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Abstract-

 

When the states and properties of microscopic particles were described by linear SchrÖdinger  equation the quantum 
mechanics had a lot of difficulties, which cause a centenary controversy in physics and have not a determinate conclusions till 
now. Thus we used a nonlinear SchrÖdinger equation to replace the linear SchrÖdinger equation and to depict and study in 
detail the states, properties and rules of motion of microscopic particles. Concretely speaking, we here investigated the 
properties and rules of wave-particle duality of microscopic particles and its stability, the invariances and conservation laws of 
motion of particles, the classical rule of motion, Hamiltonian principle of particle motion, corresponding Lagrangian and Hamilton 
equations for the microscopic particle, the mechanism and rules of particle collision in different nonlinear systems, the uncertainty 
relation of position and momentum of particles, the features of reflection and transmission of the particles at interfaces as well as 
the eigenvalue and eigenequations of the particles, and so on. The results obtained from these investigations show clearly that 
the microscopic particles described by the

 

nonlinear SchrÖdinger  equation have exactly a wave- particle duality, motions of its 
centre of mass meet not only classical equation of motion but also the Lagrangian and Hamilton equations, its mass, energy and 
momentum and angular momentum satisfy corresponding invariances and conservation laws, their collision has the feature of 
collision of classical particles, the uncertainty of position and momentum of the particles has a minimum, it is a bell-type solitary 
wave contained envelope and carrier wave, which but differs from not only KdV solitary wave but linear wave, its eigenvalues and 
eigenequations obey Lax principle and possess plenty of unusual peculiarities. The above natures and properties of the particles 
are different completely and in essence from those described the linear SchrÖdinger equation in the quantum mechanics. This 
shows that to use nonlinear SchrÖdinger equation changes the intrinsic natures of microscopic particles in quantum mechanics 
and makes the microscopic particles have the wave-particle duality. Thus the centenary controversy in physics could be solved 
by this idea and theory. At the same time, these results impel the quantum mechanics to develop toward the nonlinear theory, or 
speaking, nonlinear quantum theory is a necessary

 

direction of development of quantum mechanics.
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s known, quantum mechanics established by several great scientists, such as, Bohr, Born, 
SchrÖdinger  and Heisenberg, etc., in the early 1900s [1-7] has served as the foundation of modern 
science in the history of physics and science and was extensively used to describe the states and 

properties of motion of microscopic particles. When the developmental history of quantum mechanics are 
remembered we find that its some fundamental hypothesizes and principles were disputed also about one century. 
What is this? This is due to plenty of difficulties and contradictions existed in quantum mechanics. An astonishing 
problem is that these disputations have not an unitized conclusion up to now[8-15]. This means that these difficulties 
are stern and crucial. After undergoing one centenary disputation we now ask what are the successes and 
shortcomings of quantum mechanics on earth? what are in turn the roots and reasons resulting in these difficulties 
and questions? Can or cannot these difficulties be solved ? How do we solve these difficulties? A series of problems 
need us to solve and are also worth to solve seriously, at present. In order to investigate and solve these problems 
we have to look back to these fundamental hypothesizes of quantum mechanics. These hypothesizes can be 
outlined as follows[1-12].

(1) The states of microscopic particles is represented by a vector of states ψ in Hilbert space, or a wave 

function ( ),r tψ 
in coordinate representation. It reflects the properties of wave of motion of the microscopic

particles and can be normalized (i.e. ψψ =1). If β is a constant number, then both ψ and β ψ
describe a same state.

A

(2) A mechanical quantity of microscopic particle, such as, coordinate x, momentum p and energy E, etc., is 
represented by an operator in Hibert space. An observable mechanical quantity corresponds to a Hermitean 
operator, the eigenvectors of its state constructs a basic vector in the Hibert space. This shows that the values 



some real numbers. The eigenvectors corresponding to different eigenvalues are orthogonal with each other. 
A common eigenstates of commutable Hermitean operators are constituted as an orthogonal and complete 
set, { Lψ }. Any vector of state, ( ),r tψ 

 

may be expanded by it into a series as follows:

 
 

 

                         ),( trψ (= (∑
L

LL trC ),ψ ,     or       )( ∑=
L

LLtr ψψψψ ,                                          (1)

 
where ψψ LLC =

 

is the wave function in representation L. If the spectrum of L is continuous, then the 

summation in Eq.(1) should be replaced by an integral: ∫ dL . Equation(1) can be regarded as a projection of 

wave function

 

( ),r tψ 
of the microscopic particle system in the representation, The Eq.(1) is the foundation of 

transformation between different representations and of measurement of physical quantities in quantum mechanics. 
In the quantum state described by ( ),r tψ 

, the probability getting the L’ in the measurement of L  is 
2

LC

 

=
22

'' ψψψ LL = in the case of discrete spectrum, the probability is dLL

2
' ψψ in the case of continuous 

spectrum. In a single measurement of any a mechanical quantity, only one of the eigenvalues of corresponding 
operator can be obtained, the system is then said to be in the eigenstate belonging to this eigenvalue.  

The two hypothesizes are the most important assumptions and stipulate how the states of the microscopic 
particles are represented in quantum mechanics

 

(3)

 

A mechanical quantity in an arbitrary state ψ

 

can only take an average value by  

                                             ψψψψ /
^^
AA = ,  or   ψψ

^^
Α=Α                       

  

                        (2)

 

whenΨ is normalized, i.e., possible values of the physical quantity, A, may be obtained by calculating this average. 
In order to find out these possible values, a wave function of states must be firstly known. Condition for determinate 

value the quantity, A, has in this state is 
2∆Α =0. Thus we can obtain the eigenequation of the operator Â to be as 

follows

 

                                                                                 Â =Lψ Â Lψ

 

                                                                           (3)

 

From this equation we can determine the

 

spectrum of eigenvalues of the operator

 

Â and its corresponding 
eigenfunction LΨ . The eigenvalues of

 

Â are possible values observed from experiment for this physical quantity. All 
possible values of Â in any other states are nothing but its eigenvalues in its own eigenstates. This hypothesis 
reflects the statistical nature in the description of microscopic particle in quantum mechanics.

 

(4)

 

Hilbert space is a linear one and the mechanical quantity corresponds to a linear operator. Then 
corresponding eigenvector of state, or wave function, satisfies the linear superposition principle, i.e., if two 

states, 1ψ and 2Ψ

 

are ones of a particle, then their linear superposition:

 

                                                                    2211 ψψψ CC += ,      

 

                                                                (4)

 

describes also the state of the particle, where 1C

 

and     C 2 are two arbitrary constants,. The linear superposition 
principle of quantum state is determined by the linear characteristics of the operators and this is why the quantum 
theory is referred to as linear quantum mechanics. However, it is noteworthy to point out that such a superposition is 
different from that of classical wave, it does not result in changes in probability and intensity of particle.  

(5)

 

Correspondence principle. If the classical mechanical quantities, A and B, satisfy the Poisson brackets:
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{A,B}=

 

∑ 







∂
Β∂

∂
Α∂

−
∂
Β∂

∂
Α∂

n nnnn qppq

where nq and np are generalized coordinate and momentum in classical system, respectively, then the 
corresponding operators Â and 

^
Β in quantum mechanics satisfy the following commutation relations: 

of the physical quantity are just eigenvalues of these operators. The eigenvalues of Hermitean operator are 



                                                                         

  

where i= 1− and h is the Planck constant. If A and B are substituted by nq and np

 

respectively, we have:

 

                 nmmn ihqp δ−=
∧∧

],[ ,    0],[ =
∧∧

mn pp

 

This reflects the fact that the values taken for physical quantity are quantized. Based on this fundamental 
hypothesis, the Heisenberg uncertainty relation can be obtained as follows:

 

                                                                                4
)()(

2
22 C

BA ≥∆∆

 

                                                              (6)

 

where 
^

],[ CiBA =
∧∧

 

and  ΔΑ

 

= <Â -

 

<Â>>. For the coordinate and momentum operators, the Heisenberg 
uncertainty relation takes the usual form:

 

/ 2x p∆ ∆ ≥ 

 

(6)

 

The time dependence of a quantum state ψ

 

of a microscopic particle is determined by the following 
SchrÖdinger  Equation:

 

                                                                              ψψ
^

H
ti

=
∂
∂

−


                                                                 

 

(7a)

 

or 

 

                                                                           ( )
2 ^

2 ,
2

i V r t
t m
ψ ψ ψ∂

= − ∇ +
∂

 


   

                                                  (7b)

 

where 
∧

T =
2 2 / 2m∇

 

is the kinetic energy operator, 
^

V ( r
→

,t) is the externally applied potential operator, m is the 
mass of particles,

 

( ),r tψ 

 

is a

 

wave function

 

describing the states of particles, r
→

 

is the coordinate or position of 
the particle, and t is the time.

 

This is a fundamental dynamic equation

 

of the microscopic particle in time-space. 
Corresponding Hamiltonian operator of the systems, H, is assumed to give by

 

                                                                     
∧∧∧∧

+∇−=+=Η V
m

VT 2
2

2


                                                                (8)

 

This fundamental hypothesis amounts to assume that the independence of Hamiltonian operator of the 
systems with wave function of states of particles, and the SchrÖdinger equation (7) is a linear one for the wave 
function ( ),r tψ 

 

in quantum mechanics. This is an another of reasons to be referred to it as linear quantum 
mechanics. This hypothesis shows that

 

the states and properties of the systems or microscopic particles at any time 
are determined by the Hamiltonian of the systems, or nonlinear SchrÖdinger equation (7).  

If the state vector of the system at time 0t

 

is )( 0tψ

 

then the mechanical quantity and wave vector at time t 

are associated with those at time t0 by a unitary motive operator ),( 0ttU
∧

, namely
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)( 0tψ = ),( 0ttU
∧

)( 0tψ

here ),( 0ttU
∧

=1, IUUUU ==
∧
+

∧∧∧
+ . If let )()0,( tUtU

∧∧

= then the equation of motion becomes

[ ] ( ) },{, BAihBAABBA −=−=                                                      (5)

                                                                         )()( tUHtU
ti

∧∧∧

=
∂
∂

−


                                                                 (9)

When H does not depend explicitly on an time t and ]/exp[)( ^
tHitU =∧

, If H is an explicit function of 
time t, we then have



 

 

  

  

 

 
 

                                             

( )
( )

1

1 1 1 1 2 22
0 0 0

1 1( ) 1 ( ) ( )
tt t

U t dt H t dt H t dt H t
i i

∧ ∧ ∧ ∧

= + + +∫ ∫ ∫ 
 

                                

(10)

 

This equation shows a causality relation of the microscopic law of motion. Obviously, there is an important 
assumption in quantum mechanics, i.e., the Hamiltonian operator of the system is independent on the wave function 
of state of the particle. This is a fundamental assumption in quantum mechanics.  

 

(7)

 

Principle of full-identity. No new physical state occurs

 

when same two particles exchange mutually their 
positions in the systems, in other words, it satisfies ψλψ =kjp ,

 

where kjp
∧

 

is a exchange operator. The 
wave function for an system consisting of identical particles must be either symmetric, sψ , )1( +=λ

 

or 
antisymmetric, aψ ,

 

)1( −=λ , and this property remains invariant with time and is determined only by the 
nature of the particle. The wave function of a boson

 

particle is symmetric and that of fermion is antisymmetric.

 

(8)

 

Assumption of measurement of physical quantities in quantum systems. There was no assumption made 
about measurement of physical quantities at the beginning of quantum mechanics. It was introduced

 

later to 
make the quantum mechanics complete. The foundation of this hypothesis is the equations (1) and (3). 
However, this is a nontrivial and controversial topic which has been a focus of scientific debate. This problem 
will not be discussed here. Interested reader can refer to some literatures.  

In one word, these hypothesizes stipulate the representation forms of states and mechanical quantities and 
Hamiltonian of microscopic particles and the relationships satisfied by them. Concretely speaking, the states of 
microscopic particle is represented by a wave function, which satisfies the linear SchrÖdinger  equation (7) and 
linear superposition principle in Eq.(4) and normalization condition, the square of its absolute value represents the 
probability of the particle at certain point in space, and is used to indicate the corpuscle feature of microscopic 
particle. The mechanical quantities of microscopic particle are represented by the operators, which satisfy the 
commutation relation in Eq.(5) and uncertainty relation in Eq.(6), their values are denoted by some possible average 
values or eigenvalues of corresponding operators in any states or eigenstates, respectively. The Hamiltonian 
operator of the systems is independent on the wave function of state of the particles and denoted only by the sum of 
kinetic and potential energy operators in Eq.(8), which determine the states of the particles by virtue of Eq.(7). These 
are just the quintessence and creams of quantum mechanics.

 

b)

 

The Successes

 

and Difficulties as Well as Disputations in Quantum Mechanics

 

On the basis of several fundamental hypothesises mentioned above, Heisenberg, SchrÖdinger, Bohn, 
Dirac, etc[1-7]., have founded up the theory of quantum mechanics which describes the law and properties of motion 
of the microscopic particles. This theory states that once the externally applied potential fields and the conditions at 
the initial states for the particle are given, the states and features of the particles at any time later and any position 
can be easily

 

determined by linear SchrÖdinger equations (7)-(8) in the case of nonrelativistic motion. The quantum 
states and their occupations of electronic systems, atom, molecule, and the band structure of solid state matter, and 
any given atomic configuration are completely determined by the above equations. Macroscopic behaviors of the 
systems, such as, mechanical, electrical and optical properties may be also determined by these equations. This 
theory can also describes the properties of microscopic particle systems in the presence of external 
electromagnetic-field, optical and acoustic waves, and thermal radiation. Therefore, to a certain degree, the linear 
SchrÖdinger equation describes the law of motion of microscopic particles of which all physical systems are

 

composed. It is the foundation and pillar of modern science.  
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One of

 

the great creative point of quantum mechanics is just to forsake completely traditional 
representations of particles in classical physics, in which the wave functions or vectors are used to describe the 
state of microscopic particles and the operators are introduced to represent the mechanical quantity of the particles. 
their applied results show that this is available. Thus quantum mechanics had great achievements in descriptions of 
motion of microscopic particles[1-12], such as, electron, phonon, photon, exciton, atom, molecule, atomic nucleus 
and elementary particles, and in predictions of properties of matter based on the motion of these quasi-particles. For 
example, energy spectra of atoms (such as hydrogen atom, helium atom) and molecules (such as hydrogen 
molecule) and compounds, the electric, magnetic and optical properties of atoms and condensed matters can be 
calculated based on the quantum mechanics, and these calculated results are in basic agreement with experimental 
measurements. Thus the establishment of the theory of quantum mechanics has revolutionized not only physics but 
also many other science branches, such as, chemistry, astronomy, biology, etc., and at the same time, created 
many new branches of science, for example, quantum statistics, quantum field theory, quantum electronics, 
quantum chemistry, quantum biology, quantum optics, etc.. One of the great successes of quantum mechanics is 
the explanation of the fine energy-spectra of hydrogen atom, helium atom and hydrogen molecule. The energy 



 
spectra predicted

 

by quantum mechanics for these simple atoms and molecules are completely in agreement with 
experimental data. Furthermore, modern experiments have demonstrated that the results of Lamb shift and 
superfine structure of hydrogen atom and anomalous magnetic moment of electron predicted by the theory of 
quantum electrodynamics are coincident with experimental data within an order of magnitude of 10-5. It is therefore 
believed that the quantum electrodynamics is one of successful theories in modern physics.

 

Despite the great successes of quantum mechanics, it nevertheless encountered

 

some problems and 
difficulties[7-15]. In order to overcome these difficulties, Einstein had

 

disputed with Bohr and others for the whole of 
their life, but very sorry that these difficulties remained still up to now. The difficulties of quantum mechanics are well 
known and have been reviewed by many scientists. When one of founders of the quantum

 

mechanics, Dirac, visited 
to Australia in 1975, he give a speech on development of quantum mechanics in New South Wales University. 
During his talk, Dirac mentioned that at the time, great difficulties existed in the quantum mechanical theory. One of 
the difficulties referred to by Dirac was about an accurate theory for interaction between charged particles and an 
electromagnetic

 

field. If the charge of a particle is considered as concentrated at one point, we shall find that the 
energy of a point charge is infinite. This problem had puzzled physicists for more than 40 years. Even after the 
establishment of renormalization theory, no actual progress had been made……..Therefore, Dirac concluded his talk 
by marking the following statements: It is because of these difficulties, I believe that the foundation for the quantum 
mechanics has not been correctly laid down. I cannot accept that the present foundation of the quantum mechanics 
is completely correct.''

 

However, have what difficulties in the quantum mechanics on earth evoked these contentions and raised 
doubts about the theory among physicists in the world?  It was generally accepted that the fundamentals of the 
quantum mechanics consist of Heisenberg matrix mechanics, SchrÖdinger wave mechanics, Born's explanation of 
probability for the wave function and Heisenberg uncertainty principle, etc.. These were also the focal points of 
debate and controversy[12-15]. The debate was about how to interpret the quantum mechanics. Some of the questions 
being debated concern the interpretation of the wave-corpuscle duality, probability explanation of wave function, 
Heisenberg uncertainty principle, Bohr complementary (corresponding) principle, the quantum mechanics which 
describes whether the law of motion for a single particle or for an assembly consisting of a great number of particles. 
The following is a brief summary of issues being debated and disputed in quantum mechanics. (1) First, the 
correctness and completeness of the quantum mechanics were challenged. Is quantum mechanics correct? Is it 
complete and self-consistent? Can the properties of microscopic particle systems be completely described by the 
quantum mechanics? or speaking, Whether the SchrÖdinger  equation (7) can describe completely the states and 
properties of microscopic particles in a realistically physical systems. Meanwhile, the quantum mechanics in 
principle can describe the physical systems with many-body and many particles, but it is not easy to solve such a 
system and plenty of approximations must be used to obtain some approximate solutions. In doing this, a lot of true 
and important phenomena and effects of the systems are artificially neglected or thrown away. This is very sorry for 
physics. Do the fundamental hypothesizes

 

contradict each other? , whether the hypothesis for the independence of 
Hamiltonian operator of the systems on

 

wave function of states of particles

 

in Eq.(8) is correct.  
(1)

 

Is the quantum mechanics a dynamic or a statistical theory? Does it describe the motion of a single particle

 

or 
a system of particles? The dynamical equation (7) seems as equation of a single particle, but its mechanical 
quantities are determined based on the concepts of probability and statistical average. This caused confusion 
about the nature of the theory itself.

 

(2)

 

How to describe the wave-corpuscle duality of microscopic particles? What is the nature of a particle defined 
on the hypotheses of the quantum mechanics? The wave-corpuscle duality is established by the de Broglie 
relations. Can the statistical interpretation of wave function correctly describe such a property? There are also 
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difficulties in using wave package to represent the corpuscle nature of microscopic particles. Thus wave-
corpuscle duality was a major challenge to the quantum mechanics.

(3) Was the uncertainty principle due to the intrinsic properties of microscopic particle or a result of uncontrollable 
interaction between the measuring instruments and the system being measured?  

(4) A particle appears in space in the form of a wave, and it has certain probability to be at a certain location. 
However, it is always a whole particle, rather than a fraction of it, being detected in a measurement. How can 

Since these are important issues concerning the fundamental hypotheses of the quantum mechanics, many 
scientists were involved in the debate. Unfortunately, after being debated for almost a century, there are still no 
definite answers to most of these questions. While many enjoyed the successes of the quantum mechanics, other 

this be interpreted? Is the explanation of this problem based on wave package contraction in the 
measurement correct?

were wondering whether the quantum mechanics is the right theory of real microscopic physical world, the 
microscopic particle has or has not wave-corpuscle duality on earth, because of the problems and difficulties it 



 
  

  

 

encountered. Modern quantum mechanics was born in 1920s, but these problems were always the topics of heated 
disputes among different views and different schools till now. It was quite exceptional in the history of physics that so 
many prominent physicists from different institutions were involved and the scope of the debate was so wide. The 
group in Copenhagen School headed by Bohr represented the view of the main stream in these discussions. In as 
early as 1920s, heated disputes on statistical explanation and incompleteness of wave function arose ever between 
Bohr and other physicists, including Einstein, de Broglie, SchrÖdinger, Lorentz, etc, who has doubted and 
continuously criticized Bohr’s interpretations. This results in a life-long disputations between Bohr and Einstein, 
which is unprecedented and went through three stages.

 

The first stage was during the period from 1924 to 1927, when the theory of quantum mechanics had just 
been founded. Einstein proceeded from his own philosophical belief and his scientific goal for an exact description 
of causality in the physical world, and expressed his extreme unhappiness with the probability interpretation of the 
quantum mechanics. In a letter to Born on December 4, 1926, He said that '' Quantum mechanics is certainly 
imposing. But an internal sound tells me that it is not the real thing (der Wahre Jakob). The theory says a lot, but it 
does not bring us any closer to the secret of the “Old one.” I, at any rate, am convinced that He is not playing at 
dice.''

 

The second stage was from 1927 to 1930. After Bohr had put forward his complementary principle and had 
established his interpretation as main stream interpretation, Einstein was extremely unhappy. His main criticism was 
directed at the Heisenberg uncertainty relation on which Bohr’s complementary principle was based.  

The third stage was from 1930 until the death of Einstein. The disputation during this period is reflected in 
the debate between Einstein and Bohr over the ''EPR'' paradox proposed by Einstein together with Podolsky and 
Rosen[13-15]. This paradox concerned the fundamental problem of the quantum mechanics, i.e. whether it satisfied 
the deterministic localized theory and the microscopic causality. The disputation to this problem maintains a longer 
period.

 

To summarize, the long-dated disputation between Bohr and Einstein schools was focused on three 
problems: (1)Einstein upheld to belief that the microscopic world is no different from the macroscopic one, particles 
in microscopic world are matters and they exist regardless of the methods of measurements, any theoretical 
description to it should in principle be determinant. (2) Einstein always considered that the theory of the quantum 
mechanics was not an ultimate and complete one. He believed that quantum mechanics is similar to the classical 

optics. Both of them are correct theories based on statistical laws, i.e., when the probability ( ) 2,trψ

 

of a particle at 
moment t

 

and location r

 

is known,, an average value of observable quantity can be obtained using statistical 
method and then compared with the experimental results. However, understanding to processes involving single 
particle was not satisfactory. Hence, ( )tr ,ψ has

 

not give everything about a microscopic particle system, and the 
statistical interpretation cannot be ultimate and complete. (3)The third issue concerns the physical interpretation of 
the quantum mechanics. Einstein was not impressed with the attempt to completely describing some single 
processes using quantum mechanics, which he made very clear in a speech at the fifth Selway International Meeting 
of physics. In an article, ”Physics and Reality”, published in 1936 in the Journal of the Franklin Institute, Einstein 
again mentioned that what the wave function ( )tr ,ψ

 

describes can only be a many-particle system, or an assemble 
in terms of statistical mechanics, and under no circumstances, the wave function can describe the state of a single 
particle. Einstein also believed that the uncertainty relation is a result of incompleteness of the description of a 
particle by ( )tr ,ψ , because a complete theory should give precise values for all observable quantities. Einstein also 
did not accept the statistical interpretation because he did not believe that an electron possess free will. Thus, 
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Einstein's criticism against the quantum mechanics was not directed towards the mathematic formalism of the 
quantum mechanics, but to its fundamental hypotheses and its physical interpretation. He considered that this is 
due to the incomplete understanding of the microscopic objects. Moreover, the contradiction between the theory of 
relativity and the fundamental of the quantum mechanics was also a central point of disputation. Einstein made effort 
to unite the theory of relativity and quantum mechanics, and attempted to interpret the atomic structure using field 
theory. The disagreements on several fundamental issues of the quantum mechanics by Einstein and Bohr and their 
followers were deep rooted and worth further study. This brief review on the disputes between the two great 
physicists given above should be useful to our understanding on the nature and problems of the quantum 
mechanics.  

c) The Roots Produced these Difficulties in Quantum Mechanics
From the above description we see that the difficulties and questions of quantum mechanics exist hugely 

and extensively, the disputations on it between Einstein and Bohr are drastic, their branches are also considerable. 
However, what are the reasons and roots generating these difficulties on earth? This is just a key problem on 



     

quantum mechanism and its development. Only if the roots are sought we can solve these difficulties and improve 
and develop quantum mechanics. For this purpose we have to look carefully at the essences and significances of 
the above hypothesizes of quantum mechanics. 

