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When estimating an unknown function from noisy data, the underlying function is often assumed

to be smooth in the independent variables. For example, the price of a stock option and its second

derivative are often assumed to be smooth in the underlying stock price over a domain of interest:

see Section 3.1 of Lim and Attallah (2016) for an example. In this paper, we consider the problem

of estimating a function f∗ : R → R over a domain [a, b) of interest, which is known to have a

square integrable kth derivative (k ≥ 2), by observing a data set ((xi, Yij) : 1 ≤ i ≤ n, 1 ≤ j ≤ m)

satisfying

Yij = f∗(xi) + εij ,

where the xi’s satisfy a < x1 < · · · < xn < b, and the εij ’s are independent and identically

distributed (iid) random variables with a mean of 0 and a variance of σ2 <∞.

One of the most popular approaches to estimating the underlying function f∗ from the data

set is to find a smooth function that is close to the data set by solving the following optimization

problem:

Minimize (1/n)

n∑
i=1

(
g(xi)− Y i

)2
+ λ

∫ b

a

{
g(k)(x)

}2
dx (1)

over g ∈ Dk, where Y i =
∑n

j=1 Yij/m for 1 ≤ i ≤ n, λ is a non-negative constant,

Dk =

{
f : R→ R : f is k times differentiable and

∫ b

a
{f (k)(x)}2dx <∞

}
,
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and g(k) is the kth derivative of g. The term (1/n)
∑n

i=1(g(xi)−Y i)
2 in (1) measures the closeness

of the fitted function g to the data set, and the term
∫ b
a {g

(k)(x)}2dx in (1) measures the “roughness”

of the fitted function g. The parameter λ controls the trade-off between the closeness to the data
set and the roughness of the fitted function.

Problem (1) appears to be an infinite–dimensional optimization problem at first glance, but the

solution to (1) is known to be a piecewise polynomial function of degree 2k−1 with knots x1, . . . , xn
(Theorem 20.1 on page 412 of Györfi et al., 2002). Since the set of piecewise polynomial functions

of degree 2k − 1 with knots x1, . . . , xn is finite dimensional, (1) can be reduced to an optimization

problem over a finite-dimensional space. In fact, the solution to (1) can be obtained by solving a

system of linear equations: see (20.6) on page 412 of Györfi et al. (2002) for details.

Despite the fact that the solution to (1) can be obtained easily, the performance of the solution

to (1) is highly sensitive to the choice of λ. Several authors have proposed the method of cross-

validation for choosing λ (Wahba and Wold, 1975). In the method of cross-validation, λ is chosen

so that it minimizes the average squared error, which is defined by

CV(λ) =
n∑
i=1

(
g̃iλ(xi)− Y i

)2
/n

for λ ≥ 0, where g̃iλ is the solution to (1) with the ith data point, (xi, Y i), omitted. In order

to select the right value of λ, one needs to find the minimizer of CV(λ) over λ ≥ 0. CV(λ) is a

nonlinear function in λ in general. Thus, it takes a significant amount of time in practice to find

the minimizer of CV(λ).

To overcome the issue of selecting the right value of λ, the solution g̃n to the following alternative

formulation is preferred in the numerical analysis community:

Problem (A): Minimize

∫ b

a

{
g(k)(x)

}2
dx

subject to (1/n)
n∑
i=1

(
g(xi)− Y i

)2 ≤ u0
for some constant u0 over g ∈ Dk, which was first proposed by Reinsch (1967). Problem (A)

is preferred in the numerical analysis community because a good estimate of u0 can be easily

computed from the data set ((xi, Yij) : 1 ≤ i ≤ n, 1 ≤ j ≤ m) by using
∑n

i=1 S
2
i /(nm), where

S2
i =

∑m
j=1

(
Yij − Y i

)2
/(m− 1) for 1 ≤ i ≤ n: see page 151 of Lim and Attallah (2016) for details.

Recently, Lim and Attallah (2016) showed that the solution to Problem (A) can be computed

by solving a convex program. Several efficient algorithms exist for solving convex programming

problems, and they provide guaranteed convergence to the global solution; see the Lagrangian

method on page 217 of Zangwill (1969) for an example of methods that solve convex programs.

Thus, the formulation in Lim and Attallah (2016) enables one to compute the solution to Problem

(A) with guaranteed convergence. However, the amount of time required to solve a convex program

increases rapidly as n→∞, and hence, a computationally more efficient formulation is desired.
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In this paper, we propose a new formulation that is designed for better computational efficiency.

