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[. INTRODUCTION

Issue II Version I

Known [1,2,3] that normal wave deformable layer (Lamb wave) is not orthogonal
thickness, i.e. the integral of the scalar product of vectors of displacements of two
different waves, considered as a function of position perpendicular to the surface layer is
not zero. They are also not orthogonal conjugate wave, which is obtained from a
consideration of the dual problem. This introduces additional difficulties in solving
practical problems. This article is based conjugate spectral biorthogonality objectives
and conditions for the problem.

XVI

(F) Volume

a) The mathematical formulation of the problem
We consider the visco elastic waveguide as an infinite axial x, variable thickness
(Figure 1).
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Figure 1 : Design scheme: plates of variable thickness

Author a o p: Bukhara Technological-Institute of Engineering, Bukhara, Republic of Uzbekistan. e-mails: safarovb4@mail.ru,
maqsud.axmedov.1985@mail.ru, lazizbek.axmedov.2011@mail.ru

© 2016 Global Journals Inc. (US)



Global Journal of Science Frontier Research (F) Volume XVI Issue II Version I E Year 2016

Basic relations of the classical theory of plates of variable thickness can be
obtained on the basis of the principles of virtual displacements. The variation equation
problem visco elasticity theory in three-dimensional statement has the form

[[[(c,02, + pu,du, Yaxydx,dx, =0 (=123 j=123) (1)

where  p- material density; u, — displacement components; o; and ¢; —
components of the stress tensor and strain; h- plate thickness; V — the volume occupied

by the body. In accordance with the hypotheses of Kirchhoff - Love

i

ow
O =0,=045=0, u, =—x;3—, w(x;,1) =w. (2)
ox,
Neglecting in (1) the members of which take into account the inertia of rotation
normal to the middle plane, will have the following variation equation:

h h

2 2 82
Ids I (0,08, + 21,,08,, + T,,086., Hx; + I dsj 8; owdx, =0 (3)
S s h

N

2

Based on the geometric relationships and relations of the generalized Hooke’s
law, taking into account the kinematic hypotheses (2), the expressions for the
components of the strain and stress tensor has the form

. Ou, 2
81..:1 ou, + " — X3 0w , i,j=12;
b2\ ox;  ox Ox,;0x ;

E E
Oy = 1 (‘911 + ngz); Op = (522 +‘/“311);
-V 1-v

E
Op = €12,
1+v
E,o(t)= Ey,| ()= [ Ry, (t—2)pl(t)dr |, (5.,0)
0

where ¢(f)— arbitrary function of time; v — Poisson’s ratio; R, (t—7)— the core of
relaxation; E,, — instantaneous modulus of elasticity; We accept the integral terms in (5,
a) small, then the function ¢(t)=w(t)e", where w(¢)- slowly varying function of time,
o, - real constant. The [7], we replace of (5,a) approximate species

L_?n(p:EOj[ZI.—FjC(a)R)—iFjS(a)R)]fp, (5,0)

where Fnc(wR)szEn (r)cosw,r dr Fns(a)R):J.REn (r)sinw,rdr , respectively, cosine and
. . 0 . o . . .
sine Fourier transforms relaxation kernel material. As an example, the visco elastic

_ 1-
material take three parametric relaxation nucleus R, (l )= Ae Pt [ “ . Here
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Notes

A4 ,a

nt

B,- parameters relaxation nucleus. On the effect of the function Rp, (f—T )

superimposed usual requirements inerrability, continuity (except t =T), signs -

certainty and monotony:

dR,,

R, )0, <0, T R, ()dt(1.

Introducing the notation for points

2 2 2 2
Mllzﬁ(a W+v8_W}M22 25(2—W+v8 W];

x? x5 X2 ox;?
— o%w — En®
M,=D(1-v D = :
2 ( )ﬁxl ox, 12(1-v?

Eh®

When R (f - T):O then D= 7—) Here E is the modulus of elasticity.
! ’ 12(1-v?

