A Semi-Symmetric Metric S-Connection in a Generalised Co-Symplectic Manifold

By Deepa Kandpal & J. Upreti
Kumaun University, India

Abstract- In the present paper, we define a new type of connection called semi-symmetric S-connection in a generalised co-symplectic manifold and studied some of its properties. The relation between the curvature tensor with respect to this connection and the curvature tensor with respect to the Riemannian connection is established.

Keywords: semi-symmetric s-connection, generalised co-symplectic manifold, curvature tensor.

GJSFR-F Classification : MSC 2010: 53C25

Strictly as per the compliance and regulations of:
A Semi-Symmetric Metric S-Connection in a Generalised Co-Symplectic Manifold

Deepa Kandpal & J. Upreti

Abstract: In the present paper, we define a new type of connection called semi-symmetric S-connection in a generalised co-symplectic manifold and studied some of its properties. The relation between the curvature tensor with respect to this connection and the curvature tensor with respect to the Riemannian connection is established.

Keywords: semi-symmetric s-connection, generalised co-symplectic manifold, curvature tensor.

I. Introduction

An n-dimensional differentiable manifold M_n is an almost Contact manifold, if it admits a tensor field F of type $(1,1)$, a vector field ξ and a 1-form η satisfying for arbitrary vector field X, such that

$$\overline{X} + X = \eta(X)\xi$$ (1.1)

$$\xi = 0$$ (1.2)

where

$$\overline{X} = FX$$

Again equations (1.1) and (1.2) gives

$$\eta(\overline{X}) = 0$$ (1.3)

$$\eta(\xi) = 1$$ (1.4)

An almost contact manifold M_n in which a Riemannian metric tensor g of type $(0,2)$ satisfies

$$g(\overline{X}, \overline{Y}) = g(X,Y) - \eta(X)\eta(Y)$$ (1.5)

$$g(X, \xi) = \eta(X)$$ (1.6)

for arbitrary vector field X, Y, is called an almost Contact Metric Manifold [1].
Let us put

\[F'(X,Y) = g(\overline{X},Y) \]

then we have

\[F'(\overline{X}, \overline{Y}) = F'(X,Y) \] (1.7)

\[F'(X,Y) = g(\overline{X},Y) = -g(X,\overline{Y}) = -F'(Y,X) \] (1.8)

An almost contact metric manifold satisfying

\[(\nabla_X F')(Y,Z) = \eta(Y)(\nabla_X \eta)(\overline{Z}) - \eta(Z)(\nabla_X \eta)\overline{Y} \] (1.9)

and

\[(\nabla_X F')(Y,Z) + (\nabla_Y F')(Z,X) + (\nabla_Z F')(X,Y) + \eta(X)[(\nabla_Y \eta)\overline{Z} - (\nabla_Z \eta)\overline{Y}] \]

\[+ \eta(Y)[(\nabla_Z \eta)\overline{X} - (\nabla_X \eta)\overline{Z}] + \eta(Z)[(\nabla_X \eta)\overline{Y} - (\nabla_Y \eta)\overline{X}] = 0 \] (1.10)

for arbitrary vector field X, Y, Z. Then \(M_n \) is called Generalised Co-Symplectic and Generalised Quasi-Sasakian Manifold[2].

If in \(M_n \)

\[(\nabla_X \eta)\overline{Y} = -(\nabla_X \overline{\eta})Y = (\nabla_Y \eta)\overline{X} \] (1.11)

\[(\nabla_X \eta)Y = (\nabla_X \overline{\eta})\overline{Y} = -(\nabla_Y \eta)X \] (1.12)

\[(\nabla_\xi F') = 0 \] (1.13)

Then \(\xi \) is said to be of the first class and the manifold is said to be first class [2].

If in an almost Contact metric Manifold \(M_n \), \(\xi \) satisfies

\[(\nabla_X \eta)\overline{Y} = (\nabla_X \overline{\eta})Y = -(\nabla_Y \eta)\overline{X} \iff (\nabla_X \eta)Y = -(\nabla_X \overline{\eta})\overline{Y} = (\nabla_Y \eta)X \] (1.14)

\[(\nabla_\xi F') = 0. \] (1.15)

Then \(\xi \) is said to be of the second class and the manifold \(M_n \) is said to be of the second class [2].

The Nijenhuis tensor in Generalised Co-Symplectic Manifold is given by

\[N(X,Y) = (\nabla_X F')Y - (\nabla_Y F')X - (\nabla_X F')\overline{Y} + (\nabla_Y F')\overline{X} \] (1.16)

\[N'(X,Y,Z) = (\nabla_X F')(Y,Z) - (\nabla_Y F')(X,Z) + (\nabla_X F')(Y,\overline{Z}) - (\nabla_Y F')(X,\overline{Z}) \] (1.17)
II. A SEMI-SYMMETRIC METRIC S-CONNECTION

Let E be an affine connection and E is said to be metric if

$$ (E_X g) = 0 $$

(2.1)

The metric connection satisfying

$$ (E_X F)Y = \eta(Y)X - g(X,Y)\xi $$

(2.2)

is called S-connection [3].