 

As known, the linear SchrÖdinger equation

 

(7)

 

is a wave equation

 

describing the properties and rules of 
motion of microscopic particles. In the light of this theory

 

we can find the solutions of the equation[8-12]

 

and know thus

 

the states and properties of the particles,

 

if only the externally applied potential is known, whether or no complicated 
systems and interactions among the particles. This is very simple process finding solutions.

 

However, for all 
externally applied potentials, the solutions of the equation are always a linear or dispersive wave, for example, at 
( ),V r t =0, its

 

solution is a plane wave as follows: 

                                                                 ( ), 'exp[ ( )]r t A i k r tψ ω
→ →

= ⋅ −


 

                                                               (11)

 

where k

 

is the wavevector of the wave, ω is its frequency, and A’ is its amplitude.

 

This solution

 

denotes the state of a 
freely moving microscopic particle with an eigenenergy of  

                                                   

2
2 2 21 ( ), ( , , )

2 2 x y z x y y
pE p p p p p p
m m

= = + + −∞ < < ∞

 

                                            (12)

 

This is a continuous spectrum. It states that the probability of the particle to appear at any point in the space 
is the same, thus the microscopic particle propagates and distributes freely in a wave in total space, this means it 
cannot be localized and have nothing about corpuscle feature.

 

If the free particle is artificially confined

 

in a small finite space, such as, a rectangular box of dimension a, b

 

and c, then the solution

 

of Eq.(7) is a standing waves as follows

 

                                                          
( ) 31 2, , , sin sin sin iEtn zn x n yx y z t A e

a b c
ππ πψ −    =      

     


  

                                            (13)

 

In such a case, this microscopic particle is still localized, it appears still at each point in the box with a 
determinant probability. Difference from Eq.(12) is that the eigenenergy of the particle in this case is quantized as 
follows

 

                                                                      
22 22 2
31 2

2 2 22
nn nE

m a b c
π  

= + + 
 


,                                                              

 

(14)

 

the corresponding momentum is also quantized. This means that the wave feature of microscopic particle has be 
not changed because of the variation of itself boundary condition.  

 

If the potential field is further varied, for example, the microscopic particle is subject to a conservative time-
independent field, ( ) ( ), 0U r t U r= ≠

 
, then the microscopic particle satisfies the time-independent linear SchrÖdinger  

equation

 

                                                                           ( )
2

2 ' ' '
2

V r E
m

ψ ψ ψ− ∇ + =


 

                                                        (15)
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where

                                                                                    ( )' iEtr eψ ψ −= 


                                                                  (16)

  

When V F r= ⋅
 

, here F


is a constant field, such as, a one dimensional uniform electric field ( )V x e xε= − , 

the solution of Eq.(15) is (1) 3 2
1 2

2' ,
3

xA H
l

ψ ξ ξ ξ λ   = = +   
   

, where (1) ( )H x is the first kind Hankel function, A is a 

normalized constant, l is the characteristic length and λ is a dimensionless quantity. The solution is still a dispersed 

wave. When ξ →∞ , it approaches 
3 2' 1 4 2 3'( ) A e ξψ ξ ξ − −= to be a damped wave.  

If 2( )V x Fx= , the eigenenergy and eigenwave function are 
2 2 2'( ) ( ),a x

n nx N e H xψ α−= 1( ) ,
2nE n ω= + 

(n=0,1,2,…), respectively, here ( )nH xα is the Hermite polynomial. The solution obviously has a decaying feature, and 
so on.  



 

 

   

 
  

  

  

 

The above practical examples show clearly that the solutions of linear SchrÖdinger  equation (7) is only a 
wave and always have not the corpuscle feature whether or no changes of externally applied potentials. In such a 

case Born had to introduce the probability of

 

2
( , )r tψ


to represent the particulate feature of the particle, but which 
together with the hypothesis of average values of mechanical quantity results in turn in a controversy on the quantum 
mechanics which describes whether the law of motion for a single particle or for an assembly consisting of a great 
number of particles. These results indicate clearly that the essence of microscopic particles described by the 
quantum mechanics based on the above hypothesizes is just a wave, The wave feature of microscopic particles is 
fully

 

incompatible and contradictory with the traditional

 

concept of particles[7-9]

 

and cannot be changed by the 
externally applied potentials. Just so, a

 

series of difficulties and questions of quantum mechanics occur 
subsequently, such as,

 

the uncertainty relation between the position and momentum, the probability interpretation of 
wave function, the concept of statistical average of the mechanical quantities as mentioned above, and so on. This 
shows clearly that these difficulties and contradictions

 

in quantum mechanics are the intrinsic and inherent, or 
speaking cannot overcome.  

Very obviously, the roots or reason generating these difficulties and contradictions

 

in quantum mechanics 
should focus on the fundamental hypothesizes

 

of dynamic equation of microscopic particles in Eq. (7) and 
Hamiltonian of the systems in Eq.(8)[12-15]. They are too simple to useful to represent a realistic physical systems. As

 

far as Hamiltonian operator

 

in Eq.(8) and dynamic equation (7) are concerned, they consist only of externally applied 

potential term, ( )V r


, and kinetic

 

energy

 

term,  22 2( 2 ) 2h m p m∇ = ,

 

of

 

particles.

 

The former

 

is not related to the state or 
wave

 

function of the particle, so it cannot change the natures, only can vary the shapes and outlines of the particle, 
such as amplitude and velocity. The nature of the particles are mainly determined by the kinetic energy

 

term in 
Eqs.(7)-(8). However, the effect of the kinetic energy term is a dispersive effect and it makes the particle be 
permanently in motion. The dispersive effect cannot be balanced and suppressed by an external potential field

 

( , )V r t


in Eq.(7). Thus the microscopic particle has only a wave feature in quantum mechanics. Therefore, the root

 

generating these difficulties, contradictions and disputations are just the simplicity of quantum mechanics, or 
speaking, the dynamic equation (7) and Hamiltonian in Eq.(8) of the particles composed only of externally applied 
potential and kinetic

 

energy

 

terms

 

are the basic reasons giving rise to

 

these difficulties, contradictions and 
disputations

 

in quantum mechanics. In fact, in quantum mechanical calculation including the systems of many-
particles and many-bodies we separate always the studied particle from other particles, ignore further the real and 
complicated interactions including some nonlinear interactions among the particles or between the particle and 
background field, such as, lattices, and replace artificially these complicated interactions among these particles by 
an averagely external applied-potential unrelated to the wave function of the particle in virtue of various 
approximation methods in quantum mechanics. Or else, quantum mechanics cannot use to investigate these 
quantum systems at all. However, plenty of basic natures of the microscopic particles have been blotted out and 
denied in this calculation. In such a case the microscopic particles cannot be

 

also localized. Therefore, all 
microscopic particles have only wave or dispersive feature, not corpuscle nature in quantum mechanics whether the 
particle is in what systems or accepted how much interactions. The character of quantum mechanics is intrinsic

 

and 
inherent and cannot be permanently changed. This is just the essence of quantum mechanics. It is also the roots 
that the microscopic particles have only a wave feature, not the corpuscle feature at all.
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II. The Considerable and Essential

 

Changes of Nature and Properties of the
Microscopic Particles Depicted by the Nonlinear Schrödinger  Equation

 

a) The establishments of nonlinear SchrÖdinger  equation with nonlinear interaction
i. The nonlinear interaction between the particles and establishment of nonlinear SchrÖdinger  equation

From the above investigation we sought the roots that the microscopic particles have only a wave feature, 
not the corpuscle feature, or the reasons generating plenty of difficulties and centenary disputations in quantum 

     mechanics. It is just due to simple dynamic equation (7) and Hamiltonian operator in Eg.(8). At the same time, we 
know that the wave feature of microscopic particle cannot be permanently changed, the difficulties and 
constructions of quantum mechanics are intrinsic and inherent, and cannot be overcome and solved in itself 
framework. If these difficulties and constructions want solve, then we must break through some basic hypothesizes 
and fundamental framework of quantum mechanics, such as, independence of Hamiltonian operator of the systems 
on the states of particles, and seek a interaction, which can inhibit and suppress the dispersive effect of kinetic 
energy term in Eqs.(7)-(8), to make the particles be localized in virtue of taking into account these interactions, 
especially the nonlinear interactions, among the particles or between the particle and background field[16-20]. The 
above roots and reasons arising from the difficulties in quantum mechanics awakens and evokes also us to rivet 
one’s attention on the interaction related to the states of microscopic particles among the particles or between the 



   
   

   
  

particle and background field. I expect that the natures of the microscopic particles can be changed hugely, when 
these nonlinear interactions are considered in dynamic equation of the particles and Hamiltonian operator of the 
systems[18-22].

 

In accordance with this idea we study the dynamic features of microscopic particles in nonlinear interaction 
systems. As known, the interaction among the particles or between the particle and background field is, in general, 
described by virtue of a model of interaction of two bodies. When the interaction between the two bodies is 
considered, their dynamical equations of the two microscopic particles can be often represented, respectively, by 

 

                                

 

2
2 ( , )

2
Fi V x t

t m x
φ φ χφ∂ ∂
= − ∇ + +

∂ ∂




 

                   （17）

 

and

  

                                      

2 2
22

02 2

F Fv
t x x

χ φ∂ ∂ ∂
− = −

∂ ∂ ∂
,     

 

                                              (18)

 

where φ

 

denotes the

 

state of a studied

 

microscopic particle,

 

equation (17) describes then the dynamics

 

of the 
microscopic particle having a coupling interaction with other particle or field. F is the state of a background field, 
such as a lattice

 

or

 

another

 

particle, such as a

 

phonon, equation (18)

 

expresses its dynamics, or

 

, a forced vibration 
of the background field or another particle with velocity 0v due to the interaction arising from the changes of state of 
the studied microscopic particle studied[18-22].

 

χ

 

represents just the

 

coupling interaction effect

 

between them. This 
coupling can change the states

 

and natures of both the studied particle and other particle. This implies that we 
replaced not the practical interaction between them by an averagely external-applied potential, but treated and 
described the dynamics of two particles in same way in virtue of the coupling interaction between them. This is a 
new investigated idea and method, which differs completely from

 

of those of quantum mechanics. From Eq.(18) we 
can obtain  

                                      

 

2
2 2

0

F
x v v

χ φ∂
= −

∂ −                              （19）

 

Inserting Eq.(19）into Eq.(17) yields

 

 

         

 

                  

2
22 ( , )

2
i V x t b

t m
φ φ φ φ∂
= − ∇ + −

∂




 

                                                   

 

(20)

 

where

 

2

2 2
0

b
v v
χ

=
−

 

is a nonlinear interaction coefficient. This equation is just so-called

 

nonlinear SchrÖdinger  equation

 

relative to the linear SchrÖdinger  equation (7). It is

 

just the new dynamic equation of the microscopic particle

 

in the 
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system with nonlinear interactions among the particles or between the particle and a background field. we see 
clearly from Eq.(20) that this coupling among the particles or between the particle and background field result in a 
nonlinear interaction, 2b φ φ , related to the wave function of the particles to occur. This shows clearly the nonlinear 
interaction comes from the interactions among the particles or between the particles and background field In such a 
case the states of the microscopic particles are no longer described by the linear SchrÖdinger equation (7), but by 
the nonlinear SchrÖdinger  equation (20).

In general, the nonlinear interactions can be produced by the following three mechanisms by means of the 
interaction among particles and between the medium and the particles[18-22]. In the first mechanism, the attractive 
effect is due to interactions between the microscopic particle and other particles. This is called a self-interaction. A 
familiar example is the Bose-Einstein condensation mechanism of microscopic particles because of an attraction 
among the Bose particles. Here the mechanism is referred to as self-condensation. In the second mechanism, the 
medium has itself anomalous dispersion effect (i.e.

0

'' 2 2
0k k ωω <= ∂ ∂ ) and nonlinear features resulting from its 

anisotropy and nonuniformity. Motion of the microscopic particles in the system are modulated by these nonlinear 
effects. This mechanism is called self-focusing. The third mechanism is called self-trapping. It is produced by 
interaction between the microscopic particles and background, such as, lattice or medium as mentioned above.

If other complicated interactions and damping effect of medium are considered, then equation (20) should 
be replaced by the following nonlinear SchrÖdinger  equations[18-19]:  



  

 
  

 

  
 

                                                          ( ) ( )
2

22 ,
2

i b V r t A
t m
φ φ φ φ φ φ∂
= − ∇ ± + +

∂
 

 ,                                        (21)

 

or

 

                                                   
( ) ( )φφφφφφµ AtrVb

mt
++±∇−=

∂
∂ ,

2
22

2 

 

                                                  (22)

 

where A(φ )

 

represents the complicated interactions among the particles related to wave function  ( )tr ,φ

 

of the

 

particles,

 

μ

 

is a complex number,

 

equation (22) is often used to depict the motion of microscopic particles in 

damping medium. The wave function, ( )tr ,φ , can be written as  

                                                                             
  ( ) ( ) ( )trietrtr ,,,

 θϕφ =

 

                                                                 (23)

 

where both the amplitude ( )tr ,ϕ and  phase

 

( )tr ,θ of the wave function are functions of space and time.  
We here should point out that physicists and mathematicians derived plenty of nonlinear SchrÖdinger  

equation

 

with different forms from different systems and conditions[20-29], at present, but we obtain the nonlinear 
SchrÖdinger  equations (20)-(22) from features of motion and interaction of microscopic particles. They are some 
special nonlinear SchrÖdinger equations, have the symmetry of time-space, thus are quite appropriate to the 
microscopic particles[18-22].

 

ii.

 

The effects of nonlinear interaction on the states of particles

 

In Eqs.(21)-(22) there are also the nonlinear interaction term, 2b φ φ . Since it relates always to the states of 
particles, then the nature of the particles must be changed under its action. We expect that the nonlinear interaction 
can balance and suppress the dispersion effect of the kinetic term in Eq. (20) to make the particles be localized[18-

19,21-22],

 

eventually makes the particle becomes a soliton with wave-corpuscle duality. Why? This is due to the fact that 
the interaction can distort and collapse the dispersive

 

wave, thus can obstruct and suppress the dispersive effect of 
kinetic energy and make the microscopic particles to be eventually localized.

 

To see clearly this, we now study carefully the motion of water wave in sea. When a water wave approaches 
the beach, its shape variants

 

gradually from a sinusoidal cross section to triangular, and eventually a crest which 
moves faster than the rest. This is a result of the nonlinear nature of wave. As the water wave approaches the beach 
the

 

wave will be broken up due to the fact that the nonlinear interaction is enhanced. Since the speed of wave 
propagation depends on the height of the wave in such a case, so, this is a nonlinear phenomenon. If the phase 

velocity of the wave, cv , depends weakly on the height of the wave, h, then 1 ,c cov v h
k
ω

= = +Θ where 
01

c
h h

v
h =

∂
Θ =

∂
, 

0h

 

is the average height of the wave surface, cov is the linear part of the phase velocity of the wave, 1Θ

 

is a 
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coefficient denoting the nonlinear effect. Therefore, the nonlinear interaction results in changes in both form and 
velocity of waves. This is the same for the dispersion effect, but their mechanism and rules are different. When the 
dispersive effect is weak, the velocity of a wave is denoted by ' 2

2 ,c cov v k
k
ω

= = +Θ where cov is a dispersionless phase 

velocity, 
0

2

2 2
c

k k
v

k =

∂
Θ =

∂
is the coefficient of the dispersion feature of the wave. Generally speaking, the lowest order 

dispersion occurring in the phase velocity is proportional to k2, and the term proportional to k gives rise to the 
dissipation effect. If the two effects act simultaneously on a wave, then it is necessary to change the nature of the 
wave.  

To further explore the effects of nonlinear interaction on the behaviors of microscopic particles, we consider 
a simple motion as follows

                                                                                          0e xφ φφ+ =                                                                          (24)

where xφφ is a nonlinear interaction. There is no dispersive term in this equation. It is easy to verify that ' ( )x tφ φ= Φ −
satisfies Eq.(24). This solution indicates that as time elapses, the front side of wave gets steeper and steeper, until it 
becomes triple-valued function of x due to the nonlinear interaction, which does not occur for a general wave 
equation. This is a deformation effect of wave resulting from the nonlinear interaction. If let ' cos xφ π= Φ = at 0t = , 
then at 0.5x = and 1, 0t π φ−= = and xφ = ∞ . The time 1

Bt π −= at which the wave becomes very steep is called 
destroyed period of the wave. However, the collapsing phenomenon can be suppressed by adding a dispersion 
term xxxφ as in the KdV equation[13-14]. Then, the system has a stable soliton, 2sec ( )h X , in such a case. Therefore, a 
stable soliton, or a localization of particle can occur only if the nonlinear interaction and dispersive effect exist 



 

  
 

 

  

 

   

 

  
 

simultaneously in the system, and can be balanced and canceled

 

each other. Otherwise, the particle cannot be 
localized, and a stable soliton cannot be formed.  

However, if xxxφ is replaced by xxφ , then Eq. (24) becomes

 

                                                                              , ( 0)t x xxv vφ φφ φ+ = >                                                               

 

(25)

 

This is the Burgur’s equation. In such a case, the term xxvφ

 

cannot suppress the collapse of the wave, 
arising from the nonlinear interaction xxφφ . Therefore, the wave is damped. In fact, utilizing the Cole-Hopf 

transformation '2 (log ),d
dx

φ γ ψ= − equation (48) becomes
' 2 '

2v
t x
ψ ψ∂ ∂

=
∂ ∂

. This is a linear equation of heat conduction or 

diffusion equation, which has a damping solution. Therefore, the Burgur’s equation (25) is not a equation with soliton 
solution[13-17].

 

This example tells us that the deformational effect of nonlinearity on the wave can suppress its dispersive 
effect, thus a soliton solution of dynamic equations can then occur in such a case [18-19]. The nonlinear term in 
nonlinear SchrÖdinger equation

 

(20) sharpens the peak, while its dispersion term has the tendency to leave it off, 
thus Eq.(20) has a soliton solution, then the microscopic particle described by the nonlinear SchrÖdinger  equation

 

(20) can be localized in such a case. This example also verifies sufficiently that a stable soliton or localization of 
particle cannot occur in the absence of nonlinear interaction and dispersive effect or weak nonlinear interaction 
relative to the dispersive effect in the nonlinear SchrÖdinger equation

 

in Eq.(20).  
However, Whether can these phenomena occur for the above nonlinear SchrÖdinger  equations in Eqs.(20)-

(22)? Or speaking, what are the changes of states and properties of microscopic particles under action of the 
nonlinear interaction on earth? What are the influences on quantum mechanics when the states and properties

 

of 
microscopic particles are described by the above nonlinear SchrÖdinger equations? These are both some very 
interesting and challenged

 

problems and worth studying carefully and completely. In the following we study deeply 
these problems.
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b) Display and exhibition of wave-corpuscle duality of microscopic particle described by the nonlinear SchrÖdinger  
equation

i. The solutions of nonlinear SchrÖdinger  equation and wave-corpuscle duality of particles 
In the one-dimensional case, the equation (20) at V(x,t)= 0 becomes as  

                                                                           02
''' =++ φφφφ bi xxt                                                                (26)

where mxx 2//' 2= , /' tt = . We now

 

assume the solution of Eq.(26) to have the form of Eq.(23). Inserting Eq. 
(23) into Eq.(26) we can obtain  

        ).........0....(022
'''' >=−−− xtxx bb ϕϕϕθϕθϕ (27)

  

  

     
  

If let ),''(),''( tvxtvx ec −=−= ϕϕθθ then Eqs.(27)-(28) become as

   
       

....................................................02

.....................................0

'''''

32
''''

=−+

=−−−

texxxx

xtcxx

v

bv

ϕθϕϕθ

ϕϕθϕθϕ

If fixing the time t’ and further integrating Eq.(30) with respect to x’ we can get

                                                                            )'()2( '
2 tAvex =−θϕ                                                                   (31)

Now let integral constant A(t’)=0, then we can get 2/' ex v=θ . Again substituting it into Eq.(29), and further 

integrating this equation we then yield[23-24]

                                                                                  ''
)(0

tvx
Q
d

e−=∫
ϕ

ϕ ϕ
ϕ                                                                  (32)

where ')2(2/)( 224 cvvvbQ ece +−+−= ϕϕϕ .

.................................02 ''''' =++ txxxx ϕθϕϕθ (28)

(29)

(30)



 
 

  

 
 

 

   

 

 

  

  

  

 

When c’=0, ,022 >− ece vvv

 

then

 

2/12
00 ]/)2(2[, bvvv ece −=±= ϕϕϕ

 

is the root of 0)( =ϕQ except for 0=ϕ . 

Thus from Eq.(32) we obtain the solution of Eqs.(27)-(28) to be  

                                                          

 

)]''(
2

[sec)','( 00 tvxbhtx e−= ϕϕϕ

 

                                                           (33)

 

Then the solution of nonlinear SchrÖdinger  equation (20) eventually is of the form

 

                                    ( ) ( ) ( )020 2
0 0, sec 2

2
e civ m x x v t

e
A bx t A h m x x v t eφ

 − − 
   = − −    





 

                              (34)

 

where
b

vvvA ece

2
22

0
−

= . The solution of Eq.(34) can be also found by the inverse scattering method[25-26]. This

 

solution is completely different

 

from Eq.(11), and contains a envelop and carrier waves, the former is

 

( ) ( )[ ]






 −−=

2
2sec, 00

0
tvxxmAhAtx eϕ and a bell-type non-topological soliton

 

with an amplitude A0, the latter

 

is the ( )[ ]{ }2/2exp 0 tvxxmiv ee −− . ve

 

is the group velocity of the particle, vc

 

is the phase speed of the carrier 

wave.