The new formulation replaces the constraint (1/n)
∑n

i=1(g(xi) − Y i)
2 ≤ u0 in Problem (A) with

(1/n)
∑n

i=1 |g(xi)− Y i| ≤ g0 for some constant g0. Thus, our proposed estimator is the solution ĝn

to the following optimization problem:

Notes



 
 

 
 

 
 
 
 
 
 
 
 
 
 

Problem (B): Minimize

∫ b

a

{
g(k)(x)

}2
dx

subject to (1/n)
n∑
i=1

∣∣g(xi)− Y i

∣∣ ≤ g0
over g ∈ Dk. Problem (B) can be further transformed into a quadratic program (see Proposition

1 of this paper), so the solution to Problem (B) can be obtained by solving a quadratic program.

Quadratic programs are special cases of convex programs with quadratic objective functions and

linear constraints, so they can be solved more efficiently than convex programs. Thus, the solution to

our new formulation can be computed more efficiently than the solution to Problem (A). Moreover,

the constant g0 appearing in Problem (B) can be estimated from the data set ((xi, Yij) : 1 ≤ i ≤
n, 1 ≤ j ≤ m) readily, so the performance of the proposed estimator ĝn does not rely on any

unnatural parameters; see Section 2.1 of this paper for a discussion of how to estimate g0. Even

though Problem (B) was motivated by the need for better computational efficiency, the numerical

experiments in Section 3 show that the proposed estimator not only is computed faster than the

solution to Problem (A), but also achieves better mean squared errors, and hence, is a better

estimate of the underlying function f∗. Furthermore, the convergence of the proposed estimator

to the true function f∗ as n → ∞ is demonstrated empirically in Section 3 by showing that the

empirical integrated mean square error between ĝn and f∗ converges to 0 as n→∞. The numerical

results in Section 3.2 show that our formulation is successfully applied to a problem of estimating

the sensitivities of option prices as functions of the underlying stock price.

This paper is organized as follows. In Section 2.1, we describe how g0 can be estimated from

the data set in more detail. In Section 2.2, we prove that the solution to Problem (B) exists and

can be obtained by solving a quadratic program. In Section 3, we compare the performance of

the proposed estimator to that of the solution to Problem (A) through numerical experiments.

Concluding remarks are included in Section 4.

g0

In this section, we provide a heuristic argument on how g0 can be estimated from the data set

((xi, Yij) : 1 ≤ i ≤ n, 1 ≤ j ≤ m). We start by noticing that
∑m

j=1 εij/
√
m converges in distribution

to N(0, σ2) as m→∞ by the weak law of large numbers, where N(0, σ2) denotes a normal random

variable with a mean of 0 and a variance of σ2. Hence, if we denote
∑m

j=1 εij/m by εi for 1 ≤ i ≤ n,

then |εi| can be approximated by
∣∣N(0, σ2)

∣∣ /√m for m sufficiently large. Therefore, the following

approximation is possible:

1

n

n∑
i=1

∣∣Y i − f∗(xi)
∣∣ =

1

n

n∑
i=1

|εi| ≈
1

n
√
m

n∑
i=1

∣∣N(0, σ2)
∣∣
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II
.

Problem Formulation

a) How to Estimate from the Data Set?

for m sufficiently large. The symbol ≈ is used to express “approximate equality” informally. When

the εi’s are assumed to be normally distributed,
∑n

i=1

∣∣N(0, σ2)
∣∣ /n converges to E |ε11| as n→∞

by the strong law of large numbers. Thus, the following approximation is appropriate:

Notes



 
 

 
 

 
 
 
 
 
 
 
 
 
 

1

n

n∑
i=1

∣∣Y i − f∗(xi)
∣∣ ≈ E |ε11|√

m

for n and m sufficiently large. Furthermore, E |ε11| can be estimated from the data set via∑n
i=1

∑m
j=1

∣∣Yij − Y i

∣∣ /(mn), and hence, a good estimate of g0 is

n∑
i=1

m∑
j=1

∣∣Yij − Y i

∣∣ /(m3/2n). (2)

In this section, we describe how the proposed estimator can be obtained by solving a quadratic

program. To make this paper self-contained, we present some preliminary results.

