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White noise analysis appeared in 1975 after the work of T. Hida [25] and then has been actively

developed in a series of articles and books. For a sufficiently full bibliography see [26]. As mentioned

in [4], Gaussian white noise analysis can be thought of as a theory of generalized functions of

infinitely many variables whose pairing with test functions from special spaces is given via the

integration by the Gaussian measure. It is well known that there are several approaches to the

construction of such theory of generalized functions: the Berezansky-Samoilenko approach [3] and

the Hida approach [25]. In the Berezansky-Samoilenko approach, the spaces of test and generalized

functions are constructed as infinite tensor products of one-dimensional spaces. The Hida approach

consists in a construction of some rigging of a Fock space with subsequent application of the

Wiener-Itô-Segal isomorphism to the spaces of this rigging. In most cases, investigations in white

noise analysis and its generalizations are based on the Hida approach. So, the Hida approach is

more convenient than Berezansky-Samoilenko approach. Recently, some authors as Okb El Bab,

Zabel, Ghany and Hyder [15], Ghany [16], Ghany and Hyder [17–19], Ghany and Zakarya [20–22]

and Ghany and Qurashi [23], studied some important subjects related to Gaussian white noise

analysis. There exist many works investigated to white noise analysis development Works deal

with the construction of spaces of test and generalized functions and operators acting in these

spaces using the Wiener-Itô-Segal isomorphism and various riggings of the Fock space. For more

details, see [4, 25, 28]. Works deal with the so-called Jacobi fields approach to a generalization

of white noise analysis [6, 7]. In these works, the role of the Wiener-Itô-Segal isomorphism is
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use the biorthogonal approach to a generalization of white noise analysis. In this approach, one

replaces the system of Hermite polynomials, that are orthogonal with respect to the Gaussian

measure, with a certain biorthogonal system. The biorthogonal approach was inspired by [12],

proposed in [1] and developed in [2,8,38]. Note that in [8] was first observed that the biorthogonal

approach is deep connected with the theory of hypercomplex systems.

Hypercomplex systems date back to J. Delsarte and B. M. Levitan work during the 1930s and

1940s, but the substantial development had to wait till the 1990s when Berezansky and Kondratiev

put hypercomplex systems in the right setting for harmonic analysis [9]. Recently, some authors

as Okb El Bab, Zabel and Ghany [37, 40, 41] studied some important subjects in hypercomplex

systems.

Generalized translation operators were first introduced by Delsarte [13] as an object that gen-

eralizes the idea of translation on a group. They were systematically studied by Levitan [31–35],

for some classes of generalized translation operators, he obtained generalizations of harmonic anal-

ysis, the Lie theory, the theory of almost periodic functions, the theory of group representations,

etc. In fact, each hypercomplex system can be associated with a family of generalized translation

operators. This correspondence can be found in [5].

This paper focuses on the connection between white noise analysis and hypercomplex systems.

Precisely, we produce a generalization of white noise analysis to the case of non-Gaussian mea-

sures. For this aim, we propose a biorthogonal approach in which instead of the exponentials the

characters of commutative hypercomplex systems are used. Furthermore, we construct the ele-

ments of Wick calculus, namely, we introduce a new Wick product with respect to non-Gaussian

measures, the associated Hermite transform and the characterization theorem for the constructed

spaces of generalized functions. In Gaussian white noise analysis such calculus has found numerous

applications, in particular, in fluid mechanics and financial mathematics, see e.g. [14,27] for more

details.

This paper is organized as follows: Section 2 is devoted to provide the basic topics of hypercom-

plex systems with locally compact basis. In Section 3, we construct spaces of test and generalized

functions by means of generalized Delsarte characters. In Section 4, we introduce the elements of

Wick calculus.

Let Q be a complete separable locally compact metric space of points p, q, r, ...;B(Q) is the

σ-algebra of Borel subsets, and B0(Q) is the subring of B(Q), which consists of sets with compact

closure. We shall consider the Borel measures; i.e., positive regular measures on B(Q), finite on

compact sets. We denote by C(Q) the space of continuous functions onQ,Cb(Q), C∞(Q) and C0(Q)

consists respectively of bounded, tending to zero at infinity and compactly supported functions

from C(Q).

