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An n-dimensional differentiable manifold Mn is an almost Contact manifold,
if it admidts a tensor field F of type (1, 1) , a vector field ξ and a 1-form η
satisfying for arbitrary vector field X , such that

X +X = η(X)ξ (1.1)

ξ = 0 (1.2)

where

X = FX

Again equations (1.1) and (1.2) gives

η(X) = 0 (1.3)

η(ξ) = 1 (1.4)

An almost contact manifold Mn in which a Riemannian metric tensor g of
type (0,2) satisfies

g(X,Y ) = g(X, Y )− η(X)η(Y ) (1.5)

g(X, ξ) = η(X) (1.6)

for arbitrary vector field X, Y, is called an almost Contact Metric Manifold
[1].
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Let us put

F
′
(X, Y ) = g(X,Y )

then we have

F
′
(X,Y ) = F

′
(X, Y ) (1.7)

F
′
(X, Y ) = g(X,Y ) = −g(X, Y ) = −F ′

(Y,X) (1.8)

An almost contact metric manifold satisfying

(5XF
′
)(Y, Z) = η(Y )(5Xη)(Z)− η(Z)(5Xη)Y (1.9)

and

(5XF
′
)(Y, Z) + (5Y F

′
)(Z,X) + (5ZF

′
)(X, Y ) + η(X)[(5Y η)Z − (5Zη)Y ]

+η(Y )[(5Zη)X − (5Xη)Z] + η(Z)[(5Xη)Y − (5Y η)X] = 0 (1.10)

for arbitrary vector field X,Y, Z . ThenMn is called Generalised Co-Symplectic
and Generalised Quasi-Ssasakian Manifold[2] .

If in Mn

(5Xη)Y = −(5Xη)Y = (5Y η)X (1.11)

(5Xη)Y = (5Xη)Y = −(5Y η)X (1.12)

(5ξF ) = 0 (1.13)

Then ξ is said to be of the first class and the manifold is said to be first class
[2].

If in an almost Contact metric Manifold Mn , ξ satisfies

(5Xη)Y = (5Xη)Y =−(5Y η)X ⇔ (5Xη)Y = −(5Xη)Y = (5Y η)X (1.14)

(5ξF ) = 0. (1.15)

Then ξ is said to be of the second class and the manifold Mn is said to be of
the second class [2].
The Nijenhuis tensor in Generalised Co-Symplectic Manifold is given by

N(X, Y ) = (5XF )Y − (5Y F )X −5XF )Y +5Y F )X (1.16)

N
′
(X, Y, Z) = (5XF

′
)(Y, Z)−(5Y F

′
)(X,Z)+(5XF

′
)(Y, Z)−(5Y F

′
)(X,Z)
(1.17)
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Let E be an affine connection and E is said to be metric if

(EXg) = 0 (2.1)

The metric connection satisfying

(EXF )Y = η(Y )X − g(X, Y )ξ (2.2)

is called S-connection [3].
A metric S-Connection E is called semi -symmetric metric S-Connection if

EXY = 5XY − η(X)Y (2.3)

which implies

S(X, Y ) = η(Y )X − η(X)Y (2.4)

where S is the torsion tensor of connection E. We know that

EX(g(Y, Z)) = (EXg)(Y, Z) + g(EXY, Z) + g(Y,EXZ).

Using equation (2.3)

(EXg)(Y, Z) = 0, whereX, Y, ZεMn. (2.5)

Therefore , linear connection E defined by equation (2.3) and satisfying equa-
tions (2.4) and (2.5) is semi-symmetric metric connection ,we have

S(X, Y ) = −S(Y,X)

This implies S is semi-symmetric. Now let E be a linear connection defined
on a generalised Co-Symplectic manifold Mn by

EXY = 5XY + P (X, Y ) (2.6)

where P is a tensor of type (1,2) defined on Mn. Now , from equations (2.5)
and (2.6) , we have

EX(g(Y, Z)) = (EXg)(Y, Z) + g(EXY, Z) + g(Y,EXZ)

⇔ g(P (X, Y ), Z) + g(Y, P (X,Z)) = 0

g(P (X, Y ), Z) + g(P (X,Z), Y ) = 0 (2.7)

from equation (2.6) , we get

S(X, Y ) = P (X, Y )− P (Y,X). (2.8)

Using equation (2.8), we get

g(S(X, Y ), Z) + g(S(Z,X), Y ) + g(S(Z, Y ), X) = 2g(P (X, Y ), Z) (2.9)

II. A Semi-Symmetric Metric S-Connection
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and
P (X, Y ) =

1

2
[η(Y )X − η(X)Y ] (2.10)