 

This solution is  shown in Fig.1. Therefore, the microscopic particle described by nonlinear SchrÖdinger  
equation (20)

 

is a soliton[18-19,23-24]. The envelop φ(x,t) is a slow varying function and the mass center of the particle, 

the position of the mass center is just at x0, A0

 

is its amplitude, and its width is given by )/(2 0AmbW π= .Thus, 

the size of the particles is mbWA /20 π=

 

and a constant. This shows that the particle has

 

exactly

 

a mass 
centre and determinant size,

 

thus

 

is localized at x0. For a certain system, ve,

 

vc

 

and size of the particle

 

are 
determinant and do not change with time. According to the soliton theory

 

[18-19,23-24], the bell-type soliton in Eq.(34) 
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can move freely over macroscopic distances in a uniform velocity ve in space-time retaining its form, energy, 

momentum and other quasi-particle properties. Just so, the vector r
→

or x denotes exactly the positions of the 
microscopic particles at time t. Then, the wavefunction ( )tr ,φ or φ(x,t) can represent exactly the states of the particle 
at the position r

→
or x and time

 

t. These features are consistent with the concept of particles. Thus the feature of 
corpuscle of microscopic particles is displayed clearly and outright.  

  

However, the envelope of the solution in Eq.(19) is a solitary wave. It has a certain wavevector and 
frequency as shown in Fig. 1(b), and can propagate in space-time, which is accompanied with the carrier wave. The 
feature of propagation depends only on the concrete nature of the particle. Figure 1(b) shows the width of the 
frequency spectrum of the envelope φ(x,t), the frequency spectrum has a localized structure around the carrier 

  frequency ω0. Therefore, the microscopic particle has exactly a wave-particulate duality[18,27-34]. This consists of 
Davisson and Germer’s experimental result of electron diffraction on double seam in 1927[8-12].

We can verify that this nature of wave-corpuscle duality of microscopic particles is not changed with varying 
the externally applied potentials. As a matter of fact, for ( )V x xα′ ′= +c in Eq.(20) , where α and c  are some 
constants. In this case equation(28) is replaced by  

                                                                   .'22
'''' cxbxtxx +=−−− αϕϕϕθϕθϕ                                                  (35)

Fig. 1: The solution in Eq. (34) at V=0 in Eq. (20) and its features

(a) (b)



 

 
 

 
 

 

  

 

   

  

  

  

Now let[23-24,27-32]

 

                                                              
2 '( ', ') ( ), ' ( '), ( ') (t') t dx t x u t u t vϕ ϕ ξ ξ α= = − = − + +                                         

 

(36)

 

where '(t )u

 

describes the accelerated motion of ( '. ')x tϕ .

 

The boundary condition at ξ →∞

 

requires ( )ϕ ξ

 

to

 

approach zero rapidly. Equation (29) in such a case

 

can be written as

 

                                                                              
2

2u 2 0ϕ ϕ θ θϕ
ξ ξ ξ ξ
∂ ∂ ∂ ∂

− + + =
∂ ∂ ∂ ∂



 

                                                  (37)

 

where '

uu=
t

d
d

 .  If 2 u 0θ ξ∂ ∂ − ≠

 

, Equation (37) may be written as  

                                

 

                                  
'

2 g(t )
( u/2)

ϕ
θ ξ

=
∂ ∂ − 

or 
'

' 2

g(t ) u
x 2
θ

ϕ
∂

= +
∂


                                                   (38)

 

Integration of Eq.(38) yields 

 

                                                                      
x'

20

' u( ', ') g(t') ' h(t')
2

dxx t xθ
ϕ

= + +∫


                                                         

  

(39)

 

where 
'h(t )

 

is an undetermined constant of integration. From Eq.(39) we can get  
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x'

' 02 2 20

' gu gu ug(t') ' h(t')
t' 2x

dx xθ
ϕ ϕ ϕ =

∂
= − + + +

∂ ∫
                                               (40)

Substituting Eqs. (29) and (30) into Eq.(35) ,we have 

                                  
2 2 2x' 3

' 02 2 2 30

u u ' gu g[( ' ) ' h(t')+ g ]
( ') 2 4 x

dxx c x b
x
ϕ α ϕ ϕ

ϕ ϕ ϕ=

∂
= + + + + + − +

∂ ∫
                          (41)

Since 
2

2( ')x
ϕ∂

∂ = 

2

2

d
d
ϕ
ξ is a function of ξ only, in order for the right-hand side of Eq. (41) to be also a function of 

ξ only, it is necessary that  '
0g(t ) g const= = ,

  

  

                                                           

2

' 02

u u gu( '+c)+ ' h(t')+ ( )
2 4 xx x Vα ξ

ϕ =+ + =
  

                                             
(42)

Next, we assume that 0 ( ) ( )V Vξ ξ β= − where β is real and arbitrary. Then  

                                                    

2

0 ' 02

u gu u' ( ) ' [ h(t') ]
2 4xx c V xα ξ β

ϕ =+ = − + − − −
                                                 (43)

Clearly, in the case being discussed , 0 ( )V ξ = 0, and the function in the brackets in Eq. (43) is a function of t’. 
Substituting Eqs.(42) and (43) into Eq.(41) ,we can get  

                         
 



22 3 0
32

gbϕ βϕ ϕ
ξ ϕ

∂
= − +

∂
                   (44)

This shows that  ( )ϕ ϕ ξ= is the solution of Eq.(44) when β and g are constant. For large ξ , we may

assume that 
1/ϕ β ξ +∆≤ , when ∆ is a small constant. To ensure that 2 2d dϕ ξ , and ϕ approach zero when ξ →

∞ , only the solution corresponding to g0=0 in Eq.(44) is kept to be stable. Therefore we choose g0=0 and obtain
the following from Eq. (38) 



    

 

 

  

  

 

  

   

  

 

  

  

 

   
 

 

                                                                                                    '

u
2x

θ∂
=

∂


 

                                                                  (45)

 

Thus, we obtain from Eq. (43)

 

  
2u ux'+c ' h(t')

2 4
xα β= − + − −

 

 

         

 

                                                                
2 2 3 21 1h(t') ( )t' (t') (t') / 2

4 3
cβ υ α υα= − − − +

 

                                               (46)

 

Substituting Eq.(46) into Eqs.(29) and (30), we obtain

 

                                             

2 2 3 21 1 1( t' ) ' ( )t' (t') (t') / 2
2 4 3

x cθ α υ β υ α υα= − + + − − − +
             

 

            

 

(47)

 

Finally, substituting the above into Eq.(44), we can get 

 

                      


 
2 3

2 +b 0ϕ βϕ ϕ
ξ
∂

− =
∂

 

             (48)

 

When

 

0β > , the solution of Eq.(48) is of the form[18-19,23-24,,33-34]
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                        
2= sec h( )
b
βϕ βξ              (49)

Thus

 

                  

2

02 2

2 3 2
2

3

2 2m t t d - t 2msec h[ ( ( ) )] exp{i[( )
2

1 t t t( ) ]}
4 3 2

x x x
b

c

β α υ α υφ β

α υαβ υ

− −
= − + × + +

− − − +

   

  

               

 

(50)

This is also soliton solution．If V(x’)=c, the solution can represent as

          

{ }
2

' '
0 0 0

2 sec [( ' ) ( )] exp [( ' ) ( )] )
2 4

e e
e

v vh x x v t t i x x C t
b
βφ β β

 
= − − − − − − − 

 
         

(51)

If ( )V x ax′ ′= and 2b = , the solution can represent by

                                                        

( )

( ) ( )

2 sech 2 4 2

exp i

' 2
0

2 3
2 2 2

x x t t

t     t x + t t

φ η η ξ α

αξ α αξ ξ η θ0

 ′ ′ ′= − − + × 

 ′ 4 ′ ′ ′ ′− 2 − − 4 + 4 − +  3   

                                       
(52)

In this calculation we used the transformation [35-36] : 

( ) ( ) ( )32i x t -i tx ,t x , t e , x =x - t , t =t ,α αφ φ α′ ′ ′− 3 2′ ′ ′ ′ ′ ′ ′ ′ ′ ′=      (53)  

Under this transformation and in this case thus Eq. (20) becomes 



 

 
 

 

 

 

  

  

 

22 0x xti 'φ φ φ φ′ ′′ ′ ′ ′+ + =   ,

 

Utilizing Eq.(44), its solution in Eq.(52) then can be obtained immediately. 

 

For a more complicated

 

potential ( )V x in Eq.(20), for example, 2( ) ( ) ( )V x kx A t x B t= + + , utilizing the above 
method the soliton solution in Eq.(27) of Eq. (20) can be written as[18-19,23-24]

 

                                                                             ( , )( ( )) i x tx u t e θφ ϕ= −

 

                

 

                                                    (54) 

where 0 0
2( ( )) sec ( [( ) ( )]), ( ) 2cos(2 ) ( )Bx u t h a x x u t u t kt u t
b

ϕ β− = − − ≡ + +

 

          

0
0 0

21 ' ' ' ' '0
00

( , ) 2 sin(2 )
2

( ) (2cos(2 )) ( ) 2 sin(2 )
2

ux t k kt t g

uu t k kt B t k kt dt

θ β λ

β β

 = − + + + +  

   − − − + + + − +      
∫

 

When ( ) ( ) 0A t B t= = , 0( ) 2co (2 ) ( )u t kt u t= + ,

 

                  

0
0

21 '0
00

( , ) 2 sin(2 )
2

(2cos(2 ) ( ) 2 sin(2 )
2

ux t k kt x g

uk kt u t k kt

θ = − + +

   − − + + −      
∫

 

  

1

G
lo
ba

l
Jo

ur
na

l
of

Sc
ie
nc

e
Fr

on
tie

r
R
es
ea

rc
h 

  
  
  
 V

ol
um

e
X
V
I   

Is
s u

e 
  
  
 e

rs
io
n 

I
V

V
Y
ea

r
20

16

29

  
 

( A
)

© 2016   Global Journals Inc.  (US)

The Difficulties of Quantum Mechanics and its Investigations of Development

s

For the case of ( ) 2 2
0V x xα′ ′= , which is a harmonic potential, where α is constant. In this condition in 

accordance with above way the solution can be denoted by[35-36]

                              

( )

( ) ( ) ( )

0 0

2
2

0 0 0 0

42 2 2

2 2 4 4

'sec h ( x x ) sin t t

     exp i x cos t t sin t t t t

ξηφ η η α
α

ξξ α α η θ
α

 ′ ′ ′= − − − ×    

   ′ ′ ′ ′ ′ ′ ′ ′− − − + − +       

                     

(55)

where 0/22 Ab =η , and 2 2 cvξ = are the amplitude and group velocity of the particles in Eqs.(53) and (55), 
respectively. From Eqs.(51)-(53) and (55) we see clearly that these solutions of the nonlinear SchrÖdinger  equation 
in Eq.(20) have all same shape as shown in Fig.1 or Eq.(27) or (54) and similar natures, such as, they contain a 
envelop and carrier waves, and are also some bell-type soliton with certain amplitude A0 and the group velocity ve

and phase speed vc. Meanwhile, these microscopic particles have also a mass center and possess an amplitude, 
width and sizes, thus are localized at x0. Thus we can conclude that these microscopic particles have all the wave-
corpuscle duality in the light of previous explanation. However, the differences among these solutions are only 
distinctions of the amplitude, velocity and frequency, the velocity for some particles are related to time, some 
frequencies is oscillatory. The above features indicate that the localization feature or wave-corpuscle duality of a 
microscopic particle cannot be changed with varying the external potential ( )V x , the latter alters only the sizes of 
amplitude, velocity and frequency of microscopic particle, therefore its influence is secondary. This shows also that 
the fundamental nature of microscopic particles is mainly determined by the combined effect of dispersion forces 
and nonlinear interaction in such a case. It is the nonlinear interaction that makes dispersive microscopic particle 
become a localized soliton.

From the above results we see clearly that the microscopic particles are a soliton which can denote all by
)','()','()','( txietxtx θϕφ = in Eq.(23). According to the soliton theory [18-20], the bell-type soliton in Eq.(34) can move 

freely over macroscopic distances in a uniform velocity ve in space-time retaining its shape, energy, momentum and 



    
 

 

 

  

 

 
 

 

 

  

 

  
   

other quasi-particle properties. This means that

 

its mass, momentum and energy are

 

constants, and can be

 

represented by

 

[18-19,23-24]

 

2
0' 2 2sN dx Aφ

∞

−∞
= =∫

 

                                   
              

( ) constvNvAdxip esexx ===−−= ∫
∞

∞− 0
*
''

* 22'φφφφ

 

                                                    2
0

42
' 2

1'
2
1

esolx vMEdxE +=



 −= ∫

∞

∞−
φφ                                                        (56)

 

where

 

mxx 2//' 2= , /' tt = , and 022 ANM ssol ==

 

is

 

just effective mass of

 

the

 

microscopic particle,

 

which is a 

constant. Obviously, the energy, mass and momentum of the particle cannot be dispersed in its motion. Just so, the 
position vector r

→
or position x

 

in Eq.(20) or (26) has definitively physical significance, and denotes exactly the 
positions of the particles at time t. Thus, the wave function ( )tr ,φ or φ(x,t)

 

can represent exactly the states of 
microscopic particles at the position r

→

 

or

 

x

 

and time

 

t.

 

This is consistent with the concept of classical particles or 
corpuscles. 

In the light of this method and formulae we can find out the effective masses, momentums and energies of 
the microscopic particles described by Eq.(36) at A(φ )=0, V(x)=c,

 

( )V x xα′ ′= , ( )V x xα′ ′= +c, ( ) 2 2
0V x xα′ ′= and 

2( ) ( ) ( )V x kx A t x B t= + + , respectively.

 

ii.

 

The linear SchrÖdinger  equation is a special case at the nonlinear interaction to equal to zero

 

However, we also demonstrate that the solution of Eq.(20) is not the solution Eq.(11) of linear SchrÖdinger  
equation

 

in Eq.(7), even though the nonlinear

 

interaction approaches to zero. To see this clearly, we first examine the 
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velocity of the skirt of the soliton given in Eq.(34). For weak nonlinear interaction (b<<1) and small skirt ( ),x tφ ′ ′ , it
may be approximated by (for ex tυ> )

                                                                    ( ) ( )2 2 / e e c2k x t i x t 2bke eυ υ υφ ′ ′ ′ ′− − −=                                                       (57)

where 23/2k/b1/2= A0 . Thanks to the small term b
2φ φ , then Eq. (11) can be approximated by  

                                                                                           0t x xiφ φ′ ′ ′′+ ≈                                                                        (58)

Substituting Eq. (57) into Eq. (58), we get e kυ ≈ 2 2 , which is the group speed of the particle. (Near the top 
of the peak, we must take both the nonlinear and dispersion terms into account because their contributions are of 
the same order. The result is the group speed.). Here, we have only checked the formula for the region where ( ),x tφ
is small; that is, when a particle is approximated by Eq.(49), it satisfies the approximate wave equation (50) with 

e kυ ≈ 2 2 .

However, if Eq.(50) is treated as a linear SchrÖdinger  equation, its solution is of the form:
                                                                                        

( ) ( ), i kx tx t Ae ωφ −′ =                                                               (59)

We now have 2kω = , which gives the phase velocity kω as c kυ = and the group speed grk kω υ∂ ∂ = = . 

Apparently, this is different from 2 2e kυ = . This is because the solution Eq. (57) is essentially different from Eq.
(59). Therefore, the solution Eq. (59) is not the solution of nonlinear SchrÖdinger equation (20) with V(x,t)= 0 in the 
case of weak nonlinear interactions. Solution Eq.(57) is a “divergent solution” ( ( ),x tφ →∞ at x →−∞ ), which is not 
an “ordinary plane wave”. The concept of group speed does not apply to a divergent wave. Thus, we can say that 
the soliton is made from a divergent solution, which is abandoned in the linear waves. The divergence develops by 
the nonlinear term to yield waves of finite amplitude. When the nonlinear term is very weak, the soliton will diverge; 
and suppression of divergence will result in no soliton. These circumstances are clearly seen from the soliton 
solution in Eq.(34) in the case of nonlinear coefficient 1b ≠ . If the nonlinear term approaches zero ( 0b → ), the
solitary wave diverges ( )( ),x tφ →∞ . If we want to suppress the divergence, then we have to set 0k = . In such a
case, we get Eq. (59) from Eq.(34). This illustrates that the nonlinear SchrÖdinger equation can reduce to the linear 



 

  

    

  

   

  

 
  

 
  

   

 

   
 

 

 
 

 

 

SchrÖdinger equation if and only if the nonlinear interaction and the group speed of the particle are zero. Therefore, 
we can conclude that the microscopic particles described by the nonlinear SchrÖdinger  equation in the weak 
nonlinear interaction limit is also not the same as that in linear SchrÖdinger  equation in quantum mechanics. Only if 
the nonlinear interaction is zero, the nonlinear SchrÖdinger equation can reduce to the linear SchrÖdinger equation. 
However, real physical systems or materials are made up of a great number of microscopic particles, and nonlinear 
interactions always

 

exist in the systems. The nonlinear interactions arise from the interactions among the 
microscopic particles or between

 

the microscopic particles and the environment

 

as mentioned above. The nonlinear 
SchrÖdinger equation should be the correct and more appropriate

 

theory for real systems. It should be used often 
and extensively, even in weak nonlinear interaction cases. However, the linear SchrÖdinger equation in quantum 
mechanics is an approximation to the nonlinear SchrÖdinger equation and

 

can be used to study motions of 
microscopic particles in systems in which there exists only very weak and negligible nonlinear interactions. 

iii.

 

The reason for localization of the microscopic particles

 

However, how could a microscopic particle be localized in

 

such a case? In order to shed light on the 
conditions for localization of microscopic particle in the nonlinear SchrÖdinger  equation, we return to discuss the 
property of nonlinear SchrÖdinger  equation

 

(20).

 

The time-independent solution of Eq.(20) is assumed to have the 
form of[18-19,23-24,33-34]

  

                                                

 

                         
  /),('),( iEtetxtx −= ϕφ

 

                                                                   

 

(60)

 

 

then Equation(20) becomes as 
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2

22 ' ( ) ' ' ' 0.
2

V r E b
m

ϕ ϕ ϕ ϕ − ∇ + − − = 


                                               (61)

For the purpose of showing clearly the properties of this system, we here assume that ( )V r


and b are 
independent on r


. Then in one-dimensional case, equation (61) may be written as

                                                                               
2 2

2

' ( ')
2 ' eff

d V
m x d

ϕ ϕ
ϕ

∂
= −

∂


                                                              (62)

with

                                                                     
4 21 1( ') ' ( ) ' .

4 2effV b V Eϕ ϕ ϕ= − −                                                       (63)

When V E> and V E< , the relationship between ( ')effV ϕ and 'ϕ is shown in Fig.2. From this figure we see 
that there are two minimum values of the potential, corresponding to two ground states of the microscopic particle in 

the system, i.e. '
0

V E
b

ϕ −
= ± . This is a double-well potential, and the energies of the two ground states are 

2( ) 4 0V E b− − ≤ . This shows that the microscopic particle can be localized due to the fact that the microscopic 
particle has negative binding energy. This localization is achieved through repeated reflection of the microscopic 
particle in the double-well potential field. The two ground states limit the energy diffusion, thus the energy of the 
particle is gathered, soliton is formed, the particle is eventually localized.. Obviously, this is s result of the nonlinear 
interaction because the particle is in an expanded state if b=0. In the latter, there is only one ground state of the 
particle which is ' 0ϕ = . Therefore, only if 0b ≠ , the system can have two ground states, and the microscopic particle 
can be localized. Its binding energy, which makes the particle to be localized, is provided by the attractive nonlinear 
interaction , -b 2( ' '*)ϕ ϕ , in the systems. 



 

  

  

 

  

  

 

  

 

 

 

 

 

Fig. 2 :

 

The effective potential of nonlinear SchrÖdinger  equation

 

From Eq. (63), we know that when 0V > , 0E >

 

and V E< , or

 

V E> ,

 

0E >

 

and

 

0V < , for

 

0b > , the 
microscopic particle may not be localized by the mechanisms mentioned

 

above. On the other hand, we see from 
(61)-(63) that if the nonlinear self-interaction is of repelling type (i.e, 0b < .), then, equation (20) becomes                   

 

                                                    

2 2
2

2 ( , ) .
2

i b V x t
t m x

φφ φ φ φ∂ ∂
+ − =

∂ ∂




 

                                                  (64)

 

It is impossible to obtain a bell-type soliton solution, with full matter features, of this equation. However, if 
( , ) ( )V x t V x= or a constant, solution of kink soliton type exists. In this case inserting (60) into (64), we can get  

                                                                       [ ]
2 2

3
2

' ' ( ) ' 0.
2

b E V x
m x

ϕ ϕ ϕ∂
− + − =

∂


 

                                               

 

(65)
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If V is independent of x and 0 V E< < , equation (64) has the following solution

                                                 
02

2( ) 2( )' tanh ( )
E V E V x x
b h

ϕ
 − −

= − 
 

.                                                       (66)

This is the kink soliton solution when V E> and 0V < . In the case of ( ) 0V x = , Zakhorov and Shabat et 
al[25-26] obtained dark soliton solution which was experimentally observed in optical fiber and was discussed in the 
Bose-Einstein condensation model .