A spline function with degree r > 1 with knots x1, . . . , xn, where a < x1 < . . . , < xn < b,

is a function s : [a, b) → R having the following two properties: (a) In each of the intervals

[a, x1), [x1, x2), . . . , [xn−1, xn), [xn, b), s(x) is given by some polynomial of degree r or less, and (b)

s(x) is r − 1 times continuously differentiable on [a, b). We denote the set of spline functions with

degree r by Sr([a, b)). Sr([a, b)) can be spanned by a finite number of elements in Sr([a, b)), so we

introduce one of the bases for Sr([a, b)), which is the set of B-splines; the B-splines have bounded

supports and produce well–conditioned numerical settings. We need to introduce additional knots

x−r, . . . , x0, xn+1, . . . , xn+r+1 so that

x−r < x−r+1 < · · · < x0 < a < x1 < · · · < xn < b < xn+1 < · · · < xn+r+1.

The B-spline Bi,r of degree r is defined recursively by

Bi,0(x) =

{
1, if xi ≤ x < xi+1

0, otherwise
(3)

for i = −r, . . . , n+ r and x ∈ R and

Bi,l(x) =
x− xi
xi+l − xi

Bi,l−1(x) +
xi+l+1 − x
xi+l+1 − xi+1

Bi+1,l−1(x) (4)

for i = −r, . . . , n + r − l, l = 1, . . . , r, and x ∈ R. By Theorem 14.1 on page 262 of Györfi et

al. (2002), {Bi,r : i = −r, . . . , n} restricted to [a, b) is a basis of Sr([a, b)). Proposition 1 below

proves the existence of the solution to Problem (B) and describes how Problem (B) can be solved

through a quadratic program.

Assume 2 ≤ k ≤ n. There exists a solution ĝn ∈ Dk to Problem (B). Further-

more, ĝn has the following representation:

ĝn(x) =
n∑

i=−(2k−1)

ĉiBi,2k−1(x)

for x ∈ [a, b), where ĉ−(2k−1), . . . , ĉn, ŷ1, . . . , ŷn, p̂1, . . . , p̂n, m̂1, . . . , m̂n is the solution to the follow-

ing quadratic program in the decision variables c−(2k−1), . . . , cn, y1, . . . , yn, p1, . . . , pn,m1, . . . ,mn ∈
R:
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b) Quadratic Programming Representation of the Proposed Formulation

Proposition 1

Notes



 
 

 
 

 
 
 
 
 
 
 
 
 
 

Minimize

∫ b

a

 n∑
i=−(2k−1)

ciB
(k)
i,2k−1(x)

2

dx

=
n∑

i=−(2k−1)

n∑
j=−(2k−1)

cicj

∫ b

a
B

(k)
i,2k−1(x)B

(k)
j,2k−1(x)dx

subject to Y i − yi = pi −mi, 1 ≤ i ≤ n, (5)

n∑
i=1

(pi +mi)/n ≤ g0,

n∑
i=−(2k−1)

ciBi,2k−1(Xj) = yj , j = 1, . . . , n,

pi,mi ≥ 0, 1 ≤ i ≤ n.

Proof. The existence of the solution to Problem (B) is proven by an argument similar to the

proof of Proposition 1 in Lim and Attallah (2016). Next, to show that the solution to (5) exists,

we notice that (i) for any c−(2k−1), . . . , cn, the objective function of (5) is greater than or equal to

0, and (ii) Problem (5) has a feasible solution because there exist c−(2k−1), . . . , cn satisfying

n∑
i=−(2k−1)

ciBi,2k−1(xj) = Y j

for 1 ≤ j ≤ n by Lemmas 20.2 and 20.3 on pages 415 and 416 of Györfi et al. (2002). By Frank

and Wolfe (1956), there exists a solution to (5).

Let ĝn be a solution to Problem (B). Let ŷi = ĝn(xi) for 1 ≤ i ≤ n. By Lemmas 20.2 and 20.3

on pages 415 and 416 of Györfi et al. (2002), there exists a unique solution (ĉ−(2k−1), . . . , ĉn) to the

following linear system:

n∑
i=−(2k−1)

ĉiBi,2k−1(xj) = ŷj for 1 ≤ j ≤ n,

n∑
i=−(2k−1)

ĉiB
(l)
i,2k−1(a) = 0,

n∑
i=−(2k−1)

ĉiB
(l)
i,2k−1(b) = 0.