Integrating (3) in the strip thickness leads to the following form

2 12 2
. ox; 0Ox,0x, ox,

S

2 2 2 2
I(M11M+2M 0"ow -|-M22a 5Wst—Iph%5\4/dS:0. (6)

Integrating twice by parts and alignment to zero, the coefficients of variation o

w inside the body and on its boundary, and we obtain the following differential

equation

‘M ‘M ‘M
88x2” + ZZX axlz + aaxzzz + phiv =0, (iv=20% w/or?)
1 2 2

with natural boundary conditions:

0
M _o
Ox,
w=0,x,=0:1l
0
M _0
ox, x, =01
w=0;
The main alternative boundary conditions to them
M, =0
oM oM
24+2—=2=0x,=0; |,
ox, Oox,

(7)

(10)
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M,=0
11
8M11+28M12=0;x1=0:11. (11)
ox,; ox,

For, we construct a spectral problem by entering the following change of variables

e o
ox,
= o'W o'W M, oM
S ZL —t+— | Q_ z 2. (12)
ki ox; ox; X, Oxl
Substituting (12) into (7) we obtain the differential equation of the system
B relatively sparse on the first derivatives x, -
5 Q aM+D(1 V) (p+ph6W 0;
. ox, axl ox, ot?
2
_ M _0-p'a-n2=o;
% 0x, ox;
£ o Y
= 5% 2 o, (13)
- axz 5)61
w
- ow
- ——p=0:
;—; 8x2
f and alternative boundary conditions x,_0: x,=1;:
3 2
= =0 or M—D(l—v)aj\j:O; (14)
8 oxy
; azq)
5 W=0 or 0+D(l-v)— =0.
_ X
i and x,=0, x,=I,
5 = o°M
9=0or M-D(1-v) =0
ox1
0%
| W=0o Q+D(1- v)azzo (15)
X1

Now consider the infinite along the axis x, band with an arbitrary thickness
changes h=h(x,). We seek a solution of problem (13) - (15) in the for

2016 Global Journals Inc. (US)
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O.M, o) =(0,M,5,7) e (16)

Describing the harmonic plane waves propagating along the axis x,. Here
(Q M, 9, W)T— complex amplitude - function; &k — wave number; C (C = C, +iC; )—
complex phase velocity; ® — complex frequency.

To clarify their physical meaning, consider two cases:

1) &k = ki C =Cy +iC, (@, = ®, +iw, Jthen the solution of differential equations (13) has the
form of a sine wave at x,, whose amplitude decays over time;
2) k = kp +ik; C = Cy, Then at each point x, fluctuations established, but x, attenuated.

In both cases, the imaginary part k; or C; characterized by the intensity of the
dissipative processes. Substituting (16) in (17), we obtain a system of first order
differential equations solved for the derivative

Q' —a’M —a’D'(1-v)p - pha*W =0
M'-0 +a?D' A=) =0,

_ _ 17
5’—iM—a2W=O; (17)
- D
wW'-¢=0
with boundary conditions at the ends of the band x,=0, 7, one of the four types
a. swivel bearing: W =M =0; (18)
6. sliding clamp: 0 =9 =0 (19)
B. anchorage: W =9 =0 (20)

M +a’D (1-v)W =0
r. free edge: ¢ _ @D V_) (21)
0-a’(1-v)Dp =0

Thus, the spectral formulated task (17) and (21) the parameter o”, describes the
propagation of flexural waves in planar waveguide made as a band with an arbitrary

coordinate on the thickness change x, It is shown that the spectral parameter o It
takes complex values (in the case of Ry, (f - T);é()) If R, (f - T):O, whereas the
spectral parameter o’ It takes only real values. Transform this system (17). We have
0'= M"+D"(l-)a’ + D'(l-v)a’p
From whence
M"+D"1-v)a®W —a’M — phw*W =0
Moreover

Ay Y
D

Thus, the conversion system is of the form
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]W"—azﬂ—(pha)z—5”(1—\/)052) W =0
W' —a? -~ =0
D

The boundary conditions (18) - (21) in alternating W, M it has the form:

a. swivel bearing: W =M =0, (23)
.1 —, —, 2=, - Notes
6. sliding clamp: W'=M"—a*D'Q1-v)W =0 (24)
B. anchorage: W=w'=0 (25)
M +a*DA-v)W =0
r. free edge: _ _ (26)
M —a®(-v)(DW) =0

at x,=0 or x,=+1,

Let Mand W some own functions of the system (22) - (26) may have a
complex meaning. Multiply the equation system (22) to function M and W, complex

conjugate to M and W . Identical converting the first equation, we integrate the
resulting equality x, and composed of the following linear combination

Iy . Iy —_ I, —
jM’dez —az(l—v)I(BW)"dez +a?(l- v)j(BW)"Warx2 -
0 0 0

Iy - Iy ~ Iy -
—aZJMdez —a)szhWdeZ —oﬂ(l—v)jﬁ”l/?Wabc2 + (27)
0 0 0

+ TW"Z\;Ide —az]z-WZ\}dxz —]%]W'?dez =0
0 0 0

Integrating (27) by parts,
ly

1, L ~ _
— [ [M'W'+ MW dx, +
0

0

- a2 vy

lh lh ~
+a2(1—v)J5W'W’dx2 —azj' [MW'+ MW dx, +
0 0

I ! l, ~—

2 o~ 2 o~ 2 . Al

+2a2(1-v) D”Wde2—a)z_[phWdez—J‘M’?deZJrWM(2)+
0 0

0

l

+2a’(1-v)[DW"