A metric S-Connection E is called semi-symmetric metric S-Connection if

$$ E_X Y = \nabla_X Y - \eta(X)\nabla_Y $$

(2.3)

which implies

$$ S(X,Y) = \eta(Y)\nabla_X - \eta(X)\nabla_Y $$

(2.4)

where S is the torsion tensor of connection E. We know that

$$ E_X (g(Y,Z)) = (E_X g)(Y,Z) + g(E_X Y,Z) + g(Y,E_X Z). $$

Using equation (2.3)

$$ (E_X g)(Y,Z) = 0, \text{where } X,Y,Z \in M_n. $$

(2.5)

Therefore, linear connection E defined by equation (2.3) and satisfying equations (2.4) and (2.5) is semi-symmetric metric connection, we have

$$ S(X,Y) = -S(Y,X) $$

This implies S is semi-symmetric. Now let E be a linear connection defined on a generalised Co-Symplectic manifold M_n by

$$ E_X Y = \nabla_X Y + P(X,Y) $$

(2.6)

where P is a tensor of type (1,2) defined on M_n. Now, from equations (2.5) and (2.6), we have

$$ E_X (g(Y,Z)) = (E_X g)(Y,Z) + g(E_X Y,Z) + g(Y,E_X Z) $$

$$ \Rightarrow g(P(X,Y),Z) + g(Y,P(X,Z)) = 0 $$

$$ g(P(X,Y),Z) + g(P(X,Z),Y) = 0 $$

(2.7)

from equation (2.6), we get

$$ S(X,Y) = P(X,Y) - P(Y,X). $$

(2.8)

Using equation (2.8), we get

$$ g(S(X,Y),Z) + g(S(Z,X),Y) + g(S(Z,Y),X) = 2g(P(X,Y),Z) $$

(2.9)
and

\[P(X, Y) = \frac{1}{2}[\eta(Y)X - \eta(X)Y] \] \hspace{2cm} (2.10)

Now from equations (2.6) and (2.10), we get

\[E_X Y = \nabla_X Y + \frac{1}{2}[\eta(Y)X - \eta(X)Y] \] \hspace{2cm} (2.11)

Further for a 1-form \(\eta \) on a generalised Co-Symplectic manifold \(M_n \), we have,

Theorem 2.1. A Generalised Co-Symplectic Manifold \(M_n \) admitting a connection \(E \), is uniquely determined by the contact form \(\eta \) and tensor field \(F \) satisfies

\[(E_X \eta)Y = (\nabla_X \eta)Y \] \hspace{2cm} (2.12)

\[(E_X \eta)(FY) = (\nabla_X \eta)(FY) \] \hspace{2cm} (2.13)

\[E_X(FY) = \eta(Y)X - g(X,Y)\xi + \nabla_X Y - \frac{1}{2}[\eta(Y)X - \eta(X)Y] \] \hspace{2cm} (2.14)

\[E_X(FY) - E_Y(FX) = \nabla_X Y - \nabla_Y X \] \hspace{2cm} (2.15)

Proof: Using equations (2.6), (2.10) and (2.11), we have the results (2.12), (2.13), (2.14) and (2.15).

Again covariant differentiation of the torsion tensor \(S \) is given by

\[E_X(S(Y, Z)) = (E_X S)(Y, Z) + S(E_X Y, Z) + S(Y, E_X Z). \]

Using equation (2.4), we have

\[(E_X S)(Y, Z) = ((E_X \eta)Z)Y - ((E_X \eta)Y)Z \] \hspace{2cm} (2.16)

Let us define

\[\overline{S}(X, Y, Z) = g(S(X, Y), Z) \] \hspace{2cm} (2.17)

Then from the equations (2.4) and (2.17), we get

\[\overline{S}(X, Y, Z) + \overline{S}(Y, Z, X) + \overline{S}(Z, X, Y) = 0 \] \hspace{2cm} (2.18)

and

\[g(P(X, Y), Z) + g(P(X, Z), Y) = 0 \] \hspace{2cm} (2.19)

The torsion tensor \(S \) of the connection \(E \) satisfies the following relations

(a) \(S(\overline{X}, Y) = 0 \)

(b) \(S(X, \xi) = \overline{X} \)

(c) \(S(\overline{X}, \xi) = \overline{X} \)