  

  

c) The stability of wave-corpuscle duality of microscopic particles 
i. The instability of microscopic particles in quantum mechanics

As mentioned above, the microscopic particles depicted by linear SchrÖdinger  equation (7) are always 
dispersive, thus also unstable. What is so-called dispersion effect? The concept of dispersion comes from optics. 
We know from optics that so-called dispersion of light is just a beam white light to split into several beams of lights 
with different velocities, when the beam passes through a prism, in which the matter the light wave is propagated is 
referred to as a dispersive medium. The relationship between the wave length and frequency of the light (wave) in 
this phenomenon is called a dispersed relation, which can be expressed as ( )kω ω=


or ( , ) 0G kω =


, where 

2

det 0
i jk k
ω∂

≠
∂ ∂ or  

2

2 2 0
k
ω∂

≠
∂

in one-dimensional case. It specifies how the velocity of frequency of the wave (light) 

depends on its wavelength or wavevector. The equation depicts a wave propagation in a dispersive median and is 
called as dispersion equation. The linear SchrÖdinger equation (1) in quantum mechanics is a dispersion equation[8-

12]. If Eq.(11) is inserted into Eq.(7), we can get 2 2k mω =  , here ,E p kω= =
 

  . The quantity ev kω= is called

the phase velocity of the microscopic particle (wave), but the wave vector k


is a vector designating the direction of 
the wave propagation. Thus the phase velocity is given by 2( )ev k kω=

 
. This is a standard dispersion relation. Thus, 

the solutions of the linear SchrÖdinger  equation (1) are a dispersive wave[8-12].
But how does the dispersive effect influence the state of a microscopic particle? To this end, we consider 

the dispersive effect of a wave-packet which is often used to explain the corpuscle feature of microscopic particles in 
quantum mechanics. The wave-packet is formed from a linear superposition of several plane waves in Eq.(11) with 
wavevector k distributed in a range of 2 k∆ . In the one dimensional case, a wave-packet is can be expressed as[8-12]
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π
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                                                 (67)

 

We now expand the angular frequency at ω0 by

 

                                                           

 

0 0

2
2

0 2

1( ) ( ) ( )
2!k k

d dk k
dk dk
ω ωω ω= + ∆ + ∆ +

 

                                               

 

(68)

 

If we consider only the first two terms in the dispersive relation, i.e. 
00 ( ) ,k

d
dk
ωω ω ξ= +

 

here 0k k kξ = ∆ = − , then

 

                                                     

0 0

0
0 0

0

( )( )
0
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0

( , ) ( )

sin ( )
2 ( ) ,
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ko
k i x d dk ti k x t

k

k
i k x t

k

x t k e d e

dx t k
dkk edx t
dk

ω ξω

ω

ψ ξ

ω

ψ ω

∆  −−  

−∆

−

Ψ =

  − ∆    =
−

∫

 

                

 

                                    (69)

 

where the coefficient

 

of 0 0( )i k x te ω− is the amplitude of the wave-packet. Its maximum is 02 ( )k kψ ∆

 

which occurs at x=0, 
but it is zero at ( 1, 2 ).nx x n k nπ= = ∆ = ± ± 

 

Obviously, the amplitude of the wave-packet decreases with 
increasing distance of propagation due to the dispersion effect. Hence, the dispersion effect results directly in 
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damping of the microscopic particle (wave). This means that a wave-packet could eventually collapse with 
increasing transported time. Thus a wave-packet is unstable and cannot express the corpuscle feature of particles 
Therefore, the microscopic particles are instable in quantum mechanics[9-12]. Obviously, this is due to the dispersion 

effect of the kinetic energy term  22 2( 2 ) 2h m p m∇ = in Eq.(7) or Eq.(8), which cannot always be balanced and 
suppressed by an external potential field ( , )V r t


.  

ii. The stability of microscopic particles depicted by nonlinear SchrÖdinger  equation
As known, stability of particle designates its corpuscle feature, in classical physics the particles are stable. 

However, whether is the above wave-corpuscle duality of microscopic particles depicted by nonlinear SchrÖdinger 
equation stable? This need to prove further. In the absence of an externally applied field, the stability of the 
microscopic particles can be demonstrated by means of the initial and structural stabilities[18-20]. However, how 
does  the stability of macroscopic particles exposed in an externally applied field be proved ? If the motion of a 
macroscopic particles is located in a finite range where the potential is lowest, we can say that the particle is stable 
according to the minimum theorem of energy. As a matter of fact, when there are a lot of particles with complicated 
interactions in the system, then we are very difficult to define the individual behavior of each particles in this case. 
Thus we cannot use again same strategies as those used in the discussions of initial stability and collision of 
particles to determine their stability[18-19,23-24,37]. Instead, we apply the fundamental work- energy theorem in 
classical physics to determine their stability. The theorem of minimum energy can be desribed as follows. If a 
mechanical system is in a state of minimal energy, then we can say it is stable because in order to change this state, 
external energy must be supplied. We apply this fundamental concept to demonstrate the stability of the 
microscopic particles described by the nonlinear SchrÖdinger  equation (20), which is outlined in the following.

Let ( )tx,φ represent the field of the particle, and assume that it has derivatives of all orders, and all 
integrations, and is convergent and finite. The Lagrange density function corresponding to the nonlinear 
SchrÖdinger  equation (20) is as follows:

                               L 2
2

* )*(
2

*)(*).(
2

)*(
2

φφφφφφφφφφ bxV
m

i
tt +−∇∇−−=


                                 (70)

The momentum density of this field is defined as p= ∂L/ φ∂ . Thus, the Hamiltonian density of the field is as 
follows

                       H = ( )t t
i
2

φ φ φ φ∗ ∗∂ − ∂


- L 2
2

)*(
2

*)(*).(
2

φφφφφφ bxV
m

−+∇∇=


                         (71)



 

 

 
  

 
 

  

 

  

 
 

    

From Eqs.(70)-(71), we see clearly that the Lagrange and Hamiltonian operators of the systems

 

corresponding to Eq. (20)

 

are all related to the state wave function

 

of particles and involve the nonlinear interactional 
energy, b 2( *)φφ

 

related to the states of microscopic particles. This is

 

in essence different from the Hamiltonian 
operator in Eq.(8) in quantum mechanics. Then the natures and features of microscopic particles should be together 
determined by the kinetic

 

and nonlinear interaction terms in this case. Just so, there is

 

a force or energy to obstruct 
and suppress the dispersing effect of kinetic energy in the system, thus the microscopic particles cannot disperse 
and propagate again in total space, and eventually

 

is localized all the time. This is just the essential reason that the 
microscopic particles have a

 

particulate nature or corpuscle-wave duality as mentioned above. Therefore, we can 
say that the systems described by the nonlinear SchrÖdinger equation

 

(20) and correspond- ding Lagrange and 
Hamiltonian

 

in Eqs.(70)-(71) breaks through the fundamental hypothesis for the

 

independence of Hamiltonian 
operator with the wave function of the particles

 

in the quantum mechanics[18-19]. This is a new development of 
quantum mechanics.  

 

In the general case, the total energy of the particles is a function of t′

 

and is represented by

 

                                                     ( ) ( )
2

2 2*

2
bE t V x dx

x
φ φφ φ

∞

−∞

 ∂′ ′ ′= − + ′∂  
∫

  

                                                 

 

(72)

 

However, in this case, b and ( )xV ′

 

are not functions of t′ . So, the

 

total energy of the systems is a 

conservative quantity, i.e., ( )tE ′ =E=const.. We can demonstrate that when ±∞→′x , the solutions of Eq.(20) and 

( )tx ′′,φ should tend to zero rapidly, i.e.[18-19,37-41],

 

34

G
lo
ba

l
Jo

ur
na

l
of

Sc
ie
nc

e
Fr

on
tie

r
R
es
ea

rc
h 

  
  
  
 V

ol
um

e
Y
ea

r
20

16
X
V
I   

Is
s u

e 
  
  
 e

rs
io
n 

I
V

V
( A

)

© 2016  Global Journals Inc.  (US)

The Difficulties of Quantum Mechanics and its Investigations of Development

       
( ) 0, =

′∂
∂

=′′
∞→∞→′ x

LimtxLim
xx

φφ

Then

                
∫
∞

∞−

∗ =′ .constxdφφ or a function of t ′

The position of mass centre of microscopic particle can be represented by 

                                                                 gxx ′=′ = * *
0 ' ' /x x dx dxφ φ φ φ

∞ ∞

−∞ −∞
′ ′= ∫ ∫                                               (73)

Thus, the velocity of mass centre of microscopic particle can be denoted by

                                                          ∫

∫

∫
∫

′∗

′
′∂
′∂∗

−=












′∗

′′∗

′
=

′
′

=

∞

∞−

xd

xd
x

i
xd

xdx
td

d
td
xd

g φφ

φφ

φφ

φφ
ν 2                                            (74)

However, for different solutions of the same nonlinear SchrÖdinger equation (20), dxφ φ
∞

∗

−∞

′∫ , x′ and tdxd ′′

can have different values. Therefore, it is unreasonable to compare the energy between a definite solution and other 
solutions. We should compare the energy of one particular solution to that of another solution. The comparison is 

only meaningful for many microscopic particle systems that have the same values of ∫
∞

∞−

∗ =′ .kxdφφ , ux =′ and

d x dt u′ ′< > =  at the same time 0t′ . Based on these, we can determine the stability of the solutions of Eq.(20), for 
example, Eq.(34). Thus, we assume that the different solutions of the nonlinear SchrÖdinger equation (20) satisfy the 
following boundary conditions at definite time 0t′ :

dx kφ φ
∞

∗

−∞

′ =∫ , ( ),0
0

tux
tt

′=′
′=′ ( )

0

'

0
t t

d x u t
dt ′ ′=

< > ′=
′

 ,                               (75)
                                                                    

Now we assume the solution of nonlinear SchrÖdinger  equation (20) to have the form of Eq.(23).
Substituting Eq.(23) into Eq.(72), we obtain the energy formula:
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                              (76)

 

At the same time, equation (24) becomes

 

                                                                 
2dx kϕ
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ϕ
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                                   (77)

 

Finding the extreme value of the functional Eq.(76) under the boundary conditions Eq. (77) by means of the 
Lagrange uncertain factor method, we obtain the following Euler equations:
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                                                                 ( )
( ) 022 03

2
2

2

=
′∂

∂′+
′∂

∂
′∂

∂
+

′∂
∂

t
tC

ttx
ϕϕϕϕθϕϕ

                                              (79)

where the Lagrange factors 1C , 2C and 
3C are all

 

functions of t′ . Now, let ( ) ( )003 2
1 tutC ′−=′ 

If           

  

                                                                         ( ) 02 0 ≠′−
′∂

∂ tu
x


θ

we can get from Eq.(79)

                   
( )0

2

2

2
1

2

tu
x

x
x ′−

′∂
∂−

′∂
∂−

=
′∂

∂


θ

θ
ϕ

ϕ

Integration of the above equation yields

                                                                  

( )
( )0

2

2
1 tu

x

tg

′−
′∂

∂
′

=


θϕ   or   ( ) ( )
2

0
2
0

0

tutg
x tt

′
+

′
=

′∂
∂

′=′



ϕ
θ

                                         
(80)

where g(t0
’) is an integral constant. Thus,

                                                                             

( ) ( ) ( ) ( )0
0

0
20 2

, tMx
tuxdtgtx

x

′+′+
′

′=′′ ∫


ϕ
θ                                       (81)

Here, M(t0
’) is also an integral constant. Again let

                                                                                               ( ) ( )002 2
1 tutC ′=′                                                                 (82)

Substituting Eqs.(80)-(82) into Eq.(79), we obtain

                           ( )
( ) ( ) ( ) ( ) ( ) ( ) ( )
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                                        (84)

 

where β′

 

is an undetermined constant, which is a function of t ′ -independent, and assuming ( )0tuxZ ′−′= , then 

( ) 2

2

2

2

Zx ∂
∂

=
′∂

∂ ϕϕ

 

is only a function of Z. To make the right-hand side of Eq.(34) be also a function of Z , the 

coefficients of ϕ , 3ϕ and 31 ϕ

 

must also be functions of Z ,

 

thus,

 

( ) ,00 constgtg ==′ and 

           
( ) ( ) ( ) ( ) ( )ZVtutMx

tu
xV 0

2

0
0 ~

42
=−′+′

′
+′
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Then, equation (83) becomes
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                                                           ( )
( )[ ]{ } ( )

3
0

2
3

02

2 ~
ϕ

ϕϕβϕ tg
btuxV

x
′

+−′+′−′=
′∂

∂
                                         (85)

Since ( ) ( )[ ] 0~~
00 =′−′= tuxVZV in the present case. Hence, equation(85) becomes  

                                                                        
( )

( )
3

0
2

3
2

2

ϕ
ϕϕβϕ tg

b
x

′
+−′=

′∂
∂

                                                           (86)

Therefore, ϕ is the solution of Eq.(86) for the parameters β′=constant and

 

( )0tg ′ =constant. For sufficiently 

large Z we may assume[18,19,37-41 that ,~ 1 ∆+≤ Zβϕ where ∆ is a small constant. However, in Eq.(86) we can only 

retain the solution ( )Zϕ corresponding to ( )0tg ′ to ensure that 022 =∞→ dZdLim ϕε , thus, Eq. (86) becomes  

  

                                                                     ( )
3

2

2

ϕϕβϕ b
x

−′=
′∂

∂
                                                               (87)

As a matter of fact, if ,2ut =′∂∂θ and considering Eqs.(84)-(85) we can verify that the solution in Eq.(34) 
can satisfy Eq.(87). In such a case, it is not difficult to show that the energy corresponding to the solution Eq.(34) of 
Eq.(87) has a minimal value under the boundary conditions of Eq.(87). Thus, we can conclude that the solution of 
Eq. (20), or the wave-corpuscle duality of microscopic particles depicted by nonlinear SchrÖdinger  equation (20) is 
stable in such a case.. This indicates the microscopic particles have a feature of classical particles.

d) The classical features of motion of microscopic particles
i. The feature of Newton’s motion of microscopic particles

Since the microscopic particle described by the nonlinear SchrÖdinger  equation (20) has a corpuscle 
feature and is also quite stable as mentioned above. Thus its motion in action of a potential field in space-time 
should have itself rules of motion. We now study this rule of motion. 
Now utilizing Eq. (20) and its conjugate equation as follows: 

                                                       ( )
2

22* * * , *
2

i b V r t
t m
φ φ φ φ φ∂

− = − ∇ ± +
∂

 
 ,                                            (88)

we can obtain[18,37-41]

* * * * * 2( ) { [x t x t x x x
d dx dx dx i b
dt x

φ φ φ φ φ φ φ φ φ φ
∞ ∞ ∞ ∞

′ ′ ′ ′ ′ ′ ′−∞ −∞ −∞ −∞

∂′ ′ ′= + = +
′ ′∂∫ ∫ ∫ ∫

                                                   
* * 2 * *] [ ( ) ] }x x x

VV b V dx i dx
x

φ φ φ φ φ φ φ φ
∞

′ ′ ′ −∞

∂′ ′− − − − =
′∂∫                                                (89)



  

 

 

 

    

   

  

 

 

  
  

 
 

   

 

 

   

where mxx 2//' 2= , /' tt = . We here utilize the following relations and the boundary conditions:

 

* * *2 * 2 *( ) 0, ( ) 0x x x x x x x xdx b dxφ φ φ φ φ φφ φ φ φ
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. 0x x
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′ ′−∞ ′ ′→∞ →∞
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where ' ' ' '

3

' '3,
x x x xx x

φ φφ φ∂ ∂
= =
∂ ∂

. Thus,

 

we can get

 

                                                         

*
* * *( ( ) 2 x

d x dx x x dx i dx
dt t t

φ φφ φ φ φ φ φ
∞ ∞ ∞

′−∞ −∞ −∞

∂ ∂′ ′ ′ ′ ′ ′= + = −
′ ′ ′∂ ∂∫ ∫ ∫

 

                                       (90)

 

In the systems, the position of mass centre of microscopic particle can be represented by Eq.(73), thus the 
velocity of mass centre of microscopic particle is represented by Eq.(74). Then, the acceleration of mass centre of 
microscopic particle can also be denoted by
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2

* * * *
2 2 { / } 2 2x x

d d Vx i dx dx V dx
dt dt x

φ φ φ φ φ φ
∞ ∞ ∞

′ ′−∞ −∞ −∞

∂′ ′ ′ ′< >= − = − = − < >
′ ′ ′∂∫ ∫ ∫                  (91)

If φ is normalized, i.e., * 1dxφ φ
∞

−∞
′ =∫ , then the above conclusions also are not changed. 

We expand 
V
x
∂
′∂

at the mass centre x ′ =< x ′ > = 0x′ as[18,37-41]

2 3
2

2 3

( ) ( ) ( ) 1 ( )( ) ( )
2!

V x V x V x V xx x x x
x x x x
′ ′ ′ ′∂ ∂ < > ∂ < > ∂ < >′ ′ ′ ′= + − < > + − < > +
′ ′ ′ ′∂ ∂ < > ∂ < > ∂ < >



     

Finding the expectation value to the above formula, thus we get

3
2

3

( ) ( ) 1 ( )( )
2!

V x V x V xx x
x x x
′ ′ ′∂ ∂ < > ∂ < >′ ′= + < − < > >
′ ′ ′∂ ∂ < > ∂ < >

For the microscopic particle described by Eq.(20) or Eq.(26), the position of the mass center of the particle 
is known and determinant, which is just < x’>= 0x′=constant, or 0. Since we here study only the rule of motion of 
the mass centre x0, which means that the terms containing 0x′ in <x’2> are effective, thus <x’2> =, <x’><x’>, then

>>′<−′< 2)( xx =0 can yield. Thus

                                                                               
( ) ( )V x V x
x x
′ ′∂ ∂ < >

=
′ ′∂ ∂ < >

                                                            (92)

Finally, we can get the acceleration of the mass center of the particle to be of the form

                                                                    
2

2

( )2d V xx
dt x

′∂ < >′< >= −
′ ′∂ < >

   or 
0

2
0

2

d x Vm
dt x

∂
= −

∂
                                     (93)

where 0x′=<x’> is the position of the mass centre of microscopic particle. Equation (93) is a Newton-type classical 
equation of motion. This shows clearly that the motion of the mass centre of microscopic particles satisfies the 
Newton law, when the microscopic particles are described by the nonlinear SchrÖdinger equation in Eq.(20). 
Therefore, we can say that the microscopic particle has some properties of the classical particle.  

The above equation of motion of microscopic particles can also be derived from the nonlinear  SchrÖdinger
equation (20) by another method. As is known, the momentum of microscopic particle depicted by Eq.(20) is 

denoted by ( )x x
LP i dxφ φ φ φ
φ

∞ ∗ ∗
′ ′−∞

∂ ′= = − −
∂ ∫ . The energy ( ) ( )

2
2 2*

2
bE t V x dx

x
φ φφ φ

∞

−∞

 ∂′ ′ ′= − + ′∂  
∫ and quantum number 
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sN dxφ

∞
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in

 

this system

 

are integral invariant. However, the momentum P is not conserved. From

 

Eq.(20) we 
has  

 

                                                     
( ) 2 22 2dP VV x dx dx

dt x x
φ φ

∞ ∞

−∞ −∞

∂ ∂′ ′ ′= = −
′ ′ ′∂ ∂∫ ∫ =-2

( )V x
x
′∂
′∂

                                        (94)

 

where the boundary condition is ( ) 0xφ ′ → as x′ → ∞ . Utilizing again Eqs.(88) and (92) we can get thet the 
acceleration of the mass center of the particle to be

 

                                                             ( )0

0

2
V xdP

dt x
′∂

= −
′ ′∂

 

         or           
0

2
0

2

d x Vm
dt x

∂
= −

∂
                                      (95)
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where 0x′ is the position of the center of the mass of the macroscopic particle. This is the same as Eq. (93). It 
resembles the Newton’s equation for a classical particle.

ii. Lagrangian and Hamilton Equations of microscopic particle 
Using the above variables φ and φ∗ one can determine the Poisson bracket and write further the equations 

of motion of microscopic particles in the form of Hamilton’s equations. For Eq. (20) with ( ) 0V r,t =


, the variables

 

φ
and φ∗

satisfy the Poisson bracket [42] : 

                                                                      { }(a) (b) ab( ), ( ) ( )x y i x yφ φ δ δ= −                                                         (96)

where                                                           { },
-

  A B i
  

δΑ δΒ δΒ δΑ
δφ δφ δφ δφ

∞

∗ ∗∞

 
= − 

 
∫

    

  

                                                                                 
( ) 1,

b

t

t D
S L'dxdtφ φ∗ = ∫ ∫                                                             (97)

and its variation for infinitesimal δφ and δφ∗ is of the form[42]

                                                                 B

t

tt D
t

' ' 'S d d + c.cL L L x t .δ δφ δ φ δφ
φ φ φ

 ∂ ∂ ∂
= + ∇ + ∂ ∂∇ ∂ 
∫ ∫                                    (98)

where L’=L, ( )'L∂ ∂ ∇φ denotes the vector with components ( ) ( 1, 2,3)iL' iφ∂ ∂ ∂ = . After integrating by parts, we get

                                    
1

0

t

t
t t

' ' ' 'S + c.c.
b

t

t D
t

L L L Ldxdtδ δφ δφ
φ φ φ φ

     ∂ ∂ ∂ ∂
= −∇ ⋅ − ∂ +     ∂ ∂∇ ∂ ∂      
∫ ∫                             (99)

A necessary and sufficient condition for a function ( ),x tφ with known values ( )0,x tφ and ( )1,x tφ to yield an 
extremum of the action S is that it must satisfy the Euler-Lagrange equation: 

The corresponding Lagrangian density in Eq. (70) associated with Eq. (20) can be written in terms of 
( ),x tφ and its conjugate φ∗ viewed as independent variables. The action of the system can be written as

L

                                                                       t
t

' ' 'L L L
φ φ φ

  ∂ ∂ ∂
= ∇ ⋅ + ∂   ∂ ∂∇ ∂   

                                                        (100)  

Equation(100) can give the nonlinear SchrÖdinger equation (20) if the Lagrangian density Eq. (70) is used. 
Therefore, the dynamic equation, or the nonlinear SchrÖdinger equation can be derived from the Euler-Lagrange 
equation, if the Lagrangian function of the system is known. This is different from quantum mechanics, in which a 
dynamic equation, or the linear SchrÖdinger equation, cannot be obtained from the Euler-Lagrange equation. 



   
 

  

 

   

  

  

 

 

   

  

  

  

 

 

  
 

  

The above derivation of the nonlinear SchrÖdinger

 

equation based on the variational principle is a 
foundation for other methods, such as, the “the collective coordinates”, the “variational approach”, and the 
“Rayleigh-Ritz optimization principle”, where a solution is assumed to

 

maintain a prescribed approximate profile 
(often bell-type)[10-12]. Such methods greatly simplify the problem,

 

reducing it to a system of ordinary differential 
equations for the evolution of a few characteristics of the systems.

 

The Hamiltonian density H corresponding to Eq.(20) is Eq.(71)[42]. Introducing the canonical variables,  

( ) ( ) ( ) ( )1 1 2 2
t 1 t 2

1 ' 1 ', ; ,
2 2

L Lq      p q      p
q i q

φ φ φ φ∗ ∗∂ ∂
= + = = − =

∂ ∂ ∂ ∂

 

where L’ = , the Hamiltonian density takes the form

 

H

 

ti i
i

p q= ∂∑ -

 

L
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L

and the corresponding variation of the Lagrangian density L  = L’ can be written as  

                                                  
'  Lδ

( ) ( ) ( ) ( )
t

' ' '
i i t i

i i i i

L L Lq q q
q q q

δ δ δδ δ δ
δ δ δ

= + ∇ + ∂
∇ ∂∑                                 (101)

From Eq.(101), the definition of ip , and the Euler-Lagrange equation, 

t
p

q
L

q
L i

ii ∂
∂

+
∂∇
∂

∇=
∂
∂ '.'

one obtains the variation of the Hamiltonian in the form of 

δH ( )t ti i i i
i

q p p q dxδ δ= ∂ − ∂∑∫
Thus, the Hamilton equation can be derived: 

                                                               
iq

t
∂

=
∂

δH／δpi, ip
t

∂
= −

∂
δH／δqi                                                  (102)

or in complex form: 

       *
'

δφ
δφ H

t
i =

∂
∂

 , or
δφ
δφ '* H

t
i −=

∂
∂



This is interesting. It shows that the nonlinear SchrÖdinger equation describing the dynamics of microscopic 
particle can be also obtained from the classical Hamilton equation in the case, if the Hamiltonian of the system is 
known. Obviously, such methods of finding dynamic equations are impossible in the quantum mechanics. As is 
known, the Euler-Lagrange equation and Hamilton equation are important equations in classical theoretical (analytic) 
mechanics, and were used to describe laws of motions of classical particles. These equations are now used to 
depict properties of motions of microscopic particles. This shows sufficiently the classical features of microscopic 
particles described by nonlinear SchrÖdinger equation. On the other hand, from this study, we seek new ways of 
finding the equation of motion of the microscopic particles in nonlinear systems, i.e., if the Lagrangian or 
Hamiltonian of the system is known in the coordinate representation, then we can obtain the equation of motion of 
microscopic particles from the Euler-Lagrange or Hamilton equations.  