0

—~

I _ A -
dx, +a’(1-v)| D'WWix,+a*(1-v)] DWV"Wdx, =0
0 0

or
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Ref

16. M. A. Neumark, Linear differential operators. Publishing Moscow, 1969. - 526 p.

[M'—az(l-v)(DW)'}V% ’ ‘

{]\:[ +a’(l- v)EVI;}W’ )

0
l l

—J(M'VI}’+A}’W' xz—azj(WA;[+Vl;A7)dx2— (28)
0 0
f MA} 212 — 2 ‘32_" = 2 ‘32_’ = ,
—J.fdxz—a) | phiwiwas, - 20 (1-v)[ D"Witdx, + (1—v)jD(WWj dx, =0.
0 0 0 0

It is easy to make sure that is the integral terms of (28) vanish at any
combination of the boundary conditions (23) - (26). It should also be noted that all the

functions under the integral valid at R, (t -7 ):0. The expressing o (28) We find that

—~

I o L IZMM Iy -
[T+ MW Y dx, + [“=dx, + &° | phIWWdx,
2 — 0 0 D 0
o~ L - L -
J(MW+MW)dx2 - 2(1—1/)_[D"W Wdx, — (1— v)jD’(WW)'dx2
0 0

0

a - real number.

Thus (with Rp, (f -7 ):()), It is shown that the square of the wave number for
own endless strip of varying thickness is valid for any combination of boundary
conditions. If R, (f - T)¢ O, then @? It is a complex value for any combination of

boundary conditions.

[I. ADJOIN SPECTRAL PROBLEM, ORTHOGONALITY CONDITION

The resulting spectral problem (17) - (21) is not self-adjoin. Built for her adjoin
problem using this Lagrange formula [16]

) 1
[L)-V*dx=ZU,V*)|- [L*(V*)-Udx, (29)
0 00

where L and L* - direct and adjoin linear differential operators; U and V* - arbitrary
decisions of relevant boundary value problems.

In our case
I 0 2 2 2 ]
— -« ~a’D'(l-v) - pho
ox,
0 27y
-1 — 0 ~a’D'(1-v)
I ox,
- , 30
: L T &2
D ox,
0 0 -1 i
i ox,

on the left-hand side of equation (29) will be as follows

© 2016 Global Journals Inc. (US)
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J%[Q@ —a21\7§' —azﬁ'(l—v)(/_)Q' —pha)ZWQ' +M'M* —Q]W' +

31)
N L (
DA M +5'p" ~=Mp" ~a’Wp" + 17" " Jix, =0
or, integrating parts
o o 1, Iy

) 00" +MM* +0p° +WW* ]\—I[(Q + MO +(M" +a°0° +

= 0

5 1_ 27

~ 3 P IM +(p° +W +a’D'(l-v)Q" )(p+(W +a’p” — (32)
m 21! FWa 2 S e\T117

- —a’D'(1-v)M" + pha®Q " )W kdx, =0

% Thus the conjugate (30) - (32), the system has the form

B 0" +M"* =

. M +a%0" +L5° =0

5 , b (33)
Y o' +W'+a’D'(1-v)0° =0

3 W —a’D'(l-v)M* +a’p" + pho’Q° =0

:f_\ Moreover, we get tlhe conjugate boundary conditions of equality to zero is
<  integral members Z(U, V*)| expression in (32):

s 0

—fz a. swivel bearing: " =0 =0, x,=0, 1, (34)
§ 6. sliding clamp: W*=M" =0, x,=0, [, (35)
2 B. anchorage: M'=Q"° =0, x,=0, [, (36)
g 9 +a’D(1-v)0° =0,

— r. free edge: {—, — .