II. Hypercomplex Systems with Locally Compact Basis

A hypercomplex system with the basis Q is defined by its structure measure c(A,B, r)(A,B ∈
B(Q); r ∈ Q). A structure measure c(A,B, r) is a Borel measure in A (respectively B) if we fix

B, r (respectively A, r) which satisfies the following properties:

(I) ∀A,B ∈ B0(Q), the function c(A,B, r) ∈ C0(Q),

(II) ∀A,B ∈ B0(Q) and s, r ∈ Q, the following associativity relation holds
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(III) The structure measure is said to be commutative if

c(A,B, r) = c(B,A, r), (A,B ∈ B0(Q)). (2.2)

A measure m is said to be a multiplicative measure if∫
Q

c(A,B, r)dm(r) = m(A)m(B); A,B ∈ B0(Q). (2.3)

(IV) We will suppose the existence of a multiplicative measure. Under certain restrictions imposed

on the commutative structure measure, multiplicative measure exists. (See [30]).

Consider the space L1(Q, dm(x)) of functions on Q with respect to the multiplicative measure

m. For any Φ,Ψ ∈ L1(Q, dm(x)), the convolution

(Φ ∗Ψ)(r) =

∫
Q

Φ(p)dp

∫
Q
Ψ(q)dqc(Ep, Eq, r)

=

∫
Q

∫
Q

Φ(p)Ψ(q)c(p, q, r)dm(p)dm(q)

=

∫
Q

∫
Q

Φ(p)Ψ(q)dmr(p, q) (2.4)

is well defined. (See [5]).

The space L1(Q, dm(x)) with the convolution (2.4) is a Banach algebra which is commutative

if (III) holds. This Banach algebra is called the hypercomplex system with the basis Q.

It is obvious that c(A,B, r) = (KA∗KB)(r);A,B ∈ B0(Q) andKA is the characteristic function

of the set A.

A hypercomplex system may or may not have a unity. If a unity not included in L1(Q, dm(x)),

then it is convenient to join it formally to L1(Q, dm(x)).

A non zero measurable and bounded almost everywhere function Q ∋ r 7→ χ(r) ∈ C is said to

be a character of the hypercomplex system L1(Q, dm(x)) if ∀A,B ∈ B0(Q)∫
Q

c(A,B, r)χ(r)dm(r) = χ(A)χ(B), (2.5)

∫
C

χ(r)dm(r) = χ(C), C ∈ B0(Q). (2.6)

(V) A hypercomplex system is said to be normal, if there exists an involution homomorphism

Q ∋ r 7→ r∗ ∈ Q such that m(A) = m(A∗) and c(A,B,C) = c(C,B∗, A), c(A,B,C) =

c(A∗, C,B), (A,B ∈ B0(Q)), where

c(A,B,C) =

∫
C

c(A,B, r)dm(r) (2.7)

A Construction of Non-Gaussian White Noise Analysis using the Theory of Hypercomplex Systems
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c(A,B, r)drc(Er, C, s) =

∫
Q

c(B,C, r)drc(A,Er, s), C ∈ B(Q). (2.1)
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We should remark that, for a normal hypercomplex system, the mapping

L1(Q, dm(x)) ∋ Φ(r) 7→ Φ∗(r) ∈ L1(Q, dm(x))

is an involution in the Banach algebra L1(Q, dm(x)), the multiplicative measure is unique and the

characters of such a system are continuous. (See [5]). A character χ of a normal hypercomplex

system is said to be Hermitian if

χ(r∗) = χ(r), (r ∈ Q), (2.9)

and ordinary if it is bounded. The function χ(r) = 1, r ∈ Q is always a character; for all

χ, χ(e) = 1.

Denote the set of all bounded Hermitian characters by Xh, i.e.,

Xh = {χ ∈ Cb(Q) : χ ̸= 0,

∫
Q

c(A,B, r)χ(r)dm(r) = χ(A)χ(B), χ(r) = χ(r∗)}. (2.10)

Let L1(Q, dm(x)) be a hypercomplex system with basis Q and let Ω be a space of complex

valued functions on Q. Assume that an operator valued function Q ∋ p 7→ Lp : Ω → Ω is given

such that the function g(p) = (Lpf)(q) belongs to Ω for any f ∈ Ω and any fixed q ∈ Q. For such

hypercomplex system it is possible to introduce generalized translation operators Lp:

Q×Q ∋ ⟨p, q⟩ 7→ (LpΦ)(q) ∈ C, Φ ∈ C(Q), (2.11)

where (LpΦ)(q) = Φ(q + p) in case of the usual translation on Q = R. We will suppose, in

addition, that this function is separately continuous. By using the operators Lp one can rewrite

the convolution (2.4) as follows:

(
Φ ∗Ψ

)
(p) =

∫
Q

Φ(q)
(
Lq∗Ψ

)
(p) dm(q) Φ,Ψ ∈ L1(Q, dm(x)). (2.12)