Let p̂i = max(Y i− ŷi, 0) and m̂i = max(ŷi−Y i, 0) for 1 ≤ i ≤ n. We will show that ĉ−(2k−1), . . . , ĉn,

ŷ1, . . . , ŷn, p̂1, . . . , p̂n, m̂1, . . . , m̂n is a solution to (5). Let c−(2k−1), . . . , cn, y1, . . . , yn, p1, . . . , pn,m1,

. . . ,mn be any feasible solution to (5). Without loss of generality, we may assume that either

pi = 0 or mi = 0 for each 1 ≤ i ≤ n. (Otherwise, we replace pi with pi −min(pi,mi) and mi with

mi −min(pi,mi) for each 1 ≤ i ≤ n.) We notice that
∣∣Y i − yi

∣∣ = pi +mi for each 1 ≤ i ≤ n. So, if

we define gn : R→ R by
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Notes



 
 

 
 

 
 
 
 
 
 
 
 
 
 

gn(x) =
n∑

i=−(2k−1)

ciBi,2k−1(x)

for x ∈ R, then gn satisfies (1/n)
∑n

i=1

∣∣gn(xi)− Y i

∣∣ ≤ g0, and hence, is a feasible solution to Prob-

lem (B). Thus,
∫ b
a

{
ĝ
(k)
n (x)

}2
dx ≤

∫ b
a

{
g
(k)
n (x)

}2
dx, and hence, ĉ−(2k−1), . . . , ĉn, ŷ1, . . . , ŷn, p̂1, . . . ,

p̂n, m̂1, . . . , m̂n is a solution to (5).

Conversely, let c̃−(2k−1), . . . , c̃n, ỹ1, . . . , ỹn, p̃1, . . . , p̃n, m̃1, . . . , m̃n be a solution to (5). We will

show that g̃n : R→ R defined by

g̃n(x) =
n∑

i=−(2k−1)

c̃iBi,2k−1(x)

for x ∈ R is a solution to Problem (B), or equivalently,
∫ b
a

{
g̃
(k)
n (x)

}2
dx ≤

∫ b
a

{
ĝ
(k)
n (x)

}2
dx for any

solution ĝn to Problem (B). First, we note that g̃n is a feasible solution to Problem (B) since we

may assume that either p̃i = 0 or m̃i = 0 for each 1 ≤ i ≤ n. For any solution ĝn to Problem (B),

let ŷi = ĝn(Xi) for 1 ≤ i ≤ n and define the ĉi’s, p̂i’s, and m̂i’s as before. The ĉi’s, ŷi’s, p̂i’s, and

m̂i’s form a feasible solution to (5), so it follows that
∫ b
a

{
g̃
(k)
n (x)

}2
dx ≤

∫ b
a

{
ĝ
(k)
n (x)

}2
dx. �

In this section, we compare the performance of the proposed estimator to that of the solution to

Problem (A). In Section 3.1, we consider the case where f∗ is given by a polynomial function of

degree 5. In Section 3.2, f∗ is the expected payoff of a certain equity-linked security. In both

cases, we compute the empirical integrated mean square error and the amount of time required to

compute the estimators.

All of the simulations are conducted on a 64-bit computer with an Intel(R) Core(TM) i7-6700K

CPU at 4 GHz and a 32GB RAM. All of the simulations are programmed in MATLAB R2010a.

When solving Problems (A) and (B), one needs to evaluate the B-splines and the integration of

the product of their kth derivatives. The B-splines can be evaluated recursively through Equations

(3) and (4). The kth derivative of the B-spline can be evaluated recursively through the following

relation: for a B-spline of degree r,

dBi,r(x)/dx = (r/(xi+r − xi))Bi,r−1(x)− (r/(xi+r+1 − xi+1))Bi+1,r−1(x) (6)

for i = −r, . . . , n and x ∈ [a, b); see Lemma 14.6 on page 265 of Györfi et al. (2002). Next,

we compute
∫ b
a B

(k)
i,2k−1(x)B

(k)
j,2k−1 (x)dx by evaluating B

(k)
i,2k−1 using the recursion in (6) and by

numerically evaluating the integration.

We consider the case where f∗(x) = x(x−0.5)(x+0.5)(x−1.05)(x+1.05) for x ∈ R, xi = i/n−1/(2n)

for 1 ≤ i ≤ n, Yij = f(xi) + εij for 1 ≤ i ≤ n and 1 ≤ j ≤ m, and the εij ’s are iid random variables,

each of which is normally distributed with a mean of 0 and a variance of 4. The proposed estimator

ĝn is computed as the solution to Problem (B) with m = 100, k = 4, and g0 estimated from (2).