(d) \(S(X, \xi) - S(\overline{X}, \xi) = 2X - 2\eta(X)\xi \)

(e) \(S(\overline{X}, Y) = \eta(X)\eta(Y)\xi - \eta(Y)X \)

(f) \(S(X, Y) = \eta(Y)\overline{X} \)

(g) \(\eta(S(X, Y) = 0 \)

Theorem 2.2. A generalised Co-symplectic Manifold \(M_n \) satisfies the following relations i.e. (a), (b), (c), (d), (e), (f) and (g) defined above.
Theorem 2.3. In a Generalised Co-Symplectic manifold \(M_n \) with connection \(E \), we have
\[
\begin{align*}
(a) & \quad \tilde{P}(X, Y, Z) = \frac{1}{2}[\eta(Y) F'(X, Y) - \eta(X) F'(Y, Z)] \\
(b) & \quad \tilde{P}(X, Y, Z) = 1/2[\eta(X) g(Y, Z) - \eta(X) \eta(Y) \eta(Z)] \\
(c) & \quad \tilde{P}(\bar{X}, \bar{Y}, \bar{Z}) = 0 \\
(d) & \quad \tilde{P}(\bar{X}, Y, Z) = 0 = \tilde{S}(\bar{X}, Y, Z) = 0 \\
(e) & \quad \tilde{P}(X, Y, Z) = \frac{1}{2}[\eta(Y) F'(X, \bar{Z}) - \eta(X) F'(Y, \bar{Z})] \\
\end{align*}
\]
where \(\tilde{P}(X, Y, Z) = g(P(X, Y), Z) \)

Theorem 2.4. In a Generalised Co-Symplectic Manifold \(M_n \) admitting connection \(E \) satisfied the following properties:
\[
\begin{align*}
(a) & \quad (E_X F')(Y, Z) = (\nabla_X F')(Y, Z) - \frac{1}{2}[\eta(Y) F'(X, Z) + \eta(Z) F'(Y, X)] \\
(b) & \quad E_F F'(Y, Z) = (\nabla_{E X} F')(Y, Z) \\
\end{align*}
\]
Proof: (a) We have
\[
\begin{align*}
X(F'(Y, Z)) & = (E_X F')(Y, Z) + F'(E_X Y, Z) + F'(Y, E_X Z) \\
X(F'(Y, Z)) & = (\nabla_X F')(Y, Z) + F'(\nabla_X Y, Z) + F'(Y, \nabla_X Z)
\end{align*}
\]
which implies
\[
(E_X F')(Y, Z) = (\nabla_X F')(Y, Z) + F'(\nabla_X Y, Z) + F'(Y, \nabla_X Z) - F'(E_X Y, Z) - F'(Y, E_X Z) \\
= (\nabla_X F')(Y, Z) - 1/2[\eta(Y) F'(X, Z) + \eta(Z) F'(Y, X)]
\]
Using equation (2.10), we get (a). Again baring (a), we get (b) and (c).

III. Curvature Tensor of \(M_n \) with Respect to Connection \(E \)

Let \(\tilde{R} \) be the curvature tensor with respect to the semi-symmetric metric connection \(E \) on a generalised co-symplectic manifold \(M_n \). Then
\[
\tilde{R}(X, Y, Z) = E_X E_Y Z - E_Y E_X Z - E_{[X,Y]} Z \tag{3.1}
\]
We have the following results:

Theorem 3.1. In a Generalised Co-Symplectic Manifold \(M_n \) curvature tensor \(\tilde{R} \) is given by
\[
\begin{align*}
\tilde{R}(X, Y, Z) & = R(X, Y, Z) + \frac{1}{2}[S(X, \nabla_Y Z) + S(\nabla_X Z, Y)] + \frac{1}{2}\eta(Z) S'(X, Y) \\
& \quad + \frac{1}{2}\eta(Z) [\nabla_X Y - \nabla_Y X] + \frac{1}{2}[\eta(Y) \nabla_X Z - \eta(X) \nabla_Y Z] \\
& \quad - \frac{1}{2}(\nabla_Y \eta(Z)) X - \frac{1}{2}\eta(Z) [X, Y] + \frac{1}{2}[\eta([X,Y]) Z - ([\nabla_X \eta] Y) Z] \tag{3.2}
\end{align*}
\]
where
\[
S'(X, Y) = \eta(X) Y - \eta(Y) X \\
R(X, Y, Z) = \nabla_X \nabla_Y Z - \nabla_Y \nabla_X Z - \nabla_{[X,Y]} Z
\]
Proof: Let \(\tilde{R}(X,Y,Z) \) be the curvature tensor for generalised co-symplectic manifold with respect to the semi-symmetric metric S-connection \(E \), then

\[
\tilde{R}(X,Y,Z) = E_X E_Y Z - E_Y E_X Z - E_{[X,Y]} Z
\]

By using equations (1.1),(1.2),(1.11),(1.12),(1.13) ,(2.9) and (2.12), we get equation (3.1), where \(R(X,Y,Z) \) is curvature tensor of \(M_n \) with respect to the Riemannian Curvature \(\nabla \).