On the other hand, from de Broglie relation[8-12] E hυ ω= =  and p k=
 

 for microscopic particles which 
represent the wave-corpuscle duality in quantum theory, the frequency ω retains its role as the Hamiltonian of the 
system even in this complicated and nonlinear systems and

x k

d dk x
dt k dt x t
ω ω ω

′

′∂ ∂ ∂
= + = 0

′ ′ ′∂ ∂ ∂



 

   

 

 

 

  

 

     

 

  

 

  

 
 

 

  

  
 

 
 

 

  
 

 

as in the usual stationary media[18-19]. From the above result we also know that the usual Hamilton equation in Eq. 
(102) for the nonlinear systems remain valid for the microscopic particles. Thus,

 

the Hamilton equation in Eq. (102) 
can be

 

now

 

represented by another form:

 

                                                                 

 

    

 

kxdt
dk

'' ∂
∂

−=
ω

and ''
'

xkdt
dx

∂
∂

=
ω

     

 

 

                                                

 

(103)            

 

in the energy picture, where k xθ ′= ∂ ∂ is the time-dependent wave number of the microscopic particle, 

tω θ ′= −∂ ∂

 

is its frequency, θ

 

is the phase of the wave function of the microscopic particles.

 

iii.

 

Confirmation of correctness of the above conclusions

 

We now use some concrete examples to verify the correctness of the above laws of motion of microscopic 
particles.
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(1). For V = 0 or constants as shown in Eq.(34) we can get from Eq.(93) that 
2

2

dm x
dt

< >
′

( )V x
x

∂ < >
= −

∂ < >
=0. This

shows that the acceleration of the mass centre of microscopic particle is zero, the velocity of the particle is a 
constant. In fact, if inserting Eq. (34) into Eq.(93) we can obtain vg= d x dt′ ′< > =ve=constant, i.e., the 
microscopic particle moves exactly in uniform velocity in space-time in this case, the velocity is just the group 
velocity of the soliton. This shows that the energy and momentum of microscopic particle can be retained in 
the motion process.  

On the other hand, from Eqs .(103) and (34) we can also get 

0dk
dt

= and  ev
dt
dx

=

where 

2e ct v v /ω θ ′= −∂ ∂ = ,   2ck x v /θ ′= ∂ ∂ = ,

 

( )02 2c ev m x x v tθ  = − −  

This result indicates that the acceleration of microscopic particle is zero, its velocity is a constant. This is 
same with those obtained from Eqs.(90) and (93). Thus the correctness of Eqs.(90), (102)- (103) and (93), or (95) are 
affirmed.  

  

  

(2). For ( )V x xα′ ′= in Eq.(20), its solution is Eq.(52).This solution has also a envelop, carrier wave and mass 
centre x’0, which is the localized position of the particle. The characteristics of motion of the microscopic 
particle can be determined according to Eq. (93). Its accelerations of the center of mass is given by

                                                                   
( )2

0
2

V xd 2 2 constant
d x

x
t

α
′∂′

= − = − =
′ ′∂

                                         (104)

From Eq. (52) we know that 

                                                       
( ) ( )

2 3
2 2 2tt x + t t ,αθ ξ α αξ ξ η θ0

′4′ ′ ′ ′= 2 − − 4 + 4 − +
3

                                         (105)

From Eq.(103) we can find 

                ( ) ( ) ( )2 2 22

2

2 4 2 2 2 2

k ( at ),

ax at ax k .

ξ

ω ξ η η

′= −

′ ′ ′= − − + = − +

Thus, the group velocity of the microscopic particle is 

                                                                          ( )4 2
'

'
'

'
x

dx at ,
dt k

ωυ ξ∂
= = = −

∂


g                                                   (106)

and its acceleration is given by



  
 

   

   
 

 

  

 

  

    

  

   

 

  

 

 

 

 

           

 

                                                            

2 '
' '
0'2 ' 2 cons t an t, here( )d x dk a  x x

dt dt
= = − = =




 

                                           (107)

 

Comparing Eq.(104) with Eq.(107) we find that they are same, which indicates that Eqs.(90), (102)- (103) 
and (93), or (95) are correct. In such a case the microscopic particle moves in uniform

 

acceleration. This is similar 
with that of classical particle. 

 

(3).

 

For the case of

 

( ) 2 2
0V x xα′ ′= ,

 

which is a harmonic potential, where α is constant, the solution of Eq.(20) is 
Eq.(55). This

 

solution has also a envelop, carrier wave and mass centre x’0, which is the localized position of 
the particle in such a condition. The properties

 

of motion of the microscopic particle can be determined by Eq. 
(93). Then its

 

accelerations of the center of mass is given by[35-36]
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2

20
02 4d x x

dt
α

′
′= −

′
                                                                 (108)

From Eq. (55), we gain that 

                                ( ) ( ) ( )
2

2
0 0 0 02 2 4 4' ' ' ' ' ' ' 'x co       a t t sin a t t t t ,

a
ζθ ζ η θ

  
= − + − + − +  

  
                              (109)

From Eqs.(103) and (110) we can find 

( )
( ) ( )

( ) ( )

' '
0

' ' ' 2 ' ' 2
0 0

1 2' 2 2 2 2 2

2 cos 2 ,

4 sin 2 4 co s4 4

2 4 2 4 ,

k= t t

      = a x t t t t

        x k k

ξ α

ω ξ α ξ α η

α ξ ξ η

−

− − − −

= − − + −

s

Thus, the group velocity of the microscopic particle is 

  ( ) ( )
'

'
' ' ' ' '

g 0 02 2
2 2 ctg 2 4 cos 2 ,

1 4x

x kv k x t t t t
k k
ω α α α ξ α

ξ ξ
∂    = = − = − − −   ∂ −

while its acceleration is

                      ( )2 2 ' '
0' ' 2 4 4 sin 2 .

k

dk              k t t
dt x

ω α ξ ξα α∂  = − = − − = − − ∂                         (110)

Since 
2

2

'

' '

d x dk
dt dt

=


, here ( )0
' 'x x= , we have

                        

( )
2 '

' '
0' '2 4 sin 2 ,dp d x t t

dt dt
ζα α = = − − 



and 

                                                                                ( )' ' '
0

2 sin 2 .x t tξ α
α

 = −                                                       (111)

Finally, the acceleration of the microscopic particle is 

                                                                                  
2

24
' k

'
' '

d x dp x .
dt dt

α= = −                                                       (112)



 

 

  

 

 

 

 

  

 

 

 

   

 

 

 

    

We see clearly that Eq. (112) are exactly the same as Eq.(108). Thus we confirm the validity of Eqs.(90), 
(102)- (103) and (93), or (95) . In such a case the microscopic particle moves in harmonic form. This resembles also 
with the result of motion of classical particle. 

 

Since quantum mechanics has a lot of difficult

 

and troubles, when the linear SchrÖdinger equation is used 
to describe the microscopic particles. However, when a nonlinear SchrÖdinger equation is used to describe the 
microscopic particles we find their law of motion and properties are greatly changed relative to that of quantum 
mechanics. In such a case we find that the motion of microscopic

 

particle satisfies classical rule and obeys the 
Hamiltonian principle,

 

Lagrangian and Hamilton equations. We verify further the correctness of these conclusions by 
the results of nonlinear SchrÖdinger equation under actions of

 

different externally applied potential. At the same time 
we discover that

 

a macroscopic object moves with a uniform velocity at V(x’)=0 or constant,  moves in an uniform 
acceleration, when ( )' 'V x ax= , which corresponds to the motion of a charge particle in a uniform electric field, 
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but when  ( ) 2 2' 'V x xα= the macroscopic object performs localized vibration with a frequency of 2α and an 

amplitude of 2ξ α , the corresponding classical vibrational equation is 0
' ' 'x x sin t ,ω= with 

02 'a and   xω ξ α= = . The

 

equations of motion of the macroscopic particles are consistent with Eq. (93) and 
Eqs. (102) – (103) for the center of mass of microscopic particles in nonlinear systems. These correspondence 
between a microscopic particle and a macroscopic object shows that microscopic particles described by the
nonlinear SchrÖdinger  equation have exactly the same properties as classical particles, and their motion satisfy the 
classical laws of motion. We have thus demonstrated clearly from the dynamic equations (nonlinear SchrÖdinger  
equation), the Hamiltonian or Lagrangian of the systems, and the solutions of equations of motion, systems, that 
microscopic particles described by the nonlinear SchrÖdinger  equation in nonlinear systems really have the 
corpuscle property in both uniform and inhomogeneous. Therefore, we should use the nonlinear SchrÖdinger 
equation to describe microscopic particles and develop further a nonlinear quantum theory[18,28-34,].

e) The general conservation laws of motion of particles described by nonlinear SchrÖdinger  equation
i. Conservation laws of mass, energy and momentum of particles in Eq.(26) 

It is known from classical physics that the invariance and conservation laws of mass, energy and 
momentum and angular momentum are some elementary and universal laws of matter including classical particles 
in nature. We demonstrate here also that the microscopic particles described by the nonlinear SchrÖdinger equation 
also have such properties. They satisfy the conventional conservation laws of mass, momentum and energy. This 
shows that the microscopic particles in the nonlinear quantum mechanics have a corpuscle feature. 

For the quantum systems described by nonlinear SchrÖdinger  equation(20) we can define the number 
density, number current, densities of momentum and energy for the particle as[19,37-41]

                         
2 * *| | , ( )x xp iρ φ φ φ φφ= = − −

                             
2

* * 2 2 2( ), | | | * | ( ) | |
2 2x x x

bJ i V x
m

φ φ φφ φ φφ φ= − ∈= − +




where. ( , ), ( , )x tx t x t
x t

φ φ φ φ∂ ∂
= =
∂ ∂

. From Eq.(20) and its conjugate equation (88) as well as Eqs.(70)- (72) and (113) 

we can obtain

2 2
2 2 2 * * *

2 2[2( ) ( | * | 2 | | ( ) 2 ( )],p b V iV
t x x x x x

φ φφφ φ φ φ φ φ φ∂ ∂ ∂ ∂ ∂ ∂
= + − − + +
′ ′ ′ ′ ′ ′∂ ∂ ∂ ∂ ∂ ∂

* 2 2 * *
*

2 2, [ ( ) ( )]J p i iV
t x x x x x x x x x
ρ φ φ φ φ φ φρ φ φ∂ ∂ ∂∈ ∂ ∂ ∂ ∂ ∂ ∂ ∂
= = + − − −

′ ′ ′ ′ ′ ′ ′ ′ ′ ′∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

Thus, we get the following forms for the integral of motion

                                   ,0,0,0 =′∈
′∂

∂
=

′∂
∂

=′
′∂

∂
=

′∂
∂

=′
′∂

∂
=

′∂
∂

∫ ∫∫ xd
tt

Expd
t

P
t

xd
t

M
t

ρ                                (114)







(113)



   

  

 

 
 

    
 

  

  
  

 

 
  

 

  
 

 

 

 

  

These formulae represent just the conservation of mass, momentum and energy in such a case. This shows 
that the mass, momentum and energy of the microscopic particles described by the nonlinear SchrÖdinger  
equation in Eq.(20) in the quantum systems still satisfy conventional rules of conservation of matter including the 
classical particles

 

in physics. Therefore, the microscopic particles described by the nonlinear SchrÖdinger equation 
in Eq.(20) reflects the common rules of motions of matter in nature. In the case of V(x,t)=0 or constant, we can find

 

out easily the values of mass, momentum and energy of the particles

 

of Eq.(26)or (34)

 

[13-17]

 

, as are shown in 
Eq.(56). These results

 

show

 

also that the microscopic particles in such a case

 

have a corpuscle feature.

 

We understand clearly from the above investigations the really physical significance of wave function ( )tr ,φ

 

in this case. It can represent in truth the states and properties of microscopic particles, the 
2),( txφ

 

represents the 
number or mass density of particles, instead of the probability occurred at a point in place-time in quantum 
mechanics. Although the representation in Eq.(23) can also seek in quantum mechanics, its physical significances 
are completely different from that described by the nonlinear SchrÖdinger  equation in Eq.(20). The φ and θ

 

are two 
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independent physical quantities and denote the amplitude and phase of wave in quantum mechanics, respectively, 
but φ(x,t) and ),( txθ in Eq.(23) represent the two different states of motion for envelope and carrier waves in the 
systems described by the nonlinear SchrÖdinger  equation. From Eqs.(27)-(28) we see that the envelope and carrier 
waves are correlated with each other. Just the correlation the microscopic particles move in a soliton in the systems, 
thus wave-corpuscle duality of microscopic particles can occur. Therefore the wave functions of the particles have 
different physical significances in the two cases.

ii. The invariance and conservation laws of particles in Eq.(20)
We have learned from Eqs.(113)－(114) that some conservation laws for microscopic particles described by 

the nonlinear SchrÖdinger equation (20) are always related to the invariance of the action relative to several groups 
of transformations through the Noether theorem in light of Gelfand and Fomin’s (1963) and Bulman and its Kermel’s 
(1989) ideas (see C. Sulem and P. L. Sulem et al.’s book and references therein[42]). Therefore, we first give the 
Noether theorem for nonlinear SchrÖdinger equation.  
To simplify the equation, we introduce the following notations:

( ) ( )0 1 a   t,x , , ,= = ξ ξ ξ ξ ( )0 t 0 1 d, , , ,∂ = ∂ ∂ = ∂ ∂ ∂ and ( ) ( )1 2, , ∗Φ = Φ Φ = φ φ .

According

 

to the Lagrangian Eq. (70) corresponding the nonlinear SchrÖdinger equation(20), then  the action
 of the  system[42]

  

      
{ } ( )1

0

t

t tt
S L' , , , , , dxdtφ φ φ φ φ φ φ∗ ∗ ∗= ∇ ∇∫ ∫

where L’ = L is the Lagrange density function, now becomes  

                                                                       { } ( )
D x

S L' , dφ ξ
∞

′
= Φ ∂Φ∫ ∫                                                       (115)

Under the action of a transformation T ε which depends on the parameter ε , we have 

( ) ( ), , , , , ,→ Φ Φ→Φ Φ ζ ζ ζ ε ζ ε where andΦ ζ are assumed to be differentiable with respect to ε . When 0=ε ,

the transformation reduces to the identity. For infinitesimally small ε , we have ,= + Φ = Φ + Φ ζ ζ δε δ . At the same 

time, ( ) ( )T ,Φ →Φ ε ζ ζ by the transformation T ε , and the domain of integration D is transformed into  D,     

{ }   ( )1D x
S S{ } L' , dφ φ ζ

∞
→ = Φ ∂Φ∫ ∫   

where∂ denotes differentiation with respect to ζ . The change { } { }S S S= − δ φ φ in the limit of ε under the above
transformation can be expressed as

                            ( ) ( ) ( )1 1
0

d

D x D x
S L' , L' , d L' , dυ

υ υ

δξδ ξ ξ
ξ

∞ ∞

=

∂ = Φ ∂Φ − Φ ∂Φ + Φ ∂Φ  ∂∑∫ ∫ ∫ ∫                             (116)



 

 
  

 

  

 

 

  
 

 

   

  

 

    

 

      

     
 

  

 

  

                                           

( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

i i i i i

i i i i i

υ υ

υ υ υ υ υ

δ ξ ξ δξ δ ξ

ξ ξ ξ ξ ξ

Φ = Φ −Φ = ∂ Φ + Φ

 ∂ Φ −∂ Φ = ∂ −∂ Φ + ∂ Φ −Φ 

  

   

 

 

                           
(117)

 

with. 
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µ µ µ
υ µ υµ µ υ µ

υ υ υ

ξ δξ δξ
δ

ξ ξ ξ
∂ ∂ ∂ 

∂ = ∂ = + ∂ = ∂ + ∂ ∂ ∂ ∂ 
   

We then have

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

i i i i
i i

i i i
i i i

L' L'L' , L' ,

L' L' L'L' L'

υ µ
υ

υ
µ υ υ µ

υ υ υ

ξ ξ ξ ξ

δξδξ δ δ
ξ

∂ ∂   Φ ∂Φ − Φ ∂Φ = Φ −Φ + ∂ Φ −∂ Φ   ∂Φ ∂ ∂ Φ

   ∂∂ ∂ ∂
= ∂Φ + ∂ − + ∂ Φ −∂ Φ   ∂Φ ∂ ∂ ∂ Φ ∂ ∂ Φ   

    

Eq. (116) can now be replaced by

( ) ( )i ix x
i i

' ' 'd ' d
D D

i

L L LS L υ
υ υ υ υ

δ δ ξ δξ δ ξ
ξ ξ

∞ ∞

′ ′

    ∂ ∂ ∂ ∂ ∂ = − Φ + + Φ    ∂Φ ∂ ∂ ∂ Φ ∂ ∂ ∂ Φ     
∫ ∫ ∫ ∫

where we have used 

where we used the Jacobian expansion 
( )
( )

d
0 d

v 00 d

1
,...,

,
,...,

υ

υ

ξ ξ δξ
ξ ξ ξ=

∂ ∂
= +

∂ ∂∑
 

and ( )L' , ,Φ ∂Φ  in the second term on the right-

hand side has been replaced by the leading term ( )L' ,Φ ∂Φ in the expansion. Now define

( ) ( )

( ) ( ) ( )

2
2

i i
i i

i i i ix
i i i

L' L'L' L' ,

L' L' L'

υ
υ υ υ υµ υ

υ υ µ

υ
υ υ υ υ υ

δξδξ δξ δξ
ξ ξ

δ δ δ δ
ξ ξ

∞

′

∂∂ ∂ ∂
= + ∂ Φ + ∂ Φ

∂ ∂ ∂Φ ∂ ∂ Φ

   ∂ ∂ ∂ ∂ ∂
∂ Φ Φ − Φ Φ   ∂ ∂ Φ ∂ ∂ ∂ Φ ∂ ∂ ∂ Φ   
∫

Using the Euler-Lagrange equation, the first term on the right-hand side in the equation of Sδ vanishes. We 
can get the Noether theorem[42], i.e., (A) if the action Eq. (115) is invariant under the infinitesimal transformation of 
the dependent and independent variables  ( )1 d, where , ...t x xφ φ δφ ξ ξ δξ ξ→ + → + = , the following conservation 
law holds[28-29]

                   ( ) ( )
'' 0,or, ' 0i

i i
i i

L L'L Lυ υ µ
υ υ υ υ µ

δξ δ δξ δ δξ
ξ ξ ζ

    ∂Φ∂ ∂ ∂ ∂
− Φ = + Φ − =     ∂ ∂ ∂ Φ ∂ ∂ ∂ Φ ∂     

              (118)

in terms of iΦ̂δ defined above, where L’= L.

If the action is invariant under the infinitesimal transformation 

( ) ( )t t t t x,t , ,x x x x x,t , ,δ φ δ φ→ = + → = +



 

 

 

 

 

 

 

 

 

 

 

  

  

( ) ( ) ( ) ( )x,t t ,x t ,x t ,x ,φ φ φ δφ→ = +

 

then

 

( ) ( )t t t t
t t

' 'L Lx x Lδt dxφ φ δ δφ φ φ δ δφ
φ φ

∗ ∗ ∗
∗

 ∂ ∂
∂ ∂ +∇ ⋅ − + ∂ ∂ +∇ ⋅ − −

∂ ∂ 
∫

 

 

is a conserved quantity.

 

For the nonlinear SchrÖdinger

 

equation (20) we have 

 

t

L'
φ
∂
∂ 2

i ∗= φ , and 

 

*
t

L'
φ
∂
∂ 2

i
= − φ

 

where

 

L’ =

 

L

 

is given in Eq.(70). Several conservation laws and invariance can be obtained from

 

the Noether 
theorem.  

(a)

 

Invariance under time translation and energy conservation law
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 

The action, Eq.(115), is invariant under the infinitesimal time translation t t t→ +δ with 0x ∗= = =δ δφ δφ , 
then equation (118) becomes  

( ) ( ) ( )2

t t t, 0
2
b V x tφ φ φφ φ φ φ φ φ φ∗ ∗ ∗ ∗ ∗ ∂ ∇ ⋅∇ − + −∇⋅ ∇ + ∇ =  

This results in the conservation of energy 

                                                         ( ) ( )2

2
bE V x,t dx constant∗ ∗ ∗ = ∇ ⋅∇ − + = 

 ∫ φ φ φ φ φ φ                                           (119)

(b) Invariance of the phase shift or gauge invariance and mass conservation law
It is very clear that the action related to the nonlinear Schrodinger equation is invariant under the phase 

shift ie= θφ φ , which for infinitesimal θ gives i=δφ θφ , with 0t x= =δ δ . In this case, equation (118) becomes

                                                                 
( ){ }2 0t i ∗ ∗∂ +∇ ∇ − ∇ =φ φ φ φ φ                                                           (120)

This results in the conservation of mass or number of particles.

2
constantN dxφ= =∫

and the continuum equation 

N j
t

∂
= ∇ ⋅

∂


, 

where j


is the mass current density 

( )j=-i φ φ φ φ∗ ∗∇ − ∇


(c) Invariance of space translation and momentum conservation law 
If the action is invariant under an infinitesimal space translation x x xδ→ + with t 0δ δφ δφ∗= = = , then

Eq.(118) becomes

     
( ) ( ){ } 0t i 2φ φ φ φ φ φ φ φ∗ ∗ ∗ ∗ ∂ ∇ − ∇ +∇⋅ ∇ ×∇ +∇ ×∇ + = L

This leads to the conservation of momentum 



 
 

 
 

  

  

   

 

 

 

 

 

   

 

  

  
 

 

 

 

                  

 

  

 

                                           ( )P i constant.dxφ φ φ φ∗ ∗= ∇ − ∇ =∫


 

                                                

 

(121)

 

Note that the center of mass of the microscopic particles is defined by 

 

21x x dx
N

φ= ∫ ,

 

We then have 

 

( )2
t

d x
N x dx x i dx

dt
φ φ φ φ φ∗ ∗ = ∂ = − ∇ ∇ − ∇ ∫ ∫

 

                                                                ( )i dx P J jdxφ φ φ φ∗ ∗= ∇ − ∇ = = − = −∫ ∫
  

 

                                         

 

(122)

 

This is the definition of momentum in classical

 

mechanics. It shows clearly that the microscopic particles 
described by the nonlinear Schrodinger equation have

 

the feature of classical particles.

