or

(3.17)

(3.16)∆x = 2 4

√

4
27

2R0 ≈ 2.48161R0 at z0 = − 4

√

1
27

2R0 ≈ −0.87738R0 .

B̄

Gmax

G[R̄] = 2π γ M
V
2R0

∫ 1

0

d cos θ
(

cos θ
)3/2

= 2π γ M
V

3

√

15 V
4π

2
5

=
(

4π
√
3

5

)2/3
γ M V −2/3 .
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The best opening angle occurs at an angle of about 78.5  ,

(4.6)

Clearly, the spherical ball beats any cone. The value describes a semi-ball, which yields

(4.7)

Second, let me try out the radius function being an arbitrary power of cos , 

with (4.8)

displayed in Fig. 7 for =2. This produces

(4.9)

◦

cosα = 1
5

≈ 1.36944 ⇒ Gc

Gb

∣

∣

∣

∣

max

= 22/3 · 9 · 5−5/3 ≈ 0.97719 .

α= π
2

Gc

Gb

∣

∣

∣

∣

α=π/2

= 2−8/3 · 3 ≈ 0.94494 .

R(θ

( n θ

Rn(θ) = 2 rn (cos θ)
n n > 0 ,

n

Gn = 2π γ M
V
2rn

∫ 1

0

d cos θ (cos θ)n+1 = 2π γ M
V
2rn

1
n+2

.

Figure 6 : Surface gravity on the apex of a conical segment of a spherical ball

Since at the same time,

(4.3)

one gets

(4.4)

leading to the curve in Fig. 6,

(4.5)

  

M = 2π M
V

∫ 1

cosα

d cos θ

∫ rc

0

r2dr = 2π M
V

1
3
r3c (1− cosα) ,

Gc =
(

√
3π√
2

)2/3
γ M V −2/3 (1− cos2 α) (1− cosα)−1/3 ,

Gc

Gb

= 3
4

3
√
2 (1− cos2 α) (1− cosα)−1/3 .

and (4.1)

thus the surface gravity ( ) reduces to

(4.2)

0 ≤ θ ≤ α Rc(θ) = rc ,

Gc = 2π γ M
V

∫ 1

cosα

d cos θ

∫ rc

0

dr cos θ = 2π γ M
V
rc

1
2
(1− cos2 α) .

First, I consider a conical segment of a spherical ball centered in the origin, with opening angle 2 and 
radius , see Fig. 5. Here, one simply has

α < π
rc

3.5
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On Asteroid Engineering

Figure 8 : Surface gravity on a body with radius function R(θ) ∼ cosn θ

(4.12)

as was already found in ( ) and ( ). It exceeds unity in the interval 0.17424 . n < 1.

n = 1
2

⇒ G1/2

Gb
= 3 · 5−2/3 ,

3.12 3.18

I can eliminate and find

(4.11)

which is shown in Fig. 8. This is indeed maximized for

Gn

Gb
= 3

(

1
4
(3n+ 1)

)1/3/
(n + 2) ,

rn

Figure 7 : Shape for radius function R(θ) ∼ cos2 θ

(4.10)M = 2π
3

M
V

∫ 1

0

d cos θ
(

2rn (cos θ)
n
)3

= 2π
3

M
V
(2rn)

3 1
3n+1

The special value of =1 yields a spherical ball, which separates squashed forms ( 1) from elongate ones ( 1). 
With

n n< n>

http://www.itp.unihannover.de/~lechtenf/RDP/2009/h25.pdf�
http://www.itp.unihannover.de/~lechtenf/RDP/2009/h25.pdf�
http://www.tau.ac.il/~kantor/QUIZ/�


 
 

 
 

 
 
 
 
 
 
 
 
 
 

Figure 10 : Surface gravity on an ellipsoid with eccentricity ǫ

(4.17)ǫ ≈ 0.69446 ⇒ Ge

Gb

∣

∣

∣

∣

max

≈ 1.02204 .
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Hence, I can come to within less than 0.4% of the optimal surface gravity by engineering an appropriate ellipsoid.

(4.15)

respectively. From this I conclude that

(4.16)

shown in Fig. 10. This is larger than one for and is maximized numerically atǫ. 0.85780

Ge

Gb
= 3

(

1− ǫ2
)1/3 1

ǫ2

(

1−
√

1−ǫ2

ǫ2
arctan

√

ǫ2

1−ǫ2

)

,

M = 2π
3

M
V
(2re)

3

∫ 1

0

dy
y3

(1−ǫ2 + ǫ2y2)3
= 2π

3
M
V
(2re)

3 1

4(1−ǫ2)
,

Figure 9 : Oblate ellipsoid with eccentricity = 0.8 

Third, I look at an oblate ellipsoid of revolution with minor semi-axis length  and eccentricity , see Fig. 9. 
In this case,

(4.13)Re(θ) =
2 re cos θ

1− ǫ2 sin2 θ
=

2 re cos θ

1−ǫ2 + ǫ2 cos2 θ
with ǫ ∈ [0, 1) ,

re ǫ

ǫ

(4.14)  Ge = 2π γ M
V
2re

∫ 1

0

dy
y2

1−ǫ2 + ǫ2y2
= 2π γ M

V
2re

1

ǫ2

(

1−
√

1−ǫ2

ǫ2
arctan

√

ǫ2

1−ǫ2

)

,

which includes the sphere for =0. (The prolate case corresponds  to  imaginary .) The surface gravity and 
mass integrals then become

ǫ ǫ
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2.11

~

It can pay off to get inspired by the curiosity of your non-scientist friends. The result is a lot of fun and may 
even lead to new science!

shape cone ball cylinder ellipsoid Gharemani

maximum of G/Gb 0.97719 1.00000 1.00682 1.02204 1.02599

V. Conclusions

The main result of this short paper is a universal sixth-order planar curve,

(5.1)

which characterizes the shape of the homogeneous body admitting the maximal possible surface gravity in a given 
point, for unit mass density and volume. It is amusing to speculate about its use for asteroid engineering in an 
advanced civilization or our own future. This curve seems not yet to have occurred in the literature, and so I choose 
to name it “Gharemani curve” after my deceased friend who initiated the whole enterprise.

The maximally achievable weight on bodies of various shapes is listed in the following table. It occurs at the 
intersection of the rotational symmetry axis with the body’s surface and is normalized to the value on the spherical 
ball.

CGh : (x2 + z2)3 − (4 z)2 = 0 ⇔ r(θ) = 2
√
cos θ ,
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