£ W*'-a’DA-v)M* =0, x,=0, [,

f For conditions biorthogonality solutions once again use the Lagrange formula
:§ (29) in the form

j[L(U)V' + L") Jdx = (37)

| that leads to the consideration of the following integral

Iy

[|2/0; - afM,@; - a?D' 0~ v)90; - pho W0 + M, M

0

2016 Global Journals Inc. (US)
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— ——. —e l Ty —e 77 —e
- OM: +a’D'A-v)W.M; +0/p] —=Mp] - a® W, o) +
+W' W - W' +0 0, +M:0,+M; M, +a®,M0; + (38)
1 — e ! o — LX]

DM(DJ +Q,0; +W g0l+a2D(1 v)QO; qol+WW +

+aWp; —aiD'A-v)WM; + phw®Q W,]dx, =0,

where (O, , M, 0, W,)" - own form, corresponding to the Eigen value o, original spectral

problem; (Q M /,(ﬁ J' ,Wj°)T— own form, corresponding to the Eigen value o, adjoin.

Integrating (38) by parts
I, o o o o . .
(o? ~a?) D 17,0 -D'-v)0;9. + D0~ )M -5 i, + (39)
0

{5(1—1/)@_;@ ~DQ@A-v)W,M; ]lcz) =0

where to i#j we have the condition biorthogonality forms:

7, + D'a-v)2)0; + 7,7 = D'~ s, +
O (40)
=0,

ij

+D-VWM;-0'5]|"

The expression W,M; —Q(Bl zero, if the border is set to any of the conditions
(18) - (21) in addition to the conditions of the free edge.

[11. FIXED PROBLEM FOR A SEMI-INFINITE STRIP OF VARIABLE THICKNESS.

Consider a semi-infinite axial x; lane variable section, wherein at the end (x,
=0) harmonic set time exposure of one of two types of:

W=f,(x,)e", M,=f,(x,)e”, x, =0 (41)
or
(Dlzf(p(xz)eiwt' lefQ(xz)emt’ x, =0 (42)
where
_aw 0,=D oW —+2(1-v) oW 43
& o, . Ox,0x; (43)
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Transform the boundary conditions (41) so that they contain only selected our
variables W,¢p, M and Q

oW 0w
la}t + it =0’
fw(xz) (8)612 8x2 ] Su(x5)e™, x,
8 o°w oW
— lwt 21 la)t =0’
f( 2) [G‘xl d-v) aXlaxzj ( 2)e Xq
or
o = OW oW o°W jax
W= f,(x;)e™, D( 7tV j D(l V) _fM( e, x; =0,
ox; ox? ox?
ow w O |=[0W oW o (oW .
I o 91D + +D(1-v) | 2% | = o x, =0,
or, el 8x1{ (axf o ﬂ =)oz [lej folx)e™
Of finally
W= f,(c)e™, M =[f, (x,) + DA-v) f1(x,) ™, x, =0 (44)
8W it aM n 4 it
a—=f¢,(x2)e , —Z[fQ(xz)—D(l—V)f¢(xz)]€ , x =0 (45)
X, ox,

Assume that the desired solution of the no stationary problem can be expanded
in a series in Eigen functions of the solution of the spectral problem. In the case of

constant thickness it is evident, and in general, the question remains open.
The solution of the stationary problem (17) - (21) (41) - (42) will seek a

w W (x3)
_ W §0k (xz) —z(aerwl) 46
=2 () w
0 Qk (x)

where VV,{, @, gk, M « - biorthonormal own forms of the spectral problem (17) —
(21).

The representation (46) gives us the solution to the problem of non-stationary
wave in the far field, i.e., where it has faded not propagating modes. The number of

propagating modes used N course for each specific frequency ®, since the cutoff
frequency is greater than the other .

Consider two cases of excitation of stationary waves in the band:
a) f,=0 — antisymmetric relative x;;
6) f,=0 — symmetric.

In the case of antisymmetric excitation, substituting (46) into (44) and
expressing f,(x,), obtain

fule) = e M, (). (47)

2016 Global Journals Inc. (US)
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Value biorthogonality (40) gives expression to determine the unknown coefficients
a = IfM (xz)gk.(xz)dxr
0

In the case of a symmetrical excitation fQ(xz) We obtain rearranging (46) to
(45) in the following form

Jolx;) = Z(_iakakMk (x,)) (48)

Biorthogonality ratio (30) gives
i " -
a, = _Ifg (x,)Q/ dx, (49)
% o

IV. TESTING SOFTWARE SYSTEM AND STUDY THE PROPERTIES OF PROPAGATION OF
FLEXURAL WAVES IN A BAND OF VARIABLE THICKNESS
Testing program was carried out on the task of distributing the flexural waves in

a plate of constant thickness. Consider the floor plate of constant thickness infinitely
satisfying Kirchhoff-Love hypotheses, with supported long edges (Figure 1).

at end face x,=0 specified:
w=t,(x,) ¢, M, =t,(x;) & (50)
Spread along the axis x; flexural wave is described by the differential control
system (13)