A generalized character of a hypercomplex system L1(Q, dm(x)) is defined to be a function

χ ∈ C(Q) for which

(Lpχ)(q) = χ(p)χ(q), p, q ∈ Q. (2.13)

Now, we give Some examples to illustrative the concept of hypercomplex systems

Let Q = G be commutative, locally compact group. with unite e. Consider

G is groups algebra, i.e., a set L1(G,m) of functions defined on the groups G with respect to the

measure m is denoted by Haar measure dm(p). Then, we can define the involution with the form

G ∋ p 7−→ p∗ = p−1, (2.14)

where (
LpΦ

)
(q) = Φ(pq), (p, q ∈ G), (2.15)

Example 2.1. 
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(VI) A normal hypercomplex system possesses a basis unity if there exists a point e ∈ Q such

that e∗ = e and

c(A,B, e) = m(A∗ ∩B), A,B ∈ B(Q). (2.8)
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where A ∈ B(G), r ∈ G. Thus, we obtain a commutative hypercomplex System L1(G,m) with

basis unity e.

Consider the sturm-Liouvvlle equation in the quadratic axis Q = R+ = [0,∞):

(Mu)(x) = −u′′
+ g(x)u = λu, (2.18)

where g ∈ C(R+) is a non-negative and non-increasing potential. connect with this equation the

following hyperbolic equation on R2 :M(x)u =M(y)v, i.e.,

−∂
2v

∂x2
+ g(x)v = −∂

2v

∂y2
+ g(y)v, v = v(x, y), (2.19)

where x, y ∈ R, g is the even extension of the potential to the whole axis. Equation (2.19) gives

rise to a generalized translation operator L(x), x ∈ R+: by definition

(
L(x)f

)
(y) =

v
(
x, y
)

v(x)v(y)
, x, y ∈ R+, (2.20)

where v(x, y) is the solution of the Cauchy problem for (2.19) with initial conditions v(x, 0) =

f(x)v(x), ∂v
∂y (x, 0) = 0, and v(x) = ϕ(x, 0), where ϕ(x, λ) is the solution of the following problem

on R+ :Mϕ = λϕ, ϕ(0, λ) = 1, ϕ
′
(0, λ) = 0

(
both functions f(x) and v(x) being evenly extended

to R
)
. Now, for any x ∈ R+, x

∗ = x, dm(x) = v2(x)d(x), and χ(x) = ϕ
(
x, λ

)
, where λ ∈ C is

arbitrary, the convolution for hypercomplex system with basis Q = R+ is constructed by (2.12) or

(2.4) with some structure measure c.

Consider the special case Example 2.2, when g = 0. Then, define generalized

translation operators as following

(L(x)f)(y) =
1

2

(
f
(
|y − x|

)
+ f

(
y + x

))
, x, y ∈ Q = R+, (2.21)

and

ϕ(x, λ) = cos
(√

λx
)
, v(x) = 1, x ∈ R+, λ ∈ C. (2.22)

In fact, there are many examples of hypercomplex systems. For more details (see [5]).

The classical approach to white noise analysis [4, 25, 26] consists in the construction of some

rigging of the Fock space F (H) and in the consequent application to the spaces of this rigging the

Wiener-Itô- Segal transform I. This operator transfers the space F (H) to the space L2(Ω
′, dγ(x))

and the spaces of rigging to some spaces of test and generalized functions. The pairing between

test and generalized functions is given by the scalar product in L2(Ω
′, dγ(x)). Here, Ω′ is the dual

space of a real nuclear space Ω and γ is a Gaussian measure on Ω′.

III. Spaces of Test and Generalized Functions

Example 2.2. 

Example 2.3. 

A Construction of Non-Gaussian White Noise Analysis using the Theory of Hypercomplex Systems

  

1

G
lo
ba

l
Jo

ur
na

l
of

Sc
ie
nc

e
Fr

on
tie

r
R
es
ea

rc
h 

  
  
  
 V

ol
um

e
X
V
I   

Is
s u
e 

  
  
er

sio
n 

I
V

I
Y
ea

r
20

16

© 2016    Global Journals Inc.  (US)

15

  
 

( F
)

then the convolution in (2.12) becomes in the form(
Φ ∗Ψ

)
(p) =

∫
Q

Φ(pq)Ψ(q∗)d(q), (2.16)

and we can define the structure measure as the following

C
(
A,B, r

)
= m

(
A−1r ∩B

)
, (2.17)
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where
(
Hn(x)

)∞
n=0

is the sequence of orthonormal Hermite polynomials with respect to γ. The

operator I transfers the rigging of l2 to that of L2(R, dγ(x)), which gives a model of white noise

analysis.