Let \(K \) and \(\tilde{K} \) be curvature tensor of type (0,4) given by

\[
K(X,Y,Z) = g(R(X,Y,Z), U)
\]

\[
\tilde{K}(X,Y,Z,U) = g(\tilde{R}(X,Y,Z), U)
\]

Theorem 3.2. In a Generalised Co-Symplectic Manifold \(M_n \), we have

\[
\tilde{R}(X,Y,Z) + \tilde{R}(Y,Z,X) + \tilde{R}(Z,X,Y) = 0 \tag{3.3}
\]

If

\[
2[((\nabla X \eta) Z) \nabla Y + ((\nabla Y \eta) X) \nabla Z + ((\nabla Z \eta) Y) \nabla X] + \eta([X, Z]) \nabla Y + \eta([Y, X]) \nabla Z + \eta([Z, Y]) \nabla X = 0 \tag{3.4}
\]

and

\[
\tilde{K}(X,Y,Z,U) + \tilde{K}(Y,X,Z,U) = 0 \tag{3.5}
\]

If and only if

\[
g((\nabla Y \eta(Z)) \nabla U, U) + g((\nabla X \eta(Z)) \nabla U, U) = 0 \tag{3.6}
\]

and

\[
(\nabla Y \eta) X + (\nabla X \eta) Y = 0 \tag{3.7}
\]

Proof: Using equation (3.2) and the first Bianchi identity

\[
R(X,Y,Z) + R(Y,Z,X) + R(Z,X,Y) = 0
\]

with respect to Riemannian Connection \(\nabla \), we get eq.(3.3) and (3.4). We have

\[
\tilde{K}(X,Y,Z) = g(\tilde{R}(X,Y,Z), U)
\]

\[
= g(R(X,Y,Z), U) + \frac{1}{2} g(S(X, \nabla Y Z), U) + \frac{1}{2} g(S(\nabla X Z, Y), U)
\]

\[
+ \frac{1}{2} g(\eta(Z)[\nabla X \nabla Y - \nabla Y \nabla X], U) + \frac{1}{4} g(\eta(Z)[\eta(X)Y - \eta(Y)X]
\]

\[- g(((\nabla X \eta) Y) \nabla Z, U) + \frac{1}{2} g((\eta(Y) \nabla X Z - \eta(X) \nabla Y Z), U)
\]
We get

\[\tilde{K}(X, Y, Z, U) = -\tilde{K}(Y, X, Z, U) \]

(3.8)

If

\[g(\nabla_Y \eta(Z), X, U) = -g(\nabla_X \eta(Z), Y, U) \]

(3.9)

and

\[(\nabla_Y \eta)X + (\nabla_X \eta)Y = 0 \]

(3.10)

IV. Nijenhuis Tensor of \(M_n\) with Respect to New Connection \(E\)

The Nijenhuis tensor with respect to \(E\) of \(F\) in a generalised Co-symplectic manifold \(M_n\) is a vector valued bilinear scalar function \(N_E\), is given by

\[N_E(X, Y) = (\nabla_X F)Y + S(X, Y) - (\nabla_Y F)X + \overline{\nabla_X F}Y + \overline{\nabla_Y F}X \]

(4.1)

Using equation (1.16), we get

\[N_E(X, Y) = N(X, Y) + S(X, Y) + 2\overline{\nabla_X F}Y \]

(4.2)

where \(N\) is Nijenhuis tensor with respect to Riemannian connection and \(S\) is the Torsion tensor of connection \(E\).

Again by using equation (1.17), we get

\[N_E(X, Y, Z) = (E_X F')(Y, Z) - (E_Y F')(X, Z) - (E_Y F')(X, \overline{Z}) + \frac{1}{2} \eta(Y)[F'(X, \overline{Z}) + F'(X, Z)] \]

(4.3)

and

\[N_E(X, Y, Z) = N(X, Y, Z) \]

(4.4)

If and only if

\[(\nabla_X F')(Y, \overline{Z}) + (\nabla_Y F')(X, Z) - (\nabla_Y F')(X, \overline{Z}) = \frac{1}{2} \eta(X)[F'(Y, Z) + F'(Y, \overline{Z})] + \frac{1}{2} \eta(Y)[F'(X, \overline{Z}) + F'(X, Z)] \]

(4.5)

References

This page is intentionally left blank