2
0+ IM o = 0(w" = 02wl or?)
Ox;

M'-6=0,

1 o*w
—-—=M +
4 D ox?
w—-p=0, h=h,

=0

with boundary conditions of the form (15)

0w

w=0,M —D(1l—v =
( )8x21

0, x,=0,7 . (52)

Introducing the desired motion vector in the form of

&) o

M M
= e

P P
w w

—i(ax,—awt)

Go to the spectral problem

© 2016 Global Journals Inc. (US)
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O'—a*M — o’ phW =0,
M'-0 =0,
S N — (54)
’—: - W = O,
v D
W'-p =0,
with the boundary conditions NO tes

W =0, Z\7+5(1—v)a21/7:0, x,=0,7

or
W=0 M=0, x,=0, 7. (55)

Rewrite the system (54) as follows

Ay
D

_ _ _ o6
M"—a’M — w?phW =0, (56)
and W =0, M =0, x,=0, 7.
We seek the solution of (56) in the form
W =a, snnx,,
. (57)
M =a,, Sinnx,,(n=12,...)
satisfying the boundary conditions (55).
We obtain an algebraic homogeneous system
2 2
—-n‘a, —a‘ay _faM =0 .
~n®a,, —a’a, —w’pha, =0 (58)

For the existence of a nontrivial solution, which is necessary to require the
vanishing of its determinant

1
2 2
det] 7T 5 |=o,
o’ ph n’ +a’
or
2 | 2
O, +n (59,a)

© 2016 Global Journals Inc. (US)
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where, when R, (t - T):()

h
a, =-n"=* a),/%. (59,b)

Ownership of constant thickness strip bending vibrations are of the form

w2 =SiNnxs,;

n

M *? =+w\phD sinnx,; (60)

1,2
@, = =ncosnx,;

0,"* =Fw\ ph D cosnx,.

We construct the solution of the problem adjoin to (54)-(55)

W* +a’p" + pho®Q* =0,

!

p" +W*"=0
]\7*’+i_° +a?0° =0 (61)
p? !
O +M*=0
and
p*=0, 0*=0, x,=0, =. (62)

Transforming (61) - (62) we obtain the following system of first order differential
equations

(63)

The solution of (63) in the form
@' =a,sSiNnx,, @'zaésinnx2 (64)
From whence «/, It has the same form (59a), own forms of vibrations are of the form:

© 2016 Global Journals Inc. (US)
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@:% = w4 phD sinnx,,

0™ =sinnx,,

_ — (65)
Wn'l'2 =tnw4 phD cosnx,

M™% =ncosnx,.

For biorthogonality conditions direct solutions and the adjoin problem is Notes
necessary to consider the following equation

_ol_ 1 —e1r Aeis —’—o 1 17 e 7 == —o,—
+Mj Mi +3¢_;‘Mi +a/2Q/ Mi T, (/)j _EMi ¢)/ _aizWi(/)j +¢_,‘ 0+ (66)

!

+W o +W W' -’ +W

(]
i i J

'— 2—e1yr 2 AT

W, +a’G)W, + pho*0; 7 Jix, = 6,

where Q, M 7 V7, — own form for the direct problem, the corresponding Eigen
values «;, and Q7, Z\7;, P Wj - own form of the dual problem, the corresponding

Eigen value «; Integrating by parts in (66), using the boundary conditions (55) and
(62) we obtain the desired condition:

]E[MIQ; +Wo; ]"xz =0 - (67)

We now verify biorthogonality received their own forms (60) and (65) using the
condition biorthogonality (67)

]i[w/phls Sin(ix,) - Sin(jx,) + 1/phESin(ixz)Sin(sz)}ix2 =

= 2./ phD J‘Sin(ix2)Sin(sz)a’x2 = 71+ phD J,
0

The normalized adjoin eigenvector on 7+/phD , we have a system of eigenvectors
satisfying the condition (67).
We now obtain the solution of the problem of the distribution of the stationary

wave in the semi-infinite strip of constant thickness. Suppose that at the border x,=0
set the following stationary disturbance:

w=We" =b, sin(nx,)e'™,

(68)
M = Me'™ =b,, sin(nx,)e’™, x,=0
We seek a solution of a problem
w(xl,xz,t):Zaka aM(xl1x2’t):ZakMk (69)
=1 k=1
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where
W, =Wi(x,)e "™, M, =M(x,)e """,

a V7k u M « - own form (60), corresponding to oy

It is evident from the band at the end face at x,=0 decision (69) must satisfy the
boundary conditions (68)