 

(d)

 

Invariance under space rotation and angular momentum conservation law
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If the action, Eq. (115), is invariant under a rotation of angle δθ around an axis

 

I


such that 

0tδ δφ δφ∗= = = and x I xδ δθ= ×
 

, this leads to the conservation of the angular momentum

( )M i x dxφ φ φ φ∗ ∗= × ∇ − ∇∫
 

Besides the above, Sulem also derived another invariance of the nonlinear Schrodinger equation the from 
the Noether theorem for nonlinear SchrÖdinger equation. 

(e) Galilean Invariance 
If the action is invariant under the Galilean transformation: 

( ) ( ) ( )1 1
2 2

x x x t ,t t t ,

x,t x ,t exp{ i x t } x,t ,

υ

φ φ υ υ υ φ

′′ ′′→ = − → =

 ′′ ′′ ′′→ = − + ⋅  

 

which can also retain the nonlinear Schrodinger equation invariance. For an infinitesimal velocity 0, x t , tυ δ υ δ= − =


and ( ) ( ) ( ) ( )2ˆ x ,t x,t i x x,tδφ φ φ υ φ′′ ′′ ′′= − = − . After integration over the space variables, equation (118) leads to the 
conservation law Eq. (122) which implies that the velocity of the center of mass of the microscopic particles is a 
constant. It is also the same, even though the particle is in motion. This exhibits clearly that the microscopic particles
have the particulate nature. 

f) Classical natures of collision of microscopic particles 
i. The features of collision of the microscopic particle at b>0 in Eq.(20)

As is known, the most obvious feature of macroscopic particles is meeting the collision law or conservation 
law of momentum. Therefore, we often also use the law to determine the particulate feature of macroscopic 
particles. As a matter of fact, Zakharov et al.[25-26] used the inverse scattering method to find out the following solution 
of Eq.(26) at b=1>0. It now is denoted by

                       
}')(4'2exp{}'8)'(2{sec22)','( 22'

0 θηξξηξηηφ itixitxxhtxs +−−−−=                             (123)

where, η22 is the amplitude, ξ22 denotes the velocity, θ is its phase. At the same time, they studied further the 
collision feature of two microscopic particles based on the solution (123). From this study they obtain that the 
translations of mass centre '

0x + and phase θ + of each particles after collision can, respectively, represent by

' '
0 0 *

1

1 0,
N

m p
m m

p mm m p

x x
ς ς

η ς ς
+

= +

−
− = <

−Π and *
1

2 arg
N

m p
m m

p m m p

ς ς
θ θ

ς ς
+

= +

 −
− = −   − 

Π



  

   

 

  
 

  
 

 

 

 

  
 

  
  

 

 
 

  

  

    

 

where mη

 

and mς

 

are some constants related to the amplitude and velocity of mth particles. The equations show 
that shift of position of mass centre of the particles and their variation of phase are a constants after collision. The 
collision process of two particles with different velocities

 

and amplitudes can be described

 

as follows. In the case of 
't →−∞

 

the slowest soliton is in the front while the fastest at the rear, they collide with each other at t’=0, after the 
collision and

 

't →∞, they  are just

 

reversed. Thus Zakharov et al.[25-26]

 

obtained that as the time t

 

varies from −∞ to

 

∞ , the

 

relative change

 

of mass centre of two particles, '
0mx∆ , and the relative change of their phases can, 

respectively, denoted

 

by

 

                                       
1

' ' '
0 0 0 * *

1 1

1 ln ln
N N

m p m p
m m m

k m km m p m p

x x x
ς ς ς ς

η ς ς ς ς

−
+ −

= + =

 − −
∆ = − = − 

 − − 
∑ ∑

 

       

 

                             (124)

 

and 
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1

* *
1 1

2 arg 2 arg
m N

m p m p
m m m

k k mm p m p

ς ς ς ς
θ θ θ

ς ς ς ς

−
+

= = +

   − −
∆ = − = −      − −   

Π Π                                     (125)

Equation (124) can be interpreted by assuming that the microscopic particles collide pairwise and every 
microscopic particle collides with others. In each paired collision, the faster microscopic particle moves forward by 

an amount of ( )1 *lnm m k m kη ς ς ς ς− − − , m kς ς> , and the slower one shifts backwards by an amount of 

( )1 *lnk m k m kη ς ς ς ς− − − . The total shift is equal to the algebraic sum of their shifts during the paired collisions. So 

that there is no effect of multi-particle collisions at all. In other word, in the collision processin each time the faster 
particle moves forward by an amount of phase shift, and the slower one shifts backwards by an amount of phase. 
The total shift of the particles is equal to the algebraic sum of those of the pair during the paired collisions. The 
situation is the same with the phases. This rule of collision of the microscopic particles described by the nonlinear 
SchrÖdinger  equation is the same as that of classical particles, or speaking, meet also the collision law of 
macroscopic particles, i.e., during the collision these microscopic particles interact and exchange their positions in 
the space-time trajectory as if they had passed through each other. After the collision, the two microscopic particles 
may appear to be instantly translated in space and/or time but otherwise unaffected by their interaction. The 
translation is called a phase shift as mentioned above. In one dimension, this process results from two microscopic 
particles colliding head-on from opposite directions, or in one direction between two particles with different 
amplitudes. This is possible because the velocity of a particle depends on the amplitude. The two microscopic 
particles surviving a collision completely unscathed demonstrates clearly the corpuscle feature of the microscopic 
particles. This property separates the microscopic particles (solitons) described by nonlinear SchrÖdinger  equation 
from the particles in the quantum mechanical regime. Thus this demonstrates the classical feature of the 
microscopic particles.  

Using the above features of collision of two particles and following the approach of Zakharov and Shabat[25-

26], Desem and Chu[43-44] obtained a solution corresponding to two discrete eigenvalues 1,2ς for the interacting two 
microscopic particles in the process of collision, which is represented by  

                                           ( ) ( ) ( )
( ) ( ) ( ) ( )

' '
2 1

1 1 1 2 2 2

3 1 2 4 1 2

cosh cosh
', '

cosh cosh cosh cos '

i ia i e a i e
x t

a a a a A

θ θα θ α θ
φ

α α
+ + +

=
 − + − 

                           (126)

where  ( ) ( )' 2 2 '
1,2 1,2 ,2 1,2 0 1,2

2 2 ' 't xθ η ξ ξ θ = − − +  , ( )' '
2 1 2 1' ,A θ θ θ θ= − + −

( ) ( )1,2 1,2 1,2 0 1,2
2 ' 4 'x t aα η ξ= + + , ( ) ( )

1,2
1,2 2 2 2 2

1,2

1
2

ie iθ η ξα
η ξ η ξ η

   ∆  = ± − ± 
∆ + ∆ +    

( )3 4 2 2
1 2

1 1,
4 2

α α
ηη η ξ

= =
+ ∆

, 1,2 1,2 1,2 2 1 1 2, , ,iς ξ η ξ ξ ξ η η η= + ∆ = − = +



  

 

 

 
 

 

  
  

 
   

 

       
  

   

 

 

 

 

here η

 

and ξ are the same as those in Eq. (123), and represent the velocities and amplitudes of the microscopic 
particle, ( )0 1,2

a

 

the position, and ( )'
0 1,2

θ the phase. They are all determined by the initial conditions.

 

Of particular interest here is an initial pulse waveform,

 

                                                          ( ) ( ) ( )' '
0 00, ' sec ' sec ' ix h x x h x x e θφ = − + +

  

                                             

 

(127)

 

which represents the motion of two microscopic particles into the system. Equation (127) will evolve into two 
particles

 

described by Eq.(126) The interaction between the two microscopic particles given in Eq.(127) can 
therefore be analyzed through the two-particle

 

function

 

in Eq.(126). Given the initial separation 
'
0x , phase difference 
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θ between the two microscopic particles, the eigenvalues 1,2ς ,a0 and θ ’0 can be evaluated by solving the 
Zakharov and Shabat equation (194), using Eq.(128) as the initial condition. Substituting the eigenvalues obtained 
into Eq.(126), we then obtain the description of the interaction between the two microscopic particles.  

 

 

  
 

 

  

  

  

The above collision features of the microscopic particle are obtained by using the inverse scattering 
method. However, the properties of collisions of microscopic particles can obtained by numerically solving Eq.(20). 
Numerical simulation can reveal more detailed feature of collision between two microscopic particles. For this 
purpose we begin by dividing Eq.(20) with V=constant into the following two-equations[45]

2

2

' ' ' ,
' '

i u
t x
φ φ φ∂ ∂

+ =
∂ ∂ ( )

2 2 2
2

2 2 2 ' .
' ' '
u u

t x x
φ∂ ∂ ∂

− =
∂ ∂ ∂

                                            (128)

                                                       
Obviously, if ' 'x vtξ = −% is assumed, we can get the nonlinear constant ( )21 1b v= − in Eq.(20) at

'
''lim 0xx φ→∞ = ,where 'φ represents the state of a microscopic particle, then u denotes a background field or other 

particles, b is related to the velocity of particle v. The soliton solution of (128) can now be written as

( ) ( )
2

2 ' 2
0' 2 1 sec ' ' exp ' '

2 4
i vv h x x vt vx i t iφ η η η θ

   = − − − − − +      

( )2 2 '
02 sec ' ' .u h x x vtη η = − − − 

The two microscopic particles described by Eq.(127) interact through a periodic potential in 't , through the

cos 'A term. The period is given by ( )2 2
2 1π η η− . The propagation of two microscopic particles with the initial 

conditions 0θ = , 1 2 0ξ ξ= = , ( ) ( )' '
0 01 2

0θ θ= = , obtained by Desem and Chu[43-44] is shown in Fig.3. The two 

microscopic particles with initially separated by '
0x coalesce into one microscopic particle at 'A π= . Then they

separate and revert to the initial state with separation 
'
0x at 'A π= , and so on. An approximate expression for the 

separation between the microscopic particles as a function of the distance along the system can be obtained 
provided the two microscopic particles  are well resolved.  Assuming      that  the  separation between the particles is 

sufficiently large, one can obtain the separation  x∆ as ( ) '
0

2ln cos ' , 2 xx at a e
a

− ∆ = =  
. Thus the period of oscillations is 

approximately given by ( ) '
0' 2 x

pt eπ= .

Fig. 3: Interaction with two equal amplitude microscopic particles. Initial microscopic particles separation=3.5 pulse 
width (pw)



   
 

 

  

  

   

        

  

 

  
 

 

 

 

 

 

 

 

 

  

   

 

The properties of the soliton depend on three parameters: η , v and θ , where

 

η

 

and v determine the

 

amplitude and width of the particle, θ

 

is the phase of the sinusoidal factor of 'φ at

 

' 0t = . Tan

 

et al.[45]

 

carried out 
numerical simulation for the collision process between

 

two particles

 

using the Fourier pseudo-spectral method with 
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256 basis functions for the spatial discretization together with the fourth-order Runge-Kutta method for time-

evolution. The system given in Eq.(128) has two exact integrals of motion, 
2' 'sN dxφ

∞

−∞
= ∫ and 1 ',E udx

∞

−∞
= ∫

which can be

 

used to check the accuracy of the numerical solutions.

For the collision experiments, the initial state is two solitary waves separated by distance 
'
0x ,

( ) [ ]

( ) ( ) ( )

2
1 1 1 1 1

2
2 ' ' '
2 2 2 0 2 0 2

' 2 1 sec ' exp '
2

2 1 sec ' exp ,
2

iv h x v x i

vv h x x x x i

φ η η θ

η η θ

 = − + +  

  − + − + +    

( ) ( )2 2 2 2 '
1 1 2 2 02 sec ' 2 sec ' .u h x h x xη η η η = − − + 

 

Fig.4 shows the fast collisions obtained by Tan et al[45]., in which the initial ratio of velocities of the fast and 
slow particles is fixed to be 1.8. The absolute value of the 'φ are shown using contours on the left in each pair of 
plots, with 'x being the horizontal coordinate and 't increasing upward. The right panel shows the absolute value of

u. The relative phase increases from 0 (top) to 2π (middle) to π (bottom). All cases are identical except that 2θ is
increased by 2π in each case, beginning with 2 0θ = at the top. Before the collision, each of the initial particle

contributes 0.7600 to Ns in all three cases ( 2 0θ = , 2π and π ). When the relative phase is zero (top), the particles

penetrate each other freely and then emerge with their shapes and velocity unchanged. When 2 2θ π= (middle 
graphs), φ emerges from the collision asymmetrically, and a large particle which contributes 1.4272, moving to the 
left, at the same velocity as the initial speed of particle 2. Another small pulse, contributing 0.0928, travels to the right 
at the speed which is the same as the initial speed of particle 1. The post-collision energies are the same as those of 
pre-collision for 'φ when 1 0θ = and 2θ π= . For all values of 2θ , there is little change in the contributions of the 

particles in their u –field to energy E1, and they are not shown here. When 2θ π= , as shown in the bottom panel of 
Fig.4, the u–components penetrate freely, but the 'φ –components bounce off each other and change their 

where the first term in each expression represents one particle (1) while the second term represents the other 
particle(2). It can be shown that the post-collision state of the particles is strongly dependent on both the initial 
phases and the initial velocities of the particles. Since 'φ can be multiplied by an arbitrary phase factor, ( )exp iθ% , 

and only the difference of the two initial phases is significant. Thus we can set 1 0θ = for the convenience of
discussion.  

where θ is an arbitrary constant, and still remains a solution (which u unchanged), one of the phases is arbitrary, %

Fig. 4:Fast collisions of two microscopic particles. The initial ratio of velocities of the fast and slow particles to be 1.8
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2 2
3' ', ', ' ', ', ,
2 2

x t x tπ πφ θ φ θ   = = − =   
   

and 2 2
3', ', ', ', .
2 2

u x t u x tπ πθ θ   = = − =   
   

directions, without interpenetration. The fourth case, 2 3 2θ π= , is not shown here because it is just the mirror 
image of the middle figure. That is  

ii. The rules of collision of microscopic particle at b<0 in Eq.(20)
As known, in the case of 0b < the equation (20) has still soliton solution, when ( ) 2

'lim ', 'x x tφ→∞ →
constant, and ''lim 0xx φ→∞ = . The solutions are dark (hole) solitons, in contrast to the bright soliton when 0b > . 
The bright soliton was observed experimentally in focusing fibers with negative dispersion, and the hole soliton 
solution was observed in defocusing fibers with normal dispersion effect by Emplit et al. and Krokel. In practice, it is 
an empty state without matter in microscopic world. Therefore 0b > corresponds to attractive between Bose 
particles, and 0b < corresponds to repulsive interaction between them. Thus, reversing the sign of b not only leads to 
changes in the physical picture of the phenomenon described by the nonlinear SchrÖdinger  equation (20), but also 
requires considerable restructuring of the mathematical formalism for its solution. Solution of the nonlinear 
SchrÖdinger  equation must be again analyzed and the collision rules of the microscopic particles in the case of 

0b < must be studied separately using the inverse scattering method. Zakharov and Shabat[25-26] studied these 
problems. The soliton solution in such a case can be represented by

)]'2'([cosh
1)','(

2 '
0

2

2
2

txx
txb

λν
νφ

−−
−=

The parameter λ characterizes the amplitude ans velocity of the microscopic particles, and 
'
0x the position 

of its centre at t’=0, where λνµ 2'/)(ln =dtd or )'2(2ln '
0 tx λνµ += .

They studied further the features of collision described by the above formula. The displacements of the two 
microscopic particles after the collision were found to be

       
   

( )
' 1
1 2

1 1 1 12 1 1

1 1 1ln ln ,
2 2 2,

b Yx
v b v va iv

δ
λ

+

−

    = = =      

                                                            
( )( )2' 2

2 1 2 2
1 2 1 2

1 1ln ln , ,
2 2 2

b Yx a iv
v b v v

δ λ
+

−

 
= = = − 

 
                                        (129)

Fig. 5: The features of collision of microscopic particles

The same is true for intermediate and slow collisions processes. However, the reflection principle cannot be 
generalized to all solutions which are different in their initial phases by π because the cases of 2 0θ = and 2θ π=
are quite different in the general case.  

Pang et al[46-48]. further simulated numerically the collision behaviors of two particles described nonlinear 
Schrodiger equation (20) at V(x)=constant using the fourth-order Runge_Kutta method. This result is shown in Fig.5. 
From figures 4-5, we see clearly that the two particles can go through each other while retaining their form after the 
collision, which is the same with that of the classical particles. Therefore, the microscopic particles depicted by the 
nonlinear SchrÖdinger  equation (20) have an obvious corpuscle feature, their collision show the featuresof collision
of classical particles. Thus we can conform that microscopic particles described by nonlinear SchrÖdinger  
equation.(20) has the corpuscle property.  
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where 
( ) ( )
( ) ( )

2 2
1 2 1 2

2 2
1 2 1 2

ln .
v v

Y
v v

λ λ

λ λ

 − + +
=  

− + −  

Thus, the microscopic particle which has the greater velocity acquires a positive shift, and the other has only 
a negative shift. The microscopic particles behave like repelling each other of classical particles. From (129) we 
get[25-26]

' '
1 1 2 2 0.v x v xδ δ+ =

This relation was

 

also obtained by Tsuzuki directly from Eq.(20) for 0b < by analyzing the motion of the 
center of mass of a Bose gas. It can be interpreted as the conservation of mass centre of the microscopic particles 
during the collision. This shows sufficiently the classical feature of microscopic particles described by Eq.(20).

The collision of many particles can be studied similarly. The result obtained shows that in the case of 
't →−∞ the slowest soliton is in the front while the fastest at the rear, faster microscopic particle tracks the slower 

microscopic particle, they collide with each other at t’=0, after the collision and 't →∞ , they are just reversed. So 

  

  

    

that each particle collides with each other particle. Going through the same analysis given above, we can verify that 
the total displacement of a particle, regardless of the details of the collisions, is equal to the sum of the 
displacements in individual collisions[25-26], i.e.,

  
' '

1
j j j ij

i
x xδ δ+ −

=

= − =∑
    

where  ( ) ( )
( ) ( )

2 2

2 2
1( ) ln .

2
i j i j

ij i j
i i j i j

v v
sign

v v v

λ λ
δ λ λ

λ λ

 − + +
 = −
 − + − 

   

From the above studies we see that collisions of many microscopic particles described by the nonlinear 
SchrÖdinger equation (20), with both 0b > or 0b < , satisfy rules of classical physics. This shows sufficiently the 
corpuscle feature of microscopic particles described by nonlinear SchrÖdinger equation.  

iii. The mechanism and properties of collision of microscopic particles at b<0
In the following, we describe a series of laboratory and numerical experiments dedicated to investigate the 

detailed structure, mechanism and rules of collision between the microscopic particles described by the nonlinear 
Schrodinger equation (20) at b<0 . The properties and rules of such collision between two microscopic particles 
have been first studied by Aossey et al.[49]. Both the phase shift of the microscopic particles after their interaction and 
the range of the interaction are functions of the relative amplitude of the two colliding microscopic particles. The 
microscopic particles preserve the shape after the collision.

In accordance with Asossey et al’s[49] representation the hole-particle or dark spatial soliton of Eq.(26) in the 
case of b < 0 [26-27] is now given by  

                                                              ( ) ( ), sech ix t B e ξφ φ ξ ′2 2 ± Θ
0′ ′ ′= 1−                                                   (130)

where

( ) ( )
( )

( )tanh
' sin ,

sec h '
t

B
x t

B

ξ
ξ ξ µ υ

ξ
−1

2 2

 ′
  ′ ′ ′Θ = = −
 1− 

Here, B is a measure of the amplitude (“blackness”) of the solitary wave (hole or dark soliton) and can take 
a value between −1 and 1, tυ is the dimensionless transverse velocity of the particle center, andµ is the shape
factor of the particle. The intensity ( )dI of the solitary wave (or the depth of the irradiance minimum of the dark 
soliton) is given by B φ2 2

0 . Aossey et al. showed that the shape factorµ and the transverse velocity tυ are related to
the amplitude of the particles, which can be obtained from the nonlinear Schrodinger equation in the optical fiber to 
be  

( )t

n
n n B , 1 B

n
φ

µ µ φ υ
2

2 02 2 2 2 2
0 2 0 0

0

= ≈ ± −
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where 0n and 2n are the linear and nonlinear indices of refraction for the optical fiber material. We have assumed 
2

2 0 0n nφ  . When two microscopic particles described by Eq.(26) collide, their individual phase shifts are given by

                                  
( ) ( )

( ) ( )

2 22 2
1 2 1 2

0
22 22 22 0 0 0

1 2 1 2

1 11 ln
2 1 1

j
j

B B B Bnx
n n B B B B B

δ
φ µ

 − + − + + 
=  

− + − + − 
 

             

 

                   (131)

The interaction of microscopic particles can be easily investigated numerically by using a split- step 
propagation algorithm, which was found, by Thusrston et al. [50], to closely predict experimental results. The results of 
a simulated collision between two equi-amplitude microscopic particles are shown in Fig.6 (a), which are similar to 
that of general microscopic particles (bright solitons) as shown in Fig.5. We note that the two particles interpenetrate 
each other, retain their shape, energy and momentum, but experience a phase shift at the point of collision. In 
addition, there is also a well- defined interaction length in z along the axis of time t that depends on the relative 
amplitude of two colliding microscopic particles. This case occurs also in the collision of two KdV solitons[51-52]. 
Cooney et al.[51] studied the overtaking collision, to verify the KdV soliton nature of an observed signal in the plasma
experiment. In the following, we discuss a fairly simple model which was used to simulate and to interpret the 
experimental results on the microscopic particles described by nonlinear SchrÖdinger equation (26) at b<0 and KdV 
solitons.

  Fig. 6 : Numerical simulation of an overtaking collision of equi-amplitude dark particles. (a) Sequence of the waves at 
equal intervals in the longitudinal position z . (b) Time-of-flight diagrams of the signal

The model is based on the fundamental property of solitons that two microscopic particles can interact and 
collide, but survive the collision and remain unchanged. Rather than using the exact functional form of sechξ for
microscopic particles described by Eq.(26), the microscopic particles are represented by rectangular pulses with an 
amplitude jA and a width jW where the subscript j denotes the j th microscopic particles. An evolution of the 
collision of two microscopic particles is shown in Fig.7(a). In this case, Aossey et al. [49] considered two microscopic 
particles with different amplitudes. The details of what occurs during the collision need not concern us here other 
than to note that the microscopic particles with the larger-amplitude has completely passed through the one with the
smaller amplitude. In regions which can be considered external to the collision, the microscopic particles do not 
overlap as there is no longer an interaction between them. The microscopic particles are separated by a distance,

1 2D = D + D , after the interaction. This manifests itself in a phase shift in the trajectories depicted in Fig. 7(b). This 
was noted in the experimental and numerical results. The minimum distance is given by the half-widths of the two.  
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Fig. 7 : Overtaking collision of two microscopic particles. (a) Model of the interaction just prior to the collision and 
just after the collision. After the collision, the two microscopic particles are shifted in phase. (b) Time-of-light diagram 

of the signals. The phase shifts are indicated

microscopic particles, D W 2 W 21 2≥ + . Therefore,

                                                                              
WD 1

1 2
 and  

WD 2
2 2
                                                            (132)

Another property of the microscopic particles is that their amplitude and width are related. For the 
microscopic particles described by the nonlinear Schrodinger equation with b 0< in Eq. (26)

 

(W µ≈1 ), we have  

  

  

                                                                                 
constantj jB W =K1=                                                                  (133)

Using the minimum values in Eq.(132), we find that the ratio of the repulsive shifts for the microscopic 
particles described by the nonlinear Schrodinger equation (26) is given by  

                                                                                      D B
D B

1 2

2 1

=                                                                            (134)

Results obtained from simulation of the kind of microscopic particle are presented in Fig. 6(a). The solid line 
in the figure corresponds to Eq.(134).