The generalization of white noise analysis proposed in [1], consists in the following. Let ρ be a

probability measure on R (instead of the Gaussian measure γ) and let (Pn(x), Qn(x))
∞
n=0 (x ∈ R)

be the biorthogonal system of functions constructed in some canonical way. The biorthogonality

means ∫
R

Pn(x)Qm(x)dρ(x) = δn,m. n!, , m, n ∈ Z+. (3.2)

Instead of the functions Pn, we take the Appell polynomials connected with the measure ρ, i.e.

the coefficients of the power expansion with respect to λ ∈ C

ρ̂(λ) =

∫
R

eλxdρ(x),
eλx

ρ̂ (λ)
=

∞∑
n=0

λn

n!
Pn(x), x ∈ R. (3.3)

The functions Qn are defined by

Qn(x) =

((
d

dx

)∗)n

1

)
(x), (3.4)

where the adjoint operator is considered in the L2(R, dρ(x)) sense.
The operator I is defined now just as above, but with changing Hn by Pn. This operator

transfers the rigging of l2 to a rigging of L2(R, dρ(x)), which gives some theory of generalized

functions on R with pairing determinated by L2(R, dρ(x)).
In this section, we suggest a generalization of the above mentioned construction in which instead

of the function eλx the character of some pretty arbitrary, commutative hypercomplex system is

used. Such a generalization gives the possibility of constructing a lot of spaces of generalized

functions connected with different examples of hypercomplex system.

Consider a subclass of the above hypercomplex systems for which the set of generalized char-

acters is in one-to-one correspondence with the complex plane C: χ ←→ λ ∈ C; denote this

character by χ(x, λ). We assume that χ(x, 0) = 1 (x ∈ Q), i.e., the unit character corresponds to

λ = 0. We suppose the function Q × C ∋ ⟨x, λ⟩ 7→ χ(x, λ) ∈ C is continuous, and the function

C ∋ λ 7→ χ(x, λ) ∈ C is an entire for each x ∈ Q. Thus, for each x ∈ Q the following expansion

holds

χ(x, λ) =
∞∑
n=0

λn

n!
χn(x), λ ∈ C, (3.5)

where the coefficients χn ∈ C(Q) called the Delsarte characters [6]. It is possible, of course, to

give a direct definition of the Delsarte characters if we will rewrite Eq.(2.13) in terms of χn.

Our purpose is now to construct the expansions of functions on Q using the Delsarte characters

and to introduce the corresponding spaces of test and generalized functions.

A Construction of Non-Gaussian White Noise Analysis using the Theory of Hypercomplex Systems
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l2 ∋ φ = (φ0, φ1, ...) 7→ (Iφ)(x) =
∞∑
n=0

φnHn(x) ∈ L2(R, dγ(x)), x ∈ R, (3.1)

In the model one-dimensional case the space F (H) is equal to the space l2 of complex-valued

sequences φ = (φ0, φ1, ...),Ω
′ = R, and the Wiener-Itô- Segal transform has the form

)
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(explaining that always ∥χn∥L2(Q,dρ(x)) = 1), are linearly independent and the system (χn)
∞
n is

total in L2(Q, dρ(x)).

Note that for a large class of hypercomplex systems (the Taylor-Delsarte hypercomplex system)

vectors χn are automatically linearly independent. If in the estimate (3.6) instead of n! the quantity

(n!)ϵ with fixed (ϵ < 1) stands or if supp ρ is a compact set, then also automatically the system

(χn)
∞
n is total. In general we will understand the above mentioned conditions as some conditions

on the measure ρ.

Now, we use the simple constructions connected with Hilbert rigging [4].

Let us consider a rigging of a Hilbert space H0 with positive and negative spaces H+ and H−
as following

H− ⊇ H0 ⊇ H+. (3.7)

Let V : H− −→ H+ be the canonical isometry transferring H− onto H+ [4]. A biorthogonal basis

(pn, qn)
∞
n=0 in the space H0 is to be understood as sequences (pn)

∞
n=0 ⊂ H+ and (qn = V −1pn)

∞
n=0 ⊂

H−, where the first one is an orthogonal basis in H+ and therefore, the second one is an orthogonal

basis in H−.