by sin(nx,)e™ =" a, W, (x,)e",

k=1
; iot i iot
b,, Sin(nx,)e"” = ZakMk (x,)e™,
k=1
or go to the amplitude values

b, sin(nx,)e™ =Y a,W,,

k=1
b, sin(nx,)e™ = a,M,, (70)
Consider the following integral

.HMQ +W(p/ ]dx2 J.|:i kﬂké; +iakl/7kg5]f}dx2 =

k=1 k=1 (71)
:ZakJ.[M 9) Wkaj’]dxz—a
k=1 0

On the other hand on the edge x, = 0 the same integral as follows

15y sin(nx,)0; + b, sinux,)7; b, (72)
0
Substituting in (72) from the normalized own form (65) we obtain
J[b SN(nx,) ———Sin(jx;) £b, 0 (n.x;) “sin (i) i, =
T+ phD

(73)

e P ein () -sinGin,) b,
T p]’lD T 0

From a comparison of the formulas (71) and (73) it is clear that under such
boundary conditions is excited only "n” - Single private form:

a; =6, bu +bwa) (74)
! 2\ phD 2
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Thus, the solution of the no stationary problem for a half-strip of constant
thickness has the form

]W = (a_jv“L + a‘M‘ )e—i(zxx,—a)t) (75)
where
Wni =1sinnx,, M,,i =10, phljsinnxz, a a; - determined from the ratio (74). Ref

Now suppose that the steady influence on the border of semi-infinite strip x,=0 it
has the form

w=f,(x)e”, M= f,(x,)e” (76)

Let us expand the function f,, and f,, Fourier series of sinus in the interval [0,rx]

fule) = 2 BESNGx), fy () = 3bl sin(hxy) (1)

dyLT-TLT ‘g10A

Using the results of the previous problem, we find that the solution can be
represented as a Fourier series:

Z(ak W' +aW, )e_i(mf_“’t)

k=1
M = y (a+ - +a7M7)e_i(w"_“”)
Ve T A My (78)

k=1

N b, blw S . :

where a, = —+ , aW,”, M,” determined from the ratio (60).
2/phD 2
V. NUMERICAL RESULTS AND ANALYSIS

The numerical solution of spectral problems carried out by computer software
system based on the method of orthogonal shooting S.K. Godunov [4] combined with
the method of Muller. The results obtained in testing with the same software package
analytically up to 4-5 mark frequency range from 0.01 to 100. Hereinafter, the entire
analysis is conducted in dimensionless variables, in which the density of the material p,
half the width of the waveguide /, and E modulus taken to be unity, and the parameters
of relaxation kernel 4=0,048, =005 «a=01.

‘OT°T, ‘T90T ‘SA0AIng [edryewoyje]\ URISSTY - 'SUOIIRNDO [RIJUSIOHIP AIRUIPIO IROUI]
JO swv)sAs 10j swoqold onjeA AIRpunoq Jo UOIIN[OS [RILISWNU 9} U() ‘AOUNPOr) S °F
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Figure 2 : The dependence of the phase velocity on frequency

mecm, h=const

0 2 4 6 8

Figure 3 : The dependence of the frequency of the wave

The calculation results are obtained when A = 0. Figure 2 shows the spectral
curves of the lower modes of oscillation of constant thickness plate, the corresponding
n=0, 1, 2, 3, 4, 5 for Poisson’s ratio v=0,25. Analysis of the data shows that the range
of applicability of the theory of Kirchhoff-Love to a plate of constant thickness is
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limited by the low frequency range. For example, for the first mode (h = 0), the range
of application of the theory 0<®m<3 because of the unlimited growth of the phase

propagation velocity with increasing frequency, for high frequencies C,C. ~\/5 .

At high frequencies, where the wavelength is comparable or less than the fashion
of strip thickness, there is, as is well known, localized in the faces of the Rayleigh wave
band at a speed slower speed C,, however, as is obvious, this formulation of the
problem, in principle, does not allow to obtain this result. However, it should be noted
that in the application of the theory of Kirchhoff - Love platinum constant thickness is
obtained the correct conclusion about the growth of the number of propagating modes
with increasing frequency that is well seen from the spectral curves of Figure 2 and
Figure 3, which shows the dependence of the wave number a the frequency for the same
modes of waves.

Figure 4 shows the obtained numerical form for the above modes of oscillations
coincided with the same accuracy (4-5 decimal places) in the division of bandwidth by
90 equal segments.

Figure 5 illustrates the solution of the stationary problem: the amplitude of the
excited oscillation modes linearly depends on the frequency .