Now from equations (2.6) and (2.10), we get

EXY = 5XY +
1

2
[η(Y )X − η(X)Y ] (2.11)

Further for a 1-form η on a generalised Co-Symplectic manifoldMn, we have,
A Generalised Co-Symplectic Manifold Mn admitting a con-

nection E , is uniquely determined by the contact form η and tensor field F
satisfies

(EXη)Y = (5Xη)Y (2.12)

(EXη)(FY ) = (5Xη)(FY ) (2.13)

EX(FY ) = η(Y )X − g(X, Y )ξ +5XY −
1

2
[η(Y )X − η(X)Y ] (2.14)

EX(FY )− EY (FX) = 5XY −5YX (2.15)

Using equations (2.6), (2.10) and (2.11) , we have the results
(2.12),(2.13),(2.14) and (2.15).
Again covariant differentiation of the torsion tensor S is given by

EX(S(Y, Z)) = (EXS)(Y, Z) + S(EXY, Z) + S(Y,EXZ).

Using equation (2.4) , we have

(EXS)(Y, Z) = ((EXη)Z)Y − ((EXη)Y )Z (2.16)

Let us define

S(X, Y, Z) = g(S(X, Y ), Z) (2.17)

Then from the equations (2.4) and (2.17), we get

S(X, Y, Z) + S(Y, Z,X) + S(Z,X, Y ) = 0 (2.18)
and

g(P (X, Y ), Z) + g(P (X,Z), Y ) = 0 (2.19)

The torsion tensor S of the connection E satisfies the following relations
(a) S(X,Y ) = 0

(b) S(X, ξ) = X
(c) S(X, ξ) = X,

(d) S(X, ξ)− S(X, ξ) = 2X − 2η(X)ξ

(e) S(X,Y ) = η(X)η(Y )ξ − η(Y )X
(f) S(X, Y ) = η(Y )X
(g) η(S(X, Y ) = 0

A generalised Co-symplectic Manifold Mn satisfies the fol-
lowing relations i.e. (a),(b),(c),(d),(e),(f) and (g)defined above.

Theorem 2.1. 

Proof:  

Theorem 2.2. 
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In a Generalised Co-Symplectic manifoldMn with connection
E ,we have
(a) P̃ (X, Y, Z) = 1

2
[η(Y )F

′
(X, Y )− η(X)F

′
(Y, Z)]

(b) P̃ (X, Y , Z) = 1/2[η(X)g(Y, Z)− η(X)η(Y )η(Z)]

(c) P̃ (X,Y , Z) = 0

(d) P̃ (X,Y , Z) = 0 = S̃(X,Y , Z) = 0

(e) P̃ (X, Y, Z) = 1
2
[η(Y )F

′
(X,Z)− η(X)F

′
(Y, Z)]

where P̃ (X, Y, Z) = g(P (X, Y ), Z)

In a Generalised Co-Symplectic Manifold Mn admitting con-
nection E satisfied the following properties:
(a) (EXF

′
)(Y, Z) = (5XF

′
)(Y, Z)− 1

2
[η(Y )F

′
(X,Z) + η(Z)F

′
(Y,X)]

(b) EFXF
′
(Y , Z) = (5FXF

′
)(Y , Z)

(a) We have

X(F
′
(Y, Z)) = (EXF

′
)(Y, Z) + F

′
(EXY, Z) + F

′
(Y,EXZ)

X(F
′
(Y, Z)) = (5XF

′
)(Y, Z) + F

′
(5XY, Z) + F

′
(Y,5XZ)

which implies

(EXF
′
)(Y, Z) = (5XF

′
)(Y, Z) +F

′
(5XY, Z) + F

′
(Y,5XZ)−F

′
(EXY, Z)−F (Y,EXZ)

= (5XF
′
)(Y, Z)− 1/2[η(Y )F

′
(X,Z) + η(Z)F

′
(Y,X)]

Using equation (2.10) , we get (a). Again baring (a), we get (b) and (c).

Let R̃ be the curvature tensor with respect to the semi -symmetric metric
connection E on a generalised co-symplectic manifold Mn. Then

R̃(X, Y, Z) = EXEYZ − EYEXZ − E[X,Y ]Z (3.1)

We have the following results:

In a Generalised Co-Symplectic Manifold Mn curvature ten-
sor R̃ is given by

R̃(X, Y, Z) = R(X, Y, Z) +
1

2
[S(X,5YZ) + S(5XZ, Y )] +

1

2
η(Z)S

′
(X, Y )

+
1

2
η(Z)[5XY −5YX] +

1

2
[η(Y )5X Z − η(X)5Y Z]

−1

2
(5Y η(Z))X −

1

2
η(Z)[X, Y ] +

1

2
η([X, Y ])Z − ((5Xη)Y )Z (3.2)

where
S

′
(X, Y ) = η(X)Y − η(Y )X

R(X, Y, Z) = 5X 5Y Z −5Y 5X Z −5[X,Y ]Z

Theorem 2.3. 