Note that these systems of vectors pn and qn are biorthogonal (with respect to Ho):

(pn, qn)H0 = δn,mhn, hn = ∥pn∥2H+
= ∥qn∥2H− , n,m ∈ Z+, (3.8)

∀φ ∈ H+, φ =

∞∑
n=0

φnpn, φn = (φ, qn)H0h
−1
n ,

∞∑
n=0

|φn|2hn = ∥φ∥2H+
<∞,

∀ξ ∈ H−, ξ =

∞∑
n=0

ξnqn, ξn = (ξ, pn)H0h
−1
n ,

∞∑
n=0

|ξn|2hn = ∥ξ∥2H− <∞,

(ξ, φ)H0 =
∞∑
n=0

ξnφnhn. (3.9)

This definition is justified by the following.

Let (pn)
∞
n=0 be an arbitrary total sequence of vectors pn of a Hilbert space H0. It is easy to

prove that such sequence (hn)
∞
n=0 of positive numbers hn exists for which the set of test functions

H+ =

{
φ =

∞∑
n=0

φn pn | φn ∈ C : ∥φ∥2H+
=

∞∑
n=0

|φn|2 hn <∞

}
, (3.10)

with the corresponding scalar product is the positive space with respect to H0 and therefore the

chain (3.7) exists. Note that it is necessary to assume in addition the fulfilment of the following

necessary and sufficient condition on (pn)
∞
n=0: an arbitrary sequence (φ(i))∞i=0 of vectors φ(i) ∈ H+

with finite sequences of coordinates φ
(i)
n which is fundamental in H+ and converges to 0 in H0

must converge to 0 in H+. This condition will always be fulfilled in our case.

A Construction of Non-Gaussian White Noise Analysis using the Theory of Hypercomplex Systems

  

1

G
lo
ba

l
Jo

ur
na

l
of

Sc
ie
nc

e
Fr

on
tie

r
R
es
ea

rc
h 

  
  
  
 V

ol
um

e
X
V
I   

Is
s u
e 

  
  
er

sio
n 

I
V

I
Y
ea

r
20

16

© 2016    Global Journals Inc.  (US)

17

  
 

( F
)

Let ρ be a fixed Borel probability measure (ρ(Q) = 1), positive on open sets, which is not con-

nected directly with the multiplicative measure m . We suppose that χn’s belong to L2(Q, dρ(x)),

satisfy the estimate

∃C > 0 : ∥χn∥L2(Q,dρ(x)) =

(∫
Q
|χn(x)|2dρ(x)

)2

≤ Cnn!, n ∈ Z+. (3.6)
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There exists a quasinuclear rigging (3.7) such that H0 = L2(Q, dρ(x)),

Hχ
−1 ⊇ H0 ⊇ Hχ

1 , (3.12)

and the space Hχ
1 = H+ is of the form (3.10), where

pn = χn, hn = (n!)2Kn, n ∈ Z+, (3.13)

(K > 1 is a fixed sufficiently large number), and consists of continuous functions on Q.

The system (χn, q
χ
n)∞n=0, where qχn = V −1χn (V is connected with (3.12)), is a biorthogonal

basis of the space H0. For the vectors qχn, the following representation holds:

qχn = (n!)KnΘn, Θn = (D+)nδe ∈ Hχ
−1, n ∈ Z+, (3.14)

where Θn are “Delsarte co-characters” connected with the hypercomplex system L1(Q, dρ(x)), and

the measure ρ. Here D is a continuous operator acting on the space Hχ
1 and is defined by the

expression

Dχn = nχn−1, n ∈ N, Dχ0 = 0, (3.15)

D+ : Hχ
−1 −→ Hχ

−1 is its dual operator with respect to the rigging (3.12). The space Hχ
1 consists of

continuous functions, therefore the δ-function δx, lumped at the point x ∈ Q, exist as an element

of the negative space Hχ
−1.

It is essential to introduce the rigging of the space H0 by means of projective and inductive

limits of Hilbert spaces which are constructed by rules of type (3.10), (3.12) and (3.13). Namely,

for every q ∈ N we introduce the Hilbert space of type (3.10):

Hχ
q =

{
φ =

∞∑
n=0

φnχn ∈ H0 : ∥φ∥2Hχ
q
=

∞∑
n=0

|φn|2(n!)2Kqn <∞

}
. (3.16)

Then we have the nuclear rigging:

(Ψχ)′ ⊇ Hχ
−q ⊇ H0 ⊇ Hχ

q ⊇ Ψχ, (3.17)

Ψχ = pr lim
q∈N

Hχ
q =

∩
q∈N

Hχ
q , (Ψχ)′ = ind lim

q∈N
Hχ

−q =
∪
q∈N

Hχ
−q,

Hχ
−q =

{
ξ =

∞∑
n=0

ξnq
χ
n : ∥ξ∥2Hχ

−q
=

∞∑
n=0

|ξn|2(n!)2K−qn <∞

}
, (3.18)

Theorem 3.1. 