We proceed to the propagation of flexural waves in a symmetric band Kirchhoff -
Love of variable thickness. Let us first consider a waveguide with a linear thickness
change, presented in Figure 6 and 7 which are free edges. Figure 8 shows the dispersion

curves for the first mode, depending on the verge of tilt angle ¢ /2. Curve I corresponds
to a strip of constant thickness h,=h, Curve 2 corresponds to a waveguide with an

angle of inclination of faces ¢/2 =7n/4 or tg ¢/2=1 and curve 3 corresponds to a
waveguide tg ¢/2=0,2. The figure shows that, unlike the bands in the case of constant

cross-section of the waveguide with a small tapered angle at the base of the wedge a
(Curve 3) there exists a finite limit of the phase velocity of the fashion spread, and

T 4
lim C, =2C; th

W—>0
where C, -. The speed of shear waves, which coincides with the results of other
studies [5,6,14,15] Thus, it is shown that -Lava Kirchhoff theory provides a wave
propagating in the waveguide is tapered with a sufficiently small angle at the base of
the wedge-speed, lower shear wave velocity and different from the Rayleigh wave

velocity. Moreover, these waves from a frequency distributed without dispersion. This
wave is called "wave Troyanovskiy - Safarov” [10, 12,13].

Figure 9 shows the waveform of the same frequency for w=10, from which it
follows that the strip of constant thickness behaves like a rod while at the wedge-shaped
strip there is a significant localization of waves in the area of acute viburnum, and the

more, the smaller the angle ¢. The above fact explains the Kirchhoff theory -Lava
applicability for studying wave propagation in waveguides is tapered, as the frequency
increases with decreasing length of one side of the wave modes, with different wave
localizes with the sharp edge of the wedge so that the ratio of the wavelength and the
effective thickness of the material is in the field of applicability of the theory. This
statement is true, the smaller the angle at the base of the wedge.

It should also be noted that the numerical analysis of the dispersion equation
(33) does not allow to show the presence of strictly limit the speed of wave propagation
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modes, since the computer cannot handle infinitely large quantities. We can only speak
about the numerical stability result in a large frequency range, which is confirmed by
research. For example, when #gp/2=0,2 value of the phase velocity of a measured
without shear wave velocity at w=3 and w=40 It differs fifth sign that corresponds to
the accuracy of calculations, resulting in test problem.

In the example h, = 0,0001, it certainly gives an increase of the phase velocity
when the frequency increases further, since such a strong localization of the wave to the
thin edge of the wedge, starts to affect the characteristic dimension - the thickness of
the truncated wedge, and Kirchhoff hypothesis -Lava stops working. To solve the
problem of acute wedge numerically is not possible, since the dispersion equation
contains a term D, and the thickness tends to zero flexural rigidity D behaves as a
cube and the thickness goes to zero. This significantly increases the ”rigidity” (ie the
ratio between the small and large coefficient) system, increases dramatically the
computing time and decreases the accuracy of the results. However, it is clear that you
can trust the results obtained where the agreed parameters 4, and a. We note also that
the numerical experiment showed no significant dependence of the phase velocity of the
first mode of the Poisson’s ratio v, and the fact that a family of dispersion curves with
different apex angles of the wedge have a similarity property: the ratio of the phase
velocity to the limit does not depend on the angle of the wedge ¢. On the modes,
starting from the second, the speed limit dependence on Poisson’s ratio becomes
noticeable - about 8.5% for the second mode when changing 0 <v < 0,5. Generally, the
limit speed increases with the stronger and the more the mode number.

Figure 10 shows the dispersion curves for the first modal wedge #gp,/2=0,2. The
figure shows that the speed of the first mode (curve I) is equal to zero for w=0 and
since the frequency =1, virtually unchanged. The speed of the second mode (curve 2)

is nonzero and finite for w=0 and stabilized at ©=3. The rest of the modes (curve
number matches the number of fashion) have a cut-off frequency, which can be easily

determined from Figure 11 (the dependence of the wave number a of the frequency),
and decreasing, stabilized (seen 3 and 4 modes) at top speed.

Figure 12 shows the evolution of the first waveform with the frequency o for

frequencies o=0,5; 1; 5 m 20. Pronounced localized form with increasing frequency.
Figure 13-16 shows the own forms respectively for 2-4 modes of vibration for different

frequencies: w = 1, 2, 3 and 4 (the number of grid points corresponds to the number
form). And here there are localized forms in the area of thin wedge edge. Figure 16

gives an idea of the degree of localization of the forms at the frequency o = 1,
obviously, the lower the number of forms, the stronger it is localized at the edge of the
wedge.