Theorem 2.4. 

III. Curvature Tensor of M𝑛𝑛 with Respect to Connection E

 

Theorem 3.1. 

Proof:  

A Semi-Symmetric Metric S-Connection in a Generalised Co-Symplectic Manifold

  

1

G
lo
ba

l
Jo

ur
na

l
of

Sc
ie
nc

e
Fr

on
tie

r
R
es
ea

rc
h 

  
  
  
 V

ol
um

e
X
V
I   

Is
s u
e 

  
  
 e

rs
io
n 

I
V

III
Y
ea

r
20

16

87

  
 

( F
)

Notes

© 2016    Global Journals Inc.  (US)



 
 

 
 

 
 
 
 
 
 
 
 
 
 

R̃(X, Y, Z) = EXEYZ − EYEXZ − E[X,Y ]Z

By using equations (1.1),(1.2),(1.11),(1.12),(1.13) ,(2.9) and (2.12), we get
equation (3.1), where R(X,Y,Z) is curvature tensor of Mn with respect to
the Riemannian Curvature 5.
Let K and K̃ be curvature tensor of type (0,4) given by

K(X, Y, Z) = g(R(X, Y, Z), U)

K̃(X, Y, Z, U) = g(K̃(X, Y, Z), U)

In a Generalised Co-Symplectic Manifold Mn,we have

R̃(X, Y, Z) + R̃(Y, Z,X) + R̃(Z,X, Y ) = 0 (3.3)

If

2[((5Xη)Z)Y + ((5Y η)X)Z + ((5Zη)Y )X]

+η([X,Z])Y + η([Y,X])Z + η([Z, Y ])X = 0 (3.4)

and

K̃(X, Y, Z, U) + K̃(Y,X,Z, U) = 0 (3.5)

If and only if

g((5Y η(Z))X,U) + g((5Xη(Z))Y , U) = 0 (3.6)

and

(5Y η)X + (5Xη)Y = 0 (3.7)

Using equation (3.2) and the first Bianchi identity

R(X, Y, Z) +R(Y, Z,X) +R(Z,X, Y ) = 0

with respect to Riemannian Connection 5, we get eq.(3.3) and (3.4).
We have

K̃(X, Y, Z) = g(R̃(X, Y, Z), U)

= g(R(X, Y, Z), U) +
1

2
g(S(X,5YZ), U) +

1

2
g(S(5XZ, Y ), U)

+
1

2
g(η(Z)[5XY −5YX], U) +

1

4
g(η(Z)[η(X)Y − η(Y )X]

−g(((5Xη)Y )Z,U) +
1

2
g((η(Y )5X Z − η(X)5Y Z), U)

Theorem 3.2. 

Proof:  
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Let R̃(X, Y, Z) be the curvature tensor for generalised co-symplectic
manifold with respect the semi-symmetric metric S-connection E , then
Proof:  
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We get

K̃(X, Y, Z, U) = −K̃(Y,X,Z, U) (3.8)

If

g(5Y η(Z)X,U) = −g(5Xη(Z)Y , U) (3.9)

and

(5Y η)X + (5Xη)Y = 0 (3.10)

The Nijenhuis tensor with respect to E of F in a generalised Co-symplectic
manifold Mn is a vector valued bilinear scalar function NE , is given by

NE(X, Y ) = (5XF )Y + S(X, Y )− (5Y F )X +5XF )Y +5Y F )X (4.1)

Using equation (1.16) , we get

NE(X, Y ) = N(X, Y ) + S(X, Y ) + 25XF )Y (4.2)

where N is Nijenhuis tensor with respect to Riemannian connection and S
is the Torsion tensor of connection E.
Again by using equation (1.17) ,we get

NE(X, Y, Z) = (EXF
′
)(Y, Z)−(EY F

′
)(X,Z)−(EY F

′
)(X,Z)+

1

2
η(Y )[F

′
(X,Z)+F

′
(X,Z)] (4.3)

and

NE(X, Y, Z) = N(X, Y, Z) (4.4)

If and only if

(5XF
′
)(Y, Z)+(5Y F

′
)(X,Z)−(5Y F

′
)(X,Z) =

1

2
η(X)[F

′
(Y, Z)+F

′
(Y , Z)]+

1

2
η(Y )F

′
(X,Z) (4.5)
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