A Construction of Non-Gaussian White Noise Analysis using the Theory of Hypercomplex Systems

© 2016    Global Journals Inc.  (US)

18

G
lo
ba

l
Jo

ur
na

l
of

Sc
ie
nc

e
Fr

on
tie

r
R
es
ea

rc
h 

  
  
  
 V

ol
um

e
Y
ea

r
20

16
X
V
I   

Is
s u

e 
  
  
er

sio
n 

I
V

I
( F

)

Similarly for negative space H− by replacement pn by qn, we have the set of generalized

functions as follows

H− =

{
ξ =

∞∑
n=0

ξn qn | ξn ∈ C : ∥ξ∥2H− =
∞∑
n=0

|ξn|2 hn <∞

}
. (3.11)

Therefore, we can construct a rigging of the space H0 := L2(Q, dρ(x)) of the form (3.7), (3.10)

and (3.11) in which the Delsarte characters χn(x) will play the role of the vectors pn. This result

can be stated as follows:
Notes



 
 

 
 

 
 
 
 
 
 
 
 
 
 

R, n ∈ Z+). Therefore, the space (3.16) consists of entire functions φ(x) and φn(x) are the Taylor

coefficients of φ(x). Formula (3.8) gives their representation as the Fourier coefficients using the

scalar product (ξ, φ)H0 , (ξ ∈ H
χ
−1, φ ∈ H

χ
1 ). The operator D now is equal d/dx.

The Wick product was first introduced by Wick [39] and used as a tool to renormalize certain

infinite quantities in quantum field theory. Later on, the Wick product was considered, in a

stochastic setting, by Hida and Ikeda [24]. In [11], Dobroshin and Minlos were comprehensively

treated this subject both in mathematical physics and probability theory. Currently, the Wick

product provides a useful concept for various applications, for example, it is important in the

study of stochastic ordinary and partial differential equations (see, e.g., [27]).

In this section, under the assumption that ∥χ∥2H0
≤ Cn for some C > 0, we define a new Wick

product, called χ-Wick product, on the space Hχ
−q, which is constructed in Section 3. Then, we

give the definition of the χ-Hermite transform and apply it to establish a characterization theorem

for the space Hχ
−q.

Let ξ =
∑∞

m=0 ξmq
χ
m, η =

∑∞
n=0 ηnq

χ
n ∈ Hχ

−q with ξm, ηn ∈ C. The χ-Wick

product of ξ, η, denoted by ξ ⋄χ η, is defined by the formula

ξ ⋄χ η =

∞∑
m,n=0

ξmηnq
χ
m+n. (4.1)

It is important to show that the spaces Hχ
−q,H

χ
q are closed under χ-Wick product.

If ξ, η ∈ Hχ
−q and φ,ψ ∈ Hχ

q , we have

(i) ξ ⋄χ η ∈ Hχ
−q,

(ii) φ ⋄χ ∈ Hχ
q .

Proof. If ξ =
∞∑

m=0
ξmq

χ
m, η =

∞∑
n=0

ηnq
χ
n ∈ Hχ

−q, then for some q1 ∈ N we have

∞∑
m=0

|ξm|2K−q1m <∞ and

∞∑
n=0

|ηn|2K−q1n <∞. (4.2)

IV. Elements of Wick Calculus

Definition 4.1.

Lemma 4.1. 
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Note that due to the first equality in (3.8) for Delsarte characters and co-characters the following

biorthogonality is true:

(Θn, χn)H0 = δn,m.n!, n,m ∈ Z+. (3.19)

To illustrate the above result, we give the following example

Let H0 = L2(R, dx), with respect to the Lebesgue measure dx and ordinary

convolution given in Eq.(2.12) the generalized character χ(x, λ) = eλx (λ ∈ C) and χn(x) = xn (x ∈
Example 3.1. 

with the action

(ξ, φ)H0 =

∞∑
n=0

ξnφn(n!)
2Kqn, φ ∈ Hχ

q , ξ ∈ Hχ
−q.
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≤
∞∑
l=0

∞∑
m+n=l

|ξm|2K−q1m

)( ∞∑
m+n=l

|ηn|2K−q1n

)
K−pl

≤
∞∑
l=0

K−pl

)( ∞∑
m=0

|ξm|2K−q1m

)( ∞∑
n=0

|ηn|2K−q1n

)

< ∞, (4.4)

which proves (i). The proof of (ii) is similar. �
The following important algebraic properties of the χ-Wick product follow directly from Defi-

nition 4.1.