22

G
lo
ba

l
Jo

ur
na

l
of

Sc
ie
nc

e
Fr

on
tie

r
R
es
ea

rc
h 

  
  
  
 V

ol
um

e
Y
ea

r
20

16
X
V
I   

Is
s u

e 
  
  
 e

rs
io
n 

I
V

V
( F

)

© 2016  Global Journals Inc.  (US)

A New Method for Estimating Smooth Regression Functions

III. Numerical Results

a) A Stylized Model

Notes



 
 

 
 

 
 
 
 
 
 
 
 
 
 

The solution g̃n to Problem (A) is computed from Problem (A) with m = 100, k = 4, and u0

estimated from
∑n

i=1 S
2
i /(nm), where S2

i =
∑m

j=1(Yij−Y i)
2/(m−1) for 1 ≤ i ≤ n. Both Problems

(A) and (B) are solved with CVX, a package for specifying and solving convex programs (Grant

and Boyd, 2014). To measure the accuracy of the proposed estimator, we compute the following

empirical integrated mean square error (EIMSE):

1

n

n∑
i=1

(ĝn(xi)− f∗(xi))2 . (7)

The EIMSE of g̃n is computed similarly by
∑n

i=1 (g̃n(xi)− f∗(xi))2 /n.

Table 1 reports the 95% confidence intervals of the EIMSE and the average amounts of time

required to compute ĝn and g̃n, based on 300 iid replications, for a variety of n values. The proposed

estimator produces lower EIMSE values and is computed in less time than g̃n.

Solution to Problem (A) Proposed Estimator

Time Time

n EIMSE (sec) EIMSE (sec)

10 0.0168± 0.0014 0.097 0.0156± 0.0013 0.094

20 0.0090± 0.0007 0.099 0.0081± 0.0007 0.097

40 0.0047± 0.0004 0.111 0.0041± 0.0003 0.107

80 0.0032± 0.0003 0.129 0.0023± 0.0002 0.125

Figure 1 displays the graphs of f∗, the Y i’s, ĝn, and g̃n on the left side and the graphs of f
(2)
∗ ,

ĝ
(2)
n , and g̃

(2)
n on the right side for the case when n = 40. The proposed estimator appears to have

a smoother second derivative than g̃n.
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Table 1 : The 95% confidence intervals of the EIMSE and the amounts of computer 
time required to compute the proposed estimator and the solution to Problem (A) when 

Figure 1 : The horizontal axis is . On the left side, the solid line is , the dots are 
the 's, the dotted line is , and the dashed line is . On the right side, the 

solid line is , the dotted line is , and the dashed line is .

f∗(x) = x(x− 0.5)(x+ 0.5)(x− 1.05)(x+ 1.05).

x f∗(x

(

Y i gn(x (ˆ gn(x (˜

f
(2)
∗ (x

( g
(2)
n (x (ˆ g

(2)
n (x

(

˜

Notes



 
 

 
 

 
 
 
 
 
 
 
 
 
 

We consider the case where f∗(x) is the expected payoff of a certain equity-linked security (ELS)

when the underlying stock price is x ≥ 0. The second derivative of f∗ plays an important role

when financial portfolio managers try to hedge the risks associated with the ELS; see Section 3.1

of Lim and Attallah (2016) for details. In particular, the second derivative of f∗ is often assumed

to be smooth over a domain of interest. The smoothness of the second derivative is particularly

important because portfolio managers use the second derivative to make a decision on whether to

buy or sell their ELS in order to hedge the risks, and a smooth second derivative suggests consistent

selling strategies; see Section 3.1 of Lim and Attallah (2016) for a detailed explanation. One of the

challenges is that there is no-closed form formula for f∗ when the payoff structure of the ELS is

complex, so simulation must be used to estimate f∗ and its second derivative. Thus, the problem

boils down to an estimation of the second derivative of f∗ as a smooth function over a domain

of interest. Since the roughness of a function g : [a, b) → R is measured by
∫ b
a

{
g(2)(x)

}2
dx, the

roughness of the second derivative of g is measured by
∫ b
a

{
g(4)(x)

}2
dx. Therefore, our proposed

estimator is the solution to the following optimization problem:

Minimize

∫ b

a

{
g(4)(x)

}2
dx (8)

subject to (1/n)
n∑
i=1

|g(xi)− Yi| ≤ g0,

where g0 can be estimated from (2).

We assume that the ELS is paid off in the following way: The ELS is issued at time 0 and

matures at time T = 365. We denote the price of the underlying stock at time t ∈ [0, T ] by St.

There are six days, d1, . . . , d6, when early redemption is possible. On day di (1 ≤ i ≤ 6), the ELS

expires with a payoff of $ri if Sdi/S0 exceeds some threshold bi. Otherwise, the ELS does not expire

until maturity. If there is no early redemption and St/S0 does not drop below a lower limit b over

the entire lifetime of the ELS, then the ELS expires with a payoff of $1 at maturity. In the rest of

the cases, the ELS expires with a payoff of $ST /S0 at maturity.