Fig. 8 : Summary of the ratio of the measured phase shifts as a function of the ratio of amplitudes. (a) The particle in 
Eq.(26) at b<0, the solid line corresponds to Eq.(131). (b) KdV solitons, the data are from (1) this experiment, (2) 

Zabusky et al. [52], (3) Lamb’s[41] and (4) Ikezi et al.’s [54]

 

results. The solid line corresponds to Eq.(138)
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Equation (135) can be written in terms of the amplitudes of the two microscopic particles. For the particle in 
Eq.(26) at b<0, combining Eqs. (132) and (136), Aossay et al. obtained

                            
1 1L K
B B1
1 2

 
≥ + 

 
                       

 

(137)

In Fig. 8(a), the results for the microscopic particles in Eq.(26) at b<0 are presented. The dashed line 
corresponds to Eq. (137) with B2 =1and K1 = 6 . The interaction time (solid line) is the sum of the widths of the two 
microscopic particles, minus their repulsive phase shifts, and multiplied by the transverse velocity of microscopic 
particles 1. Since the longitudinal velocity is a constant, this scales as the interaction length. From the figure, we see 
that the theoretical result obtained using the simple collision model is in good agreement with that of the numerical 
simulation.  

The discussion presented above and the corresponding formulae reveal the mechanism and rule of the 
collision between microscopic particles depicted by nonlinear SchrÖdinger equation (26) at b<0.

To verify the validity of this simple collision model, Aossey et al. studied the collision of the solitons using the 
exact form of 2sec h ξ for the KdV equation, 0t x xxxu uu d u′+ + = , and the collision model shown in Fig.6. For the KdV 
soliton they found that  

( )2

2cons tanj jA W t K= = and 1 1 2

2 2 1

2
2

D W A
D W A

= =

 

                                     (138)

  

  

where jA and jW are the amplitude and width of the j th KdV soliton, respectively. Corresponding to the above, 
Aossey et al. obtained  

                                                                     
2 1

2
21 2 1

1 1 1K AL K
AA A A

   
≥ + = +        

                                          (139)

for the interaction length.
Aossey et al.[49]compared their results for the ratio of the phase shifts as a function of the ratio of the 

amplitudes for the KdV solitons, with those obtained in the experiments of Ikezi, Taylor, and Baker[53], and those
obtained from numerical work of Zabusky and Kruskal[52] and Lamb[54], as shown in Fig.7(b). The solid line in Fig.
7(b) corresponds to Eq. (138). Results obtained by Aossey et al. for the interaction length are shown in Fig. 8(b) as a 
function of amplitudes of the colliding KdV solitons. Numerical results (which were scaled) from Zabusky and 
Kruskal are also shown for comparison. The dashed line in Fig. 8(b) corresponds to Eq. (139), with 1A l= and 

2K l= .

 

Since the theoretical results obtained by the collision model based on macroscopic bodies in Fig.6 are 
consistent with experimental data for the KdV soliton, shown in Figs. 7(b) and 8(b), it is reasonable to believe the 
validity of the above theoretic results of model of collision presented above , and results shown in Figs.7(a) and 8(a) 
for the microscopic particles described in the nonlinear Schrodinger equation (26) which are obtained using the 
same model as that shown in Fig 6. Thus, the above colliding mechanism for the microscopic particles shows 
clearly the corpuscle feature of the microscopic particles is described by nonlinear SchrÖdinger equation.

  

In addition to predicting the phase shift that results from the collision of two microscopic particles, the model 
also allows us to estimate the size of the collision region or duration of the collision. Each microscopic particles 
depicted in Fig.6 travels with its own amplitude-dependent velocity jυ . For the two microscopic particles to 
interchange their positions during a time T∆ , they must travel a distance L1 and L2 ,                         

                                                        L Tυ1 1= ∆ and 2L Tυ2 = ∆                                                               (135)

The interaction length must then satisfy the relation 

                                                           
      ( )2 1 2 1 1 2L L L T W Wυ υ= − = − ∆ +                                                  (136)
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g) The uncertainty relationship obeyed for microscopic particles
i. Correct form of uncertainty relation in the quantum mechanics 

As known, in quantum mechanics the microscopic particle has not a determinant position, disperses always 
in total space, the probability occurring at each points in the space is represented by square of the wave function. 
Thus the position and momentum of the particles cannot be simultaneously determined. This means that there is an 
uncertainty relationship between the position and momentum, then the values of mechanical quantities of the 
particles are only denoted by some statistical average values of the wave function, etc.. These concepts are 
considerably inconsistent with conventional knowledge to particles and result in a long-term controversies of one 
century on its essences and explanations in physics, which have not an unitary conclusion up to now. Therefore, we 
feel especially perplexity to the uncertainty relationship, which is a persistent ailment in quantum physics we may 
say. Whether is the uncertainty relationship an intrinsic feature of microscopic particles or caused by the quantum 
measurement? This problem is not clear as yet[8-12]. Therefore, to clarify the essence of uncertainty relationship is a 
most challenging problem in physics. Obviously, it is closely related to elementary features of microscopic particles.  
As known, the uncertainty relation in the quantum mechanics can be obtained from [1-6]

( ) ( ) ( )ˆ ˆ 0
2

I A+i B r,t drξ ξ ψ= ∆ ∆ ≥∫
 

                                             (140)

                                                                        
or 

                         
( ) ( ) ( ) ( ) ( )ˆˆ ,*F = r,t F A r,t B r,t r,t drξ ψ ψ 

 ∫
    

In the coordinate representation, andA  B
 

are operators of two physical quantities, for example, position 

and momentum, or energy and time, and satisfy the commutation relation ˆ ˆ,A B iC  =  , ( ) ( ), and ,x t   x tψ ψ ∗
are 

wave functions of the microscopic particle satisfying the linear Schro- dinger equation(7) and its conjugate equation, 
respectively, ( )ˆ ,2F= A + Bξ∆ ∆ ( ˆ ˆ  andA=A-A, B=B-B, A  B∆ ∆ are the average values of the physical quantities in 

the state denoted by ( ),x tψ ), is an operator of physical quantity related to  andA  B ,ξ is a real parameter.

After some simplifications, we can get 

2 2 2ˆˆ ˆˆ2 0I=F= A A B Bξ ξ∆ + ∆ ∆ + ∆ ≥

or 

                                                                          2 2 2ˆˆ ˆ 0A C Bξ ξ∆ + + ∆ ≥                                                                  (141)

ˆ

ˆ ˆ

ˆ

Using mathematical identities, this can be written as 

 Fig. 9: Summary of the measured interaction length as a function of the amplitudes. (a) The particles described by 
Eq.(26) at b<0, the dashed line corresponds to Eq. (134) with B2 =1 and K1 = 6 . (b) KdV solitons, the symbols
represent (1) experiment results of Ikezi et al., and (2) numerical results of Zabusky et al. [31]. The dashed line 
corresponds to Eq. (136) with 2 1 1K A= =
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2

2 2
ˆˆ ˆ
4

CA B∆ ∆ ≥                                                                      (142)

This is the uncertainty relation in the quantum mechanics. From the above derivation we see that the 
uncertainty relation was obtained based on the fundamental hypotheses of linear quantum mechanics, including 
properties of operators of the mechanical quantities, the state of particle represented by the wave function, which 
satisfies the linear Schrodinger equation (7), the concept of average values of mechanical quantities and the 
commutation relations and eigenequation of operators. Therefore, we can conclude that the uncertainty relation Eq. 
(142) is a necessary result of the quantum mechanics. Since the quantum mechanics only describes the wave 
nature of microscopic particles, the uncertainty relation is a result of the wave feature of microscopic particles, and it 
inherits the wave nature of microscopic particles. This is why its coordinate and momentum cannot be determined 
simultaneously. This is an essential interpretation for the uncertainty relation Eq. (142) in quantum mechanics. It is 
not related to measurement, but closely related to the quantum mechanics. In other words, if quantum mechanics 
could correctly describe the states of microscopic particles, then the uncertainty relation should also reflect the 
peculiarities of microscopic particles.

Equation (141) can be written in the following form:

( )2
2

2 2

2

ˆ ˆˆ ˆˆˆˆ 0
ˆ 2̂

A BA BF= A B
A A

ξ
∆ ∆ ∆ ∆ ∆ + + ∆ − ≥

 ∆ ∆ 

or                                                       
( )2

2

2 2

2

ˆˆˆ ˆ 0
ˆˆ4 42

CCA B
A A

ξ
 
 ∆ + + ∆ − ≥
 ∆ ∆ 

                                                       (143)

This shows that 2ˆ 0A∆ ≠ , if ( )2
ˆ ˆA B∆ ∆ or 2ˆ 4C is not zero, else, we cannot obtain Eq.(142) and 

( )22 2ˆ ˆA B A B∆ ∆ > ∆ ∆ because when 2ˆ 0A∆ = , Eq. (143) does not hold. Therefore, ( )2ˆ 0A∆ ≠ is a necessary 

condition for the uncertainty relation Eq. (142), 2Â∆ can approach zero, but cannot be equal to zero. Therefore, in 

the quantum mechanics, the right uncertainty relation should take the form [18]:

                                                                            
( )2

2

2 2
ˆ

ˆ ˆ
4

C
A B∆ ∆ >                                                                         (144)

ii. The new uncertainty relation of microscopic particles described by nonlinear SchrÖdinger  equation
We now return to study the uncertainty relation of microscopic particles described nonlinear SchrÖdinger 

equation (20). In such a case the microscopic particles is a soliton and has a wave- corpuscle duality. Thus we have 
the reasons to believe that the uncertainty relation in this case should be different from that in the quantum theory 
given above.

We now derive this relation for position and momentum of a microscopic particle depicted by the nonlinear 
SchrÖdinger Equation (26) with a solution, sφ , as given in Eq.(34), which is now represented by[25-26]

                             }')(4'2exp{}'8)'(2{sec22)','( 22'
0 θηξξηξηηφ itixitxxhtxs +−−−−=                       (145) 

where ' 2 / , ' /x x m t t= =  , η22 is the amplitude, ξ22 denotes the velocity, θ is a constant. The function 

( )' ',s x tφ is a square integral function localized at '
0 0x = in the coordinate space. If the microscopic particle is 

localized at '
0 0x ≠ . The Fourier transform of this function is

( ) ( ) '' ' '1, ,
2

ipx
s sp t x t eφ φ

π

∞ −

−∞
= ∫                                                     (146)
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It shows that ( )',s p tφ is localized at p in momentum space. For Eq.(146), the Fourier transform is explicitly 
given by  

                         ( ) ( ) ( )' 2 2 ' '
0, sec h 2 2 exp{ 4( 2 2) 2 2 }

2 4 2s p t p i p t i p x iπ πφ ξ η ξ ξ ξ θ
η

 
= − + − − − + 

 
    (147)

The results

 

in

 

Eqs. (146) and (147) show that the microscopic particle is localized not only in position space 
in the shape of soliton, but also in the momentum space in a soliton. For convenience, we introduce the 

normalization coefficient 0B in Eqs. (145) and (147), then obviously 2 1
4 2oB η= , the position of the certain of 

mass of the microscopic particle, 'x , and its square,  2' , ' 0x at   t = are given by

  

                                                          
( ) ( )2 22 2' ' ' , ' ' ' 's sx dx x    x dx x xφ φ

∞ ∞

−∞ −∞
= =∫ ∫ .                                           (148)

We can thus find that

                                                       

2 2
2 ' 2 '20
0 0 0 0' 4 2 , 4 2

12 2
2 Ax A x     x' A xπη η

η
= = +                                           (149)

respectively. Similarly, the momentum of the center of mass of the microscopic particle, p , and its square , 2p , 
are given by  

 

                   

                                                        ( ) ( )
2 22 2ˆ ,s sp p p dp    p p p dpφ φ

∞ ∞

−∞ −∞
= =∫ ∫                                             (150)

which yield

                                                            
2 2 2 3 2 3
0 0 0

32 216 , 32 2
3

p A      p A + A     ηξ η ηξ= =                                           (151)

The standard deviations of position 
22' ' 'x x x∆ = − and momentum 

22p p p∆ = − are given by

  

  
                                                          

( ) ( )

( ) ( )

2 2
2 2 '2 2

0 0 0 2

2 2 3 3 2 2
0 0

' 4 1 4 2 ,
12 96

1 83 2 1 4 2 ,
3 3

x A x A

p A A

π πη η
η η

η ηξ η η

 
∆ = + − = 

 

 ∆ = + − =  

                                                (152)

respectively. Thus we obtain the uncertainty relation between position and momentum for the microscopic particle 
depicted by nonlinear SchrÖdinger equation in Eq.(26) 

                                                                                     '
6

x p π
∆ ∆ =                                                                           (153)

2

This result is not related to the features of the microscopic particle (soliton) depicted by the nonlinear 
SchrÖdinger equation because Eq. (153) has nothing to do with characteristic parameters of the nonlinear 

SchrÖdinger equation. π in Eq. (153) comes from of the integral coefficient 1 2 .π For a quantized microscopic 
particle, π in Eq. (153) should be replaced by ,π  because Eq. (147) is replaced by

                                                    ( ) ( ) '1, ' ' ', ' .
2

ipx
s sp t dx x t eφ φ

π

∞ −

−∞
= ∫ 


                                                       (154)

The corresponding uncertainty relation of the quantum microscopic particle is given by 

ˆ
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6 12

hx p π
∆ ∆ = =


                                                                           (155)

The uncertainty relation in Eq.(155) or Eq.(153) differ from the 2x p h∆ ∆ > in the quantum mechanics 
Eq.(144). However, the minimum value 2x p h∆ ∆ = has not been both obtained from the solutions of linear 
SchrÖdinger equation and observed in practical quantum mechanical systems up to now except for the coherent 
and squeezed states of microscopic particles.   

Therefore we can draw a conclusion that the minimum uncertainty relationship is a nonlinear effect, instead 
of linear effect, and a result of wave-corpuscle duality. From this result we see that when the motion of the particles 
satisfies 2 6x p h  or π∆ ∆ > , the particles obey laws of motion in quantum mechanics, and the particles are 
some waves. When the motion of the particles satisfies 12 6x p h  or π∆ ∆ = , the particles should be described 
by nonlinear SchrÖdinger equation, and have wave-corpuscle duality. If the position and momentum of the particles 
satisfies 0x p∆ ∆ = , then this is the feature of classical particles with only a corpuscle feature. Therefore, the theory 
established by nonlinear SchrÖdinger equation bridges the gap between the classical and linear quantum 
mechanics. Therefore to study the properties of microscopic particles described by nonlinear SchrÖdinger  equation 
has important significances in physics.

iii. The uncertainty relations of the coherent states
As a matter of fact, we can represent one-quantum coherent state of harmonic oscillator by [18-19]

( ) 2 2

0

ˆexp 0 0
1

n
n

n
b b e b

n
α αα α α

∞
+ ∗ − +

=

= − =
−

∑ ,

in the number picture, which is a coherent superposition of a large number of microscopic particles (quanta). Thus

( ) ( )ˆ ,
2

x   p i m
m

α α α α α α ω α α
ω

∗ ∗= + = −


       

and 

( ) ( )2 2 2 2 2 2ˆ 2 1 , 2 1
2 2

mx   p
m

ωα α α α αα α α α α αα
ω

∗ ∗ ∗ ∗= + + + = + − −
 

,

where 

  

  

( ) ( )ˆ    ˆˆ , ,
2 2

mx b b   p=i b b
m

ω
ω

+ += + −
 

and ( )ˆ    ˆb b+ is the creation (annihilation) operator of microscopic particle (quantum),α and α∗

are some unknown functions, ω is the frequency of the particle, m is its mass. Thus we can get

                                              

( ) ( )
2

2 22 2, ,
2 2 4

m hx p  x p
m

ω
ω

∆ = ∆ = ∆ ∆ =
 

                                             (156)

ˆ      ˆˆ

1x
p mω

∆
=

∆
, or  ( )p= m xω∆ ∆   

For the squeezed state of the microscopic particle: ( )+2 2exp 0b bβ β = −  , which is a two quanta 
coherent state, we can find that

   2 4 2 4

2 2
mx e p e

m
β βωβ β β β

ω
−∆ = ∆ =

 
，   ,

using a similar approach as the above . Here β is the squeezed coefficient and 1β < . Thus,

                                                           

8, ,
2
h x 1x p=  e

p m
β

ω
∆

∆ ∆ =
∆

or ( ) 8p= x m e βω −∆ ∆                                            (157)       

ˆ ˆ

ˆ

ˆ
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This shows that the momentum of the microscopic particle (quantum) is squeezed in the two-quanta 
coherent state compared to that in the one-quantum coherent state.

From the above results, we see that both one-quantum and two-quanta coherent states satisfy the minimal 
uncertainty principle. This is the same with the above result of the microscopic particle described by nonlinear 
SchrÖdinger equation (20). We can conclude that a coherent state is a kind of nonlinear quantum effect, at the same 
time, the coherence of quanta is a nonlinear phenomenon, instead of a linear effect.

As is known, the coherent state satisfies the classical equation of motion, in which the fluctuation in the 
number of particles approaches zero, which is a classically steady wave. In fact, according to quantum theory, the 
coherent state of a harmonic oscillator at time t can be represented by

( )ˆˆˆ,
!

2 n i n t
i b +b 2 t i t 2 2iHt

n 0

et e e e n
n

ω
ω ω α αα α α

−∞
− − −−

=

= = = ∑


 

( )( ),
ni t 2 i te e   n b 0ω ωα− − += = 

This shows that the shape of a coherent state can be retained during its motion. This is the same as that of 
a microscopic particle (soliton). The mean position of the particle in the time-dependent coherent state is 

                     

[ ] ( ) [ ]

( )

, , , , ,
!

cos sin cos
!

2
iHt -iHt

2

2 2

ititt x t e xe = x x H x H H
h 2

pt 1 p 2 = x t x  = x t t  = t
m 2 m m

α α α α α α

α ω α α ω ω α α ω θ
ω ω

−
 = − + + 

+ − + + +

  





               
(158)

where   -1tan ,y  x+iy= ,
x

θ α =  
 

[ ] [ ], , .2i px H     p,H i m x
m

ω= = −




Comparing (95) with the solution of a classical harmonic oscillator

( )
2

2 2
2

2 1cos ,
2 2

E px= t     E= m x
m m

ω θ ω
ω

+ +

we find that they are similar with

2 10 0 ,
2

+E H H   H= b bωα α α ω  = = − + 
 

  .

Thus, we can say that the mass center of the coherent state-packet indeed obeys the classical law of 
motion, which is the same as the law of motion of microscopic particles described by nonlinear SchrÖdinger  
equation discussed in Eqs. (111).
We can similarly obtain

( ) ( )

( )

22 2

22 2

2 1, , 2 sin , , , cos
4

1, , 2 sin
4

t p t m t t x t t+
m

t p t m t+

α α ω α ω θ α α α ω θ
ω

α α ω α ω θ

 = − + = +  

 = +  






，

and 

                                              [ ] [ ]2 2 1( ) , ( ) , ( ) ( )
2 2

hx t    p t m x t p t
m 2

ω
ω

∆ = ∆ = ∆ ∆ =


                                      (159)
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This is the same with Eq. (155). It shows that the minimal uncertainty principle for the coherent state is 
retained at all times, i.e., the uncertainty relation does not change with time .t   

The mean number of quanta in the coherent state is given by 

4 22 2ˆˆˆˆ ,+n= N b b   Nα α α α α α α α α= = = +

Therefore, the fluctuation of the quantum in the coherent state is 

( )2
2 2ˆˆ .n= N Nα α α α α∆ − =

which leads to

      
1 1n

n α
∆

=  .  

It is thus obvious that the fluctuation of the quantum in the coherent state is very small. The coherent state is 
quite close to the feature of soliton and solitary wave.

These properties of coherent states are also similar to those of microscopic particles described by the 
nonlinear Schrodinger equation (20). In practice, the state of a microscopic particle described by nonlinear 
SchrÖdinger  equation can always be represented by a coherent state, for example, the Davydov’s wave functions, 
both 1 2ID > and ID >, [55] and Pang’s wavefunction of exciton-solitons in protein molecules and the wave function 
in acetanilide[56-61]; the wave function of proton transfer in hydrogen-bonded systems [37-41] and the BCS’s wave 
function in superconductors[ 62], etc. Hence, the coherence of particles is a kind of nonlinear phenomenon that 
occurs only in nonlinear quantum systems. Thus it does not belong to systems described by linear quantum 
mechanics, because the coherent state cannot be obtained by superposition of linear waves, such as plane wave, 
de Broglie wave, or Bloch wave, which are solutions of the linear SchrÖdinger  equation in the quantum mechanics. 
Therefore, the minimal uncertainty relation Eq. (155), as well as Eqs. (157) and (159), are only applicable to 
microscopic particles described by nonlinear SchrÖdinger  equation. In other words, only microscopic particles
described by nonlinear SchrÖdinger  equation satisfy the minimal uncertainty principle. It reflects the wave-corpuscle 
duality of microscopic particles because it holds only if the duality exists.

This uncertainty principle also suggests that the position and momentum of the microscopic particle can be 
simultaneously determined in a certain degree. A rough estimate for the size of the uncertainty can be given. If it is 
required that ( ),s x tφ in Eq.(145) or ( ),s p tφ in Eq. (147) satisfies the admissibility condition i.e., ( )0 0sφ ≈ , we choose 

140, 300 0.253 2 2 =ξ η= and 0 0x =


in Eq.(145) (In fact, in such a case we can get ( ) -60 10sφ ≈ , thus the
admissibility condition can be satisfied). We then get 0.02624  and 19.893,x p∆ ≈ ∆ ≈ according to (154) and (155). 
These results show that the position and momentum of microscopic particles described by nonlinear SchrÖdinger  
equation can be simultaneously determined within a certain approximation.