For each ξ, η, ζ ∈ Hχ
−q, we get

(i) ξ ⋄χ η = η ⋄χ ξ (Commutative law),

(ii) ξ ⋄χ (η ⋄χ ζ) = (ξ ⋄χ η) ⋄χ ζ (Associative law),

(iii) ξ ⋄χ (η + ζ) = ξ ⋄χ η + ξ ⋄χ ζ (Distributive law).

According to Lemmas 4.1 and 4.2, we can conclude that the spaces Hχ
−q and

Hχ
q form topological algebras with respect to the χ-Wick product.

As shown in Lemmas 4.1 and 4.2, the χ-Wick product satisfies all the ordinary algebraic rules

for multiplication. Therefore, one can carry out calculations in much the same way as with usual

products. But, there are some problems when limit operations are involved. To treat these situ-

ations it is convenient to apply a transformation, called the χ-Hermite transform, which converts

χ-Wick products into ordinary (complex) products and convergence in Hχ
−q into bounded, point-

wise convergence in a certain neighborhood of 0 in C. The original Hermite transform, which first

appeared in Lindstrøm et al. [29], has been applied by the authors in many different connections.

Now, we give the definition of the χ-Hermite transform and discuss its basic properties.

Let ξ =
∑∞

n=0 ξnq
χ
n ∈ Hχ

−q with ξn ∈ C. Then, the χ-Hermite transform of ξ,

denoted by Hχξ, is defined by

Hχξ(z) =
∞∑
n=0

ξnz
n ∈ C (when convergent). (4.5)

In the following we define for 0 < M, q <∞ the neighborhoods Oq(M) of zero in C by

Oq(M) =

{
z ∈ C :

∞∑
n=0

|zn|2Kqn < M2

}
. (4.6)

Lemma 4.2. 

Remark 4.1. 

Definition 4.2. 
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where ζ l =
∞∑

m+n=l

ξmηn. With q = q1 + p we have

∞∑
l=0

|ζ l|2K−ql =
∞∑
l=0

∣∣∣∣∣
∞∑

m+n=l

ξmηn

∣∣∣∣∣
2

K−q1lK−pl

We note that

ξ ⋄χ η =

∞∑
m,n=0

ξmηnq
χ
m+n =

∞∑
l=0

∞∑
m+n=l

ξmηn

)
qχl =

∞∑
l=0

ζ lq
χ
l , (4.3))

)
)
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< M

∞∑
n=0

|ξn|2K−qn

) 1
2

< ∞. (4.8)

The conclusion above can be stated as follows:

If ξ ∈ Hχ
−q, then Hχξ converges for all z ∈ Oq(M) for all q,M <∞.

A useful property of the χ-Hermite transform is that it converts the χ-Wick product into

ordinary (complex) product.

If ξ, η ∈ Hχ
−q, then

Hχ(ξ ⋄χ η)(z) = Hχξ(z).Hχη(z). (4.9)

for all z such that Hχξ and Hχη exist.

The proof is an immediate consequence of Definitions 4.1 and 4.2. �
Let ξ =

∑∞
n=0 ξnq

χ
n ∈ Hχ

−q, with ξn ∈ R. Then, the number ξ0 = Hχξ(0) ∈ R is called the

generalized expectation of ξ and is denoted by E(ξ). Suppose that V ∋ z 7→ f(z) ∈ C is an analytic

function, where V is a neighborhood of E(ξ). Assume that the Taylor series of f around E(ξ) has
coefficients in R. Then, the χ-Wick version f⋄χ of f is defined by

Hχ
−q ∋ ξ 7→ f⋄χ(ξ) = H−1

(
f ◦ Hχ(ξ)

)
∈ Hχ

−q. (4.10)

If the function f : C → C is entire, then f⋄χ is defined for all ξ ∈ Hχ
−q. For

example, the χ-Wick exponential is defined by

exp⋄χ(ξ) =
∞∑
j=0

1

j!
ξ⋄χn. (4.11)

Using χ-Hermite transform we see that χ-Wick exponential has the same algebraic properties

as the usual exponential. For instance,

exp⋄χ(ξ + η) = exp⋄χ(ξ) ⋄χ exp⋄χ(η), ξ, η ∈ Hχ
−q. (4.12)

From Proposition 4.1, we can deduce that χ-Hermite transform of any ξ ∈ Hχ
−q is a complex-

valued analytic function on Oq(M) for all q,M <∞. Moreover, the converse of this deduction is

true, i.e., every complex-valued analytic function on Oq(M) (for some q,M <∞) is the χ-Hermite

transform of some element in Hχ
−q. To prove this, we need the following two auxiliary results.