Figures 17-19 shows the spectral curves of the first three events in the case of the

nonlinear dependence of the thickness of the strip from the coordinates x..
h(XZ) = ho + thp, O<x2 < 1,

where the parameter p It was assumed to be 1.5; 2; 2.5; 3 (curves 1, 2, 3, 4,
respectively, curve ”0” corresponds to p = 1 - linear relationship).
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Figure 4 : Form for the higher oscillation modes

From the equation of ”0” with the remaining curve shows that they are located
on the horizontal high-frequency asymptote, monotonically to zero. The midrange is
observed a characteristic peak which is shifted to lower frequencies with an increase in
"p”. In accordance with the charts of waveforms at ris.20-22 quicker and localization of
motion near the edge of the waveguide.

Thus, it can be concluded that the phase velocity of the wave in the localized
waveguide edge is defined as the frequency increases the rate of change of thickness in
the vicinity of the sharp edge.

Figures 23-28 illustrate the solution of the stationary problem for a wedge-shaped
waveguide with a linear change in the thickness of the coordinates x, depending on the
location of the excitation zone, from which it is clear that the main contribution to the
resulting solution brings a sharp edge excited waveguides. Analysis of figures 23-25
shows that, if aroused sharp edge of the wedge is raised mostly first oscillation mode,

and ratio a, increases with increasing frequency.
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Figure 5 : The amplitude of the excited mode depending on the frequency

The amplitude of the remaining modes is not more than 5% from the first (0 =
10). Upon excitation of the central waveguide portion (fig.26 and fig.27) the amplitude
of oscillation is 20-50 times lower than when excited sharp edge and decreases with
increasing frequency. On Figure 28 shows the factors driving modes when the excitation
zone does not capture any region, the center of the waveguide. The oscillation
amplitude is also here oscillations 20-50 times less than in the first case. 26-28 of the
drawings can be made and another conclusion that in this case the entire frequency
range can be divided into zones, in which one of the modes propagates mainly. For
example, in the case of Figure 25:

O0<w<?2 I fashion; 2 < w < § Il fashion; 5 <w < 10 11T fashion, t. i.
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v
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Figure 6 : The settlement scheme
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Figure 8§ : The dependence of the real and imaginary parts of the phase velocity on
frequency
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Figure 10 : Dependence of the real and imaginary parts of the phase velocity on

frequency
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Figure 11 : Dependence of the frequency of the wave

Figure 12 : Changing the shape of the coordinate fluctuations X,
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Figure 13 : Changing the shape of the coordinate fluctuations X,
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Figure 14 : Changing the shape of the coordinate fluctuations
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Figure 15 : Changing the shape of the coordinate fluctuations
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Figure 16 : Changing the shape of the coordinate fluctuations
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Figure 18 : Changing the phase velocity as a function of frequency
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Figure 19 : Changing the phase velocity as a function of frequency
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Figure 20 : Changing the shape of the coordinate fluctuations
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Figure 21 : Changing the shape of the coordinate fluctuations
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Figure 22 : Changing the shape of the coordinate fluctuations
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Figure 23 : The change factor a depending on the frequency
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Figure 24 The change factor a depending on the frequency
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Figure 25 : The change factor a depending on the frequency

Figure 26 : The change factor a depending on the frequency
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Figure 27 : The change factor a depending on the frequency
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Figure 28 : The change factor a depending on the frequency
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On the basis of these results the following conclusions:

11.
12.

13.

On the basis of the variation equations of elasticity theory, the mathematical
formulation of the problem of wave propagation in the extended plates of variable
thickness. A system of differential equations with the appropriate boundary
conditions.

Showing that the square of the wave number for own endless bands of variable
thickness in any combination of the action of the boundary conditions.

Obtained spectral problem is not self-adjoin. Built conjugate problem for her.
Coupling system consists of ordinary differential equations with the appropriate
boundary conditions. With the help of the Lagrange formula obtained conditions
biorthogonality forms. The problem is solved numerically by the method of
orthogonal shooting S.K. Godunov in conjunction with the method of Muller.
Analysis of the data shows that the region with the imaginary theory of Kirchhoff-
Love to the plate of constant thickness is limited by the low frequency range. At
high frequencies, when wavelength comparable to fashion or less than the thickness
of the plate theory Kirchhoff -Love does not yield reliable results.

For the phase velocity of propagation modes in the band of variable thickness, there
is final repartition unlike the constant cross-section strip.
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