We let xi = 90 + (20)(i/n) − (10/n) for 1 ≤ i ≤ n. For each xi, a sample path of a geometric

Brownian motion is generated as a trajectory of the stock price between now and maturity, and

the corresponding payoff of the ELS is computed. Yij is the payoff computed this way in the

jth replication at xi. The parameters are d1 = 61, d2 = 122, d3 = 182, d4 = 243, d5 = 304, d6 =

365, b1 = 0.9, b2 = 0.9, b3 = 0.85, b4 = 0.85, b5 = 0.8, b6 = 0.8, r1 = 1.05, r2 = 1.10, r3 = 1.15, r4 =

1.20, r5 = 1.25, r6 = 1.30, and b = 0.7. The remaining time until maturity is 60 days, the annual

volatility is 30%, the annual risk–neutral interest rate is 5%, and the initial stock price at time 0 is

$125.

We set m = 10, so 10 sample paths for the geometric Brownian motion are generated at each

xi to compute Yi1, . . . , Yi10 for 1 ≤ i ≤ n. We compute Y i =
∑10

j=1 Yij/10 for 1 ≤ i ≤ n and

use (x1, Y 1), . . . , (xn, Y n) to compute the proposed estimator ĝn by solving Problem (B) with g0

estimated from (2). The solution g̃n to Problem (A) is computed from Problem (A) with m = 10,

k = 4, and u0 estimated from
∑n

i=1 S
2
i /(nm), where S2

i =
∑m

j=1(Yij − Y i)
2/(m− 1) for 1 ≤ i ≤ n.

Both Problems (A) and (B) are solved with CVX. To measure the accuracy of the proposed estimate,
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b) Sensitivity Estimation of Option Prices

Notes



 
 

 
 

 
 
 
 
 
 
 
 
 
 

Solution to Problem (A) Proposed Estimator

Time Time
n EIMSE (sec) EIMSE (sec)

10 0.0024± 0.0002 0.100 0.0024± 0.0002 0.098

20 0.0013± 0.0001 0.102 0.0012± 0.0001 0.096

40 0.0008± 0.0000 0.113 0.0005± 0.0000 0.104

80 0.0005± 0.0000 0.134 0.0003± 0.0000 0.129

we compute the following EIMSE between the underlying function and ĝn:

1

n

n∑
i=1

(ĝn(xi)− f∗(xi))2 , (9)

where f∗(xi) is estimated from the average of 2, 000, 000 iid replications of Yij at each xi. The

EIMSE of g̃n is computed similarly by
∑n

i=1 (g̃n(xi)− f∗(xi))2 /n.

Table 2 reports the 95% confidence intervals of the EIMSE and the average amounts of time

required to compute ĝn and g̃n, based on 300 iid replications, for a variety of n values. The proposed

estimator produces lower IMSE values and is computed in less time than g̃n.
Figure 2 displays the graphs of f∗, the Y i’s, ĝn, and g̃n on the left side and the graphs of f

(2)
∗ ,

ĝ
(2)
n , and g̃

(2)
n on the right side for the case when n = 40. In the graphs of Figure 2, the proposed

estimator shows a smoother second derivative than that of g̃n. Considering the fact that our goal

is to estimate the second derivative of f∗ as a smooth function, our proposed estimator appears to

have the desired property.

In this paper, we proposed a new method for estimating a smooth regression function f∗. The

proposed estimator ĝn of f∗ is designed for better computational efficiency. Numerical results show

that the proposed estimator is computed faster and achieves better mean square errors than its

alternative. Furthermore, the proposed estimator shows smoother derivatives than its alternative,

which is a desired property when estimating a smooth regression function. The convergence of

the proposed estimator to f∗ as the number of data points increases to infinity was demonstrated
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Table 2 : The 95% confidence intervals of the EIMSE and the amounts of computer 
time required to compute the proposed estimator and the solution to Problem (A) when 

is the expected payoff of the ELS.

IV. Concluding Remarks

Figure 2 : The horizontal axis is . On the left side, the solid line is , the dots are 
the      's, the dotted line is , and the dashed line is . On the right side, 

the dotted line is , and the dashed line is .
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x f∗(x

(
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Notes
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empirically, so a promising future research topic involves proving the consistency of the proposed

estimator theoretically.
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