Proposition 4.1. 

Proposition 4.2. 

Proof.  

Example 4.1. 
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It is easy to see that

q ≤ p, N ≤M ⇒ Op(N) ⊆ Oq(M). (4.7)

Note that if ξ =
∑∞

n=0 ξnq
χ
n ∈ Hχ

−q, z ∈ Oq(M) for some 0 < M, q <∞, we have the estimate

∞∑
n=0

|ξn||zn| =
∞∑
n=0

|ξn||zn|K− qn
2 K

qn
2

≤
∞∑
n=0

|ξn|2K−qn

) 1
2 ∞∑

n=0

|zn|2Kqn

) 1
2

)
)

)

Notes



 
 

 
 

 
 
 
 
 
 
 
 
 
 

It is evident that z ∈ O3q δ Kqz ∈ Oq δ

∞∑
n=0

|ηnzn| ≤
∞∑
n=0

|ηn|2|zn|2Kqn

) 1
2 ∞∑

n=0

K−qn

) 1
2

=

∞∑
n=0

|ηn|2|(Kqz)n|2K−qn

) 1
2 ∞∑

n=0

K−qn

) 1
2

≤ M

∞∑
n=0

K−qn. (4.15)

(Characterization Theorem for Hχ
−q) If ξ =

∑∞
n=0 ξnq

χ
n ∈ Hχ

−q, where

ξn ∈ C, then there exist q <∞ and Rq <∞ such that

|Hχξ(z)| ≤ Rq

∞∑
n=0

|zn|2Kqn

) 1
2

∀z ∈ C. (4.16)

In particular, Hχξ is a bounded analytic function on Oq(M) for all M < ∞. Conversely,

suppose f(z) =
∑∞

n=0 ηnz
n is a given analytic power series of z ∈ C with ηn ∈ C such that there

exist q <∞ and δ > 0, such that f(z) is absolutely convergent when z ∈ Oq(δ) and

sup
z∈Oq(δ)

|f(z)| <∞. (4.17)

Then, there exists a unique η ∈ Hχ
−q such that Hχη = f , namely

η =

∞∑
n=0

ηnq
χ
n . (4.18)

For each z ∈ C, we have

|Hχξ(z)| ≤
∞∑
n=0

|ξn||zn| ≤
∞∑
n=0

|ξn|2K−qn

) 1
2 ∞∑

n=0

|zn|2Kqn

) 1
2

. (4.19)

Since ξ ∈ Hχ
−q, we see that R2

q :=
∑∞

n=0 |ξn|2K−qn <∞ for all q <∞.

) implies ). According to Lemma 4.3, we getProof.  

Theorem 4.1. 

Proof.
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Let f(z) =
∑∞

n=0 ηnz
n, ηn ∈ C be a formal power series in z ∈ C. Suppose

there exist q,M <∞ and δ > 0 such that f(z) is convergent for z ∈ Oq(δ) and |f(z)| ≤M for all

z ∈ Oq(δ). Then
∞∑
n=0

|ηnzn| ≤MA(q) for all z ∈ O3q(δ) (4.13)

where

A(q) :=
∞∑
n=0

K−qn <∞ (Note that K > 1). (4.14)

Proposition 4.3. 

Let f(z) =
∑∞

n=0 ηnz
n be an analytic function in z ∈ C such that there exists

M < ∞, C > 0 and δ > 0 such that |f(z)| ≤ M when z ∈ O := {z ∈ C : C|z| ≤ δ2}. Then

|ηnzn| ≤M for all z ∈ O and n ∈ N.
See [27], Lemma 2.6.10.

Lemma 4.3. 

Proof.  

) )
) )

)

) )
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Hence, for r ≥ 3q and z ∈ O3q(δ), we get

∞∑
n=0

|ηn|2K−rn ≤ C
∞∑
n=0

|ηn|K−rn ≤ C
∞∑
n=0

|ηn||zn| ≤ CMA(q) <∞. (4.21)

where C := sup{|ηn| : n ∈ N}, and hence η :=
∑∞

n=0 ηnq
χ
n ∈ Hχ

−q, as claimed. �

Conversely, Since K > 1, then K−r ∈ Or(δ) for all r < ∞ and for some δ < ∞. By virtue of

Proposition 4.3, we have
∞∑
n=0

|ηn||zn| ≤MA(q) for all z ∈ O3q(δ). (4.20)
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