Pang et al. [55-61] also calculated the uncertainty relation and quantum fluctuations and studied their 
properties in nonlinearly coupled electron-phonon systems based on the Holstein model by a new ansatz in Pang’s 
new model including the correlations among one-phonon coherent and two-phonon squeezing states and polaron 
state. Many interesting results were obtained. The minimum uncertainty relation takes different forms in different 
systems which are related to the properties of the microscopic particles. Nevertheless, the minimum uncertainty 
relation in Eq. (155) holds for both the one-quantum coherent state and two-quanta squeezed state. These works 
enhanced our understanding of the significance and nature of the minimum uncertainty relation.

iv. Quantum fluctuation effects of particles described by quantized nonlinear SchrÖdinger  equation
Finally, we determine the quantum fluctuation effect arising from the uncertainty of position and momentum

of the microscopic particle described by quantized nonlinear SchrÖdinger equation. The features of quantized
nonlinear SchrÖdinger equation were discussed by Lai and Haus et. al[63]. A superposition of a subclass of bound 

state ,n P , characterized by number of the boson (such as, photon or phonon), n , and the momentum of the 
center of the mass P , can reproduce the expectation values of the microscopic particle (soliton) in the limit where 
the average number of the bosons are larger; we refer to these states formed by the superposition of ,n P as a 
fundamental soliton states. In quantum theory, the quantized dynamic equation in the second quantized picture is 
given by  
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 ( )    

2 2

2, ( , ) 2 ( , ) ( , ) ( , )
2

i x t x t b x t x t x t
t m u
φ φ φ φ φ

+∂ ∂
= − +

∂ ∂


                                    (160)

The operators ( , )x tφ and  ( , )x tφ
+

are the annihilation and creation operators of microscopic particles at a 
“point ” x and “time ” t, they satisfy the commutation relation: 

                            
     [ ( ", ), ( , )] ( "),[ ( ", ), ( , )] [ ( ", ), ( , )] 0x t x t x x x t x t x t x tφ φ δ φ φ φ φ

+ + +
= − = =                       

 

(161)

The corresponding quantum Hamiltonian is given by  

                                           
2

( , ) ( , ) ( , ) ( , ) ( , ) ( , )
2 x xH x t x t d x b x t x t x t x t d x

m
φ φ φ φ φ φ
+ + +

= +∫ ∫


                              (162)

In the Schrodinger picture, the time evolution of the system is described by  

                                                                               s
di H
dt

∧

Φ = Φ                                                                     (163)

with the commutation relation: 

                                             [ ( "), ( )] ( "),[ ( "), ( )] [ ( "), ( )] 0x x x x x x x xφ φ δ φ φ φ φ
+ + +

= − = =                                 (164)

where  ( )xφ and  ( )xφ
+

are the field operators in the SchrÖdinger  representation. The corresponding quantum 
Hamiltonian is given by  

                                               
2

( ) ( ) ( ) ( ) ( ) ( )
2

s x xH x x dx b x x x x dx
m

φ φ φ φ φ φ
∧ + + +

= +∫ ∫


                                         (165)

  

The many-particle state Φ can be built up from the n-quantum states given by  

                                            
1 1 1

1 ( ..., , ) ( )... ( ) ... 0
!n n n n nn

a f x x t x x dx dx
n

φ φ
+ +

Φ =∑ ∫                               (166)

The quantum theory based on Eq.(166) describes an ensemble of bosons interacting via a potentialδ − . 
Note that Η̂ preserves both the particle number.

                                                                           ˆ ( ) ( )N= x x dxφ φ
+

∫                                                                     (167)

and the total momentum

                                                          

 ( )  ( )  ( )  ( )P̂=i x x x x d x
2 x x

φ φ φ φ
+ +∂ ∂ − ∂ ∂ ∫


                                          (168)

Lai et al.[55] proved that the boson number and momentum operator commute, so that common eigenstates 
of Η̂ ,

ˆ          ˆandP  N exist in such a case. In the case of a negative b , the interaction between the bosons is attractive 
and Hamiltonian Eq. (160) has bound states. A subset of these bound states is characterized solely by the 
eigenvalues of ˆ          ˆandN  P : 

, , exp ,n p n j i j
j 1 1 i,j<n

bf N ip x x x
2

∞ ∞

= ≤

 
= + − 

 
∑ ∑                                        (169)
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where                                                          
( )! .

n 1

n

n 1 b
N

2π

−−
=                 

Thus

                                                              

( ) ( ) ( ) ( ),, , , , , , ,iE n p t
n 1 n n n 1 nf x x t dpg p f p x x t e−= ∫                                      (170)

where                                            ( ) ,0inpx
ng g p e−= and  ( )

( ) ( ){ }
( )

2 2
0

2

e p p 2 p
g p

2 p

φ

π

− − ∆
=

∆

Using ,n pf given in Eq. (169), we find that ,n P decays exponentially with separation between an arbitrary 
pair of bosons. It describes an soliton moving with n-quantum, momentum P np=  and energy

 

( ) ( )22 2, 1 12.E n p np b n n= − − By construction, the quantum number p in this wave function is related to the 
momentum of the center of mass of the n interacting bosons, which is now defined as  

                                                                     
( ) ( ) ( )ˆ        ˆˆ 1

0
X=lim x x x dx N

ε
φ φ ε

−
+

→
+∫                                               (171)

with                                                                                      ˆ  ˆX,P i  =                          

The limit of 0ε → is introduced to regularize the position operator for the vacuum state.
We are interested in the quantum fluctuations of Eqs. (167), (168) and (169) for a state ( )tΦ with a large 

average Boson number and a well-defined mean field. Kartner and Boiven[64] decomposed these operators in its 
mean values and a remainder which is responsible for the quantum fluctuations. 

ˆ

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 1 1 1 1
ˆ 0 0 , , , , 0x x x x x x x x xφ ψ φ ψ φ φ φ δ φ φ+ + +   ′ ′ ′ ′= + = − =            (172)ˆ ˆ ˆ ˆ ˆ ˆ

                         Since the field operator φ̂ is time independent in the Schrodinger representation, we can then choose 
0t = for definiteness. Inserting Eq.(172) into Eqs.(167), (168) and (171) and neglecting terms of second and higher 

order in the noise operator, Kartner et al[64]. obtained that

( ) ( )( ) ( ) ( )( )ˆˆ ˆ , . .,0 0 1N=n n,n dx x x n= dx x x c cφ φ φ φ+ ++ ∆ = ∆ +∫ ∫

( ) ( ) ( ) ( )1
0 0

ˆˆ , , . .,0 0 0 0 x x
i iP= n P n P P = dx x x P dx x x c c

n n
φ φ φ φ+ ++ ∆ ∆ = +∫ ∫ 

( ) ( ) ( ) ( )ˆ ˆˆ ˆ , .0 0
0 0 0

n 1 1X=x 1 x,x dxx x x x= dxx x x c c.
n n n

φ φ φ φ+ + ∆
− + ∆ = ∆ + 

 
∫ ∫

where x̂∆ is the deviation from the mean value of the position operator, ˆ andn, p,  x∆ ∆ ∆ are linear in the noise 

operator. Because the third- and fourth-order correlators of 1̂φ and 1̂
+φ are very small, they can be neglected in the 

limit of large 0n . Note that ˆ andn, p,  x∆ ∆ ∆ are all quadratures of the noise operator with ˆ andp  x∆ ∆ being 
conjugate variables. To complete this set, we introduce a quadrature variable conjugate to n̂∆ , 

     { }0 1
0

ˆ ( ) ( ) ( ) ( ) . .x x
1 d i x x x p x x x c c
n

θ φ φ φ φ+ + + ∆ = + − + ∫
As is known, if the propagation distance is not too large, the mean value of the particle is given to the first 

order by the classical soliton solution

ˆ ˆ ˆ ˆ

ˆ ˆ ˆ

ˆ ˆ ˆ ˆ

ˆ ˆ

ˆ ˆ ˆ

ˆx ˆ ˆ ˆ



 

  

 

  

  

  

  

 

 

  

    

 

 

  

 

 

 

  

  

  
 

  

1

G
lo
ba

l
Jo

ur
na

l
of

Sc
ie
nc

e
Fr

on
tie

r
R
es
ea

rc
h 

  
  
  
 V

ol
um

e
X
V
I   

Is
s u

e 
  
  
 e

rs
io
n 

I
V

V
Y
ea

r
20

16

63

  
 

( A
)

© 2016   Global Journals Inc.  (US)

The Difficulties of Quantum Mechanics and its Investigations of Development

( ) ( )
00,n

0

ˆ , 1x x t 1 O
n

φ φ
  

= +  
  

with 

             ( ) ( ) ( )
0

0 02
0,n 0 0 0 0 0 0, exp sech ,

2 2nl

n b n b
x t i ip t ip x x i x x 2p tφ θ

 
 = Ω − + − + × − −  

 
                   (173)

and the nonlinear phase shift 
22

0 4.nl n b tΩ = If 0 0 0 0p x θ= = = , we obtain the following for the fluctuation 
operators in the Heisenberg picture,

( ) ( ) ( ) ( )ˆˆ . , . ,n nl nln t dx f x F c c t dx f x F c cθθ∗ ∗
− −

   ′ ′∆ = + ∆ = +   ∫ ∫

( ) ( ) ( ) ( )ˆˆ . , . ,p nl x nlp t dx f x F c c x t dx f x F c c∗ ∗
− −

   ′ ′∆ = + ∆ = +   ∫ ∫

with               

 

                                                         ( )1̂ ,nli
nlF e x tφΩ′ = , 

and the set of adjoint functions

0 0 0 0

0

0( ) sec ( ), ( ) sec h( ) sec h( ) ,
2 2n n n n n

n

n b i b df x h x f x x x x
dxθ− −

 
= = + 

  

0 0 0

0

3
0

0

1( ) sec h( ), ( ) sec h( ),
4p n x n n

n

in b df x x f x x x
dx n b

− −= − =

where  
0 0

1
2nx n b x=          

For a coherent state defined by

( ) ( ) ( )
0 0 0 00,n 0,n 0,n 0,n

ˆ , 01x x   xφ φ φ φΦ = Φ =

where 

( ) ( ) ( ) ( ){ }0 0 00,n 0,n 0,n
ˆexp 0d x x x x xφ φ φ φ+ ∗ + Φ = − ∫

00,nφ has been given by Eq. (173). Kartner et. al. further obtained that

2
2 2 2 2 0
0 0 0 0 02

0 0 0 0

1.6450.6075ˆˆ , , , ,
2

1n n   p   x
n 3n n

τθ
τ

∆ = ∆ = ∆ = ∆ =

where 2
0 02 n bτ = is the width of the microscopic particle. The uncertainty products of Boson number and phase, 

momentum and position are, respectively,

2 2 2 2
0 0 0 0

ˆˆ 0.6075 0.25, 0. 0.25,2
0n n p x 27θ∆ ∆ = ≥ ∆ ∆ = ≥

Here the quantum fluctuation of the coherent state is white, i.e., 

( )  ( ) 1 1 1 1
ˆ ( ) ( ) 0x y x yφ φ φ φ+= =

ˆ

ˆ

ˆ ˆ

ˆ ˆ

ˆ
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However, the

 

quantum fluctuation of the particle cannot be written because the particle interaction results in
correlations between them. Thus, Katner and Boivin[64] assumed a fundamental soliton state with a Poissonian 

distribution for the boson number
0

n
0n

n!
np e−= and a Gaussian distribution for the momentum Eq.(170) with a width 

22
0 0 4p n b µ∆ = , where µ is a parameter of the order of unity compared to n0. They finally obtained the 

minimum uncertainty values:

2
0 2

0 0

0.25 0.25 1ˆ 1
ˆ

O
n nn

θ
  

∆ = = +  
∆   

,and
2

2 0
0 2

0 00

0.250.25 1ˆ 1x O
n nn
µτ   

∆ = = +  
  

up to order 01 n for the corresponding initial fluctuations in microscopic particle phase and timing. Thus, at t=0 the 
fundamental soliton with the given Boson number and momentum distributions is a minimum uncertainty state in the 
four collective variables, the Boson number, phase, momentum and position, up to the terms of O( 01 n ), which are

 

of the form [57,26-27]

                       
2 2

0 0
0

1ˆˆ 0.25 1n O
n

θ
  

∆ ∆ = +  
  

,

 

and 2 2 2
0 0 0

0

1ˆ 0.25 1n p x O
n

  
∆ ∆ = +  

  
                         (174)

These are the uncertainty relations arising from the quantum fluctuations of microscopic particles described 
by quantized nonlinear quantum SchrÖdinger equation. They are the same as Eqs.(155)-(157). This means that the 
uncertainty relation of the particles takes the minimum values in such a case.

Finally, we conclude that the uncertainty relation of the microscopic particles described by the nonlinear 
quantum SchrÖdinger  equation regardless whether a state is coherent or squeezed, a system is classical or 
quantum.

h) The features of reflection and transmission of microscopic particles at interfaces and its wave behavior 
As mentioned above, microscopic particles described nonlinear SchrÖdinger  equation (20) have also the 

wave property, in addition to the corpuscle property. This wave feature can be conjectured from the following 
reasons. 

(1) Eqs. (20)－(23) are wave equations and their solutions, Eqs.(34) and (50)- (59) are solitary waves having the 
features of traveling waves. A solitary wave consists of a carrier wave and an envelope wave, has certain 

  

amplitude, width, velocity, frequency, wavevector, and so on, and satisfies the principles of superposition of 
waves, although the latter are different when compared with classical waves or the de Broglie waves in the 
quantum mechanics.

(2) The solitary waves have reflection, transmission, scattering, diffraction and tunneling effects, just as that of 
classical waves or the de Broglie waves in the quantum mechanics. At present, we study the reflection and 
transmission of the microscopic particles at an interface.

The propagation of microscopic particles (solitons) in a nonlinear nonuniform media is different from that in 
uniform media. The nonuniformity can be due to a physical confining structure or two nonlinear materials being 
juxtaposed. One could expect that a portion of microscopic particles that was incident upon such an interface from 
one side would be reflected and a portion would be transmitted to the other side due to its wave feature. Lonngren
et al. [65-66] observed the reflection and transmission of microscopic particles (solitons) in a plasma consisting of a 
positive ion and a negative ion interface, and numerically simulated the phenomena at the interface of two nonlinear 
materials. To illustrate the rules of reflection and transmission of microscopic particles, we discuss here the work of 
Lonngren et al. [65-66]

Lonngren et al. [65] simulated numerically the behaviors of microscopic particles described by nonlinear 
SchrÖdinger  equation (20). They found that the signal had the property of a soliton. These results are in agreement 
with numerical investigations of similar problems by Aceves et al [67]. A sequence of pictures obtained by Lonngren 
et al. [65] at uniform temporal increments of the spatial evolution of the signal are shown in Fig. 9. From this figure, we 
note that the incident microscopic particles propagating toward the interface between the two nonlinear media splits 
into a reflected and transmitted soliton at the interface. From the numerical values used in producing the figure, the 
relative amplitudes of the incident, the reflected and the transmitted solitons can be deduced.

They assumed that the energy that is carried by the incident microscopic particle is all transfer- red to either 
the transmitted or reflected microscopic particle and none is lost through radiation. Thus

                                                                                   inc ref transE E E= +                                                                    (175)
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Lonngren et al. gave approximately the energy of the microscopic particle by

2
j

j j
c

A
E W

Z
= ,

where the subscript j refers to the incident, reflected or transmitted microscopic particles. The amplitude of the 
microscopic particle is jA and its width is jW . The characteristic impedance of a particle is given by cZ . Hence, Eq.
(176) can be written as  

inc ref trans
inc ref trans

cI cI cII

2 2 2A A AW W W
Z Z Z

= +                                                       (176)

Fig. 11: Sequence of the signals detected as the probe is moved in 2 mm increments from 30 to 6 mm in front of the 
reflector. The incident and reflected KdV solitons coalesce at the point of reflection, which is approximately 16 mm in 
front of the reflector. A transmitted soliton is observed closer to the disc. The amplitude scale at 8 and 6 mm is
increased by 2 from the previous traces

Since constantj jA W = for the microscopic particle described nonlinear SchrÖdinger equation (26) (see 
Eq. (130)-(131) in which jB is replaced by jA ), we obtain the following relation between the reflection coefficient 
R=Aref/Ainc and the transmission coefficient trans incT A A=

Fig. 10: Simulation results showing the collision and scattering of an incident microscopic particles described by
Eq.(20) (top) onto an interface. The peak nonlinear refractive index change is 0 67. % of the linear refractive index for 
the incident microscopic particles and the linear offset between the two regions is also 0 67. % .
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                                                                                       cI

cII

Z1 R T
Z

= +                                                                       (177)

for the microscopic particle described by nonlinear SchrÖdinger  equation (26).
To verify further this idea, Lonngrel et al.[44] conducted experiments with KdV soliton. They found that the 

detected signal had the characteristics of a KdV soliton. Lonngrel et al.[68] showed a sequence of pictures taken 
using a small probe at equal spatial increments starting initially in a homogeneous plasma sheath adjacent to a 
perturbing biased object, as shown in Fig.10. From this figure, we see that the probe first detects the incident soliton 
and some time later the reflected soliton. The signals are observed, as expected, to coalesce together as the probe 
passed through the point where the soliton was actually reflected. Beyond this point which was at the location where 
the density started to decrease in the steady-state sheath, a transmitted soliton was observed. From Fig.10, the 
relative amplitudes of incident, the reflected and the transmitted solitons can be deduced, which was done by the 
author.

For the KdV solitons, there is also constant2
j jA W = (see Eq.(138)) . Thus, for the KdVsoliton, we have

eI

eII

Z1 R T
Z

3 2 3 2= +

                                                                    

 

Fig. 12: The relationship between the reflection and transmission coefficients of a microscopic particle (soliton)given 
in Eq.(178). The solid circles are results from the laboratory experiment on KdV solitons and the hollow circle is Y. 

Nishida’s result. The solid triangles are Lonngren et al.’s numerical results for the microscopic particle described by 
nonlinear SchrÖdinger equation (20)

soliton amplitude. In the asymptotic limit, the radiation will spread and damp the oscillation, and result in the 
reflection –transmission coefficient curve falling on the analytic curve.

The above rule of propagation of the microscopic particles described by nonlinear SchrÖdinger equation is 
different from that of linear waves in classical physics. Lonngren et al.[68] found that a linear wave obeyed the 
following relation:  

                                                                             eI

eII

Z1 R T
Z

2 2= +                                                                          (178)

This can be also derived from Eq.(177), by assuming the linear waves. The width of the incident, reflected 
and transmitted pulses jW will be the same. For the linear waves  

cII cI

cII cI

Z ZR=
Z Z

−
+

,and cII

cII cI

2ZT
Z Z

=
+

The relations between the reflection and the transmission coefficients for the microscopic particle described 
by nonlinear Scrodinger equation (26) and KdV soliton are shown in Fig.11, with the ratio of characteristic 
impedances set to one. The experimental results on KdV solitons and results of the numerical simulation of 
microscopic particle described by nonlinear Scrodinger equation (26) are also given in this figure. The computed 
data are shown using triangles. Good agreement between the analytic results and simulation results can be seen. 
The oscillatory deviation from the analytic result is due to the presence of radiation modes in addition to the soliton 
modes. The interference between these two types of modes results in the oscillation in the 
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Equation (179) is satisfied. Obviously, equation (179) is different from Eq. (178). This shows clearly that the 
microscopic particles described by the nonlinear SchrÖdinger equation have a wave feature, but it is different from 
that of linear classical waves and the de Broglie waves in quantum mechanics.

i) The properties of eigenvalue problem of microscopic particles described by nonlinear SchrÖdinger equation
i. The eigenenergy spectrum of the Hamiltonian of the nonlinear systems 

In the quantum mechanics, because the Hamiltonian of the systems is independent of the state 
wavefunction of the particle, the eigenenergy spectrum of the Hamiltonian operator of the systems can be easily 
obtained from its eigenequation, H ( ),x tψ =E ( ),x tψ , where ( ),x tψ is its eigenwave-function in 
coordinate or particle number representation. It also is just a time-independent linear SchrÖdinger equation in the 
coordinate representation.  

However, for nonlinear SchrÖdinger equation (20), which can represent as ˆ ( )i H
t
φ φ φ∂
=

∂
 , where 

2
22ˆ ( ) ( , )

2
H b V r t

m
φ φ= − ∇ − +


is the Hamiltonian operator of the system,but  corresponding eigenequation and 

eigenvalues can be obtained through inserting Eq.(60) into Eq.(20), it is of the form  

                       

ˆ ( )H Eϕ ϕ ϕ= or 
2

22 ( ) ( ) ( )
2

E r V r r b
m

ϕ ϕ ϕ ϕ ϕ= − ∇ + −


                         (179)

where the Hamiltonian operator is now represented by 

                          
2

22
0

ˆ ( ) ( )
2

H V r b H b r
m

ϕ ρ= − ∇ + − = −


                                                  (180)ˆ

Where
2

2
0

ˆ ( ),
2

H V r
m

= − ∇ +
 2ρ ϕ= or 

2( , ) ( , )r t r tφ ρ= 
, E and ( ),x tφ are just the eigenvalue and 

eigenfunction of the Hamiltonian operator, respectively. Its distinction with that in quantum mechanics is that the 
Hamiltonian operator is dependent on the wave function of the particles, thus the eigenvalues and eigenfunction 
cannot be obtained in accordance with above same method in the quantum mechanics. If life-multiplying both sides 
of Eq.(180) by *ϕ and integrating it with respect to x we can find the eigenenergy of the Hamiltonian operator, 
which can denote as  

2
22 2

2
2 2 2 2

[ * ( ) ( ) * * ]
2

[ ( ) ]
2

E x V x b dx
m

V x b dx
m

ϕ ϕ ϕ ϕ ϕ ϕ ϕ

ϕ ϕ ϕ ϕ

= − ∇ + −

= ∇ + −

∫

∫





This is just Eq.(72). Therefore we can determine the eigenfunctions and eigenvalues of the Hamiltonian 
operator from Eqs.(180) and Eq.(72), respectively. However, the eigenfunctions and eigenvalues found from this way 
are only ones of a single particle. 

In fact, From Eq.(20) we can also the energy spectra of many particles or many model of motion. In such a 
case we ever translate Eq.(180) or the above Hamiltonian operator into the particle number representation from 
coordinate representation to find the eigenfunctions and eigenvalues of the Hamiltonian operator of the systems. We 
often use the latter to find the eigenenergy of the Hamiltonian operator of the systems.

We know that the wave function of a microscopic particle can be quantized by the creation and annihilation 
operators of the particle in the second quantum representation. Then the Hamiltonian of a system described by the 
wave function ( ),x tφ can be quantized by introducing creation and annihilation operators in the particle number 
representation or second quantization representation. Thus, we can calculate the eigenenergy spectrum by using 
the eigenequation of the quantum Hamiltonian and corresponding wavevector in number representation. For 
convenience, we express the nonlinear SchrÖdinger equation (20) in the following discrete form: 

                       

2
1 12

0

( 2 ) | | ( , ) , ( 1, 2,3,..., )
2

j
j j j j ji b V j t j J

t mr
φ

φ φ φ φ φ φ+ −

∂
= − − + − + =

∂



                          

(181)
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 in a lattice field, where r0 is a spacing between two neighboring lattice points, j labels the discrete lattice points, J is 
total number of lattice points in the lattice field in the system. The vector form of the above equation in the lattice field
is 

                              

2
2 2 2

1 22
0

[ ( , )] .(| | ,| | ... | | ) ,i V j t M bdiag
t mr αφ ε φ φ φ φ φ∂
− − = − −

∂



                            

     (182)

where ( ),x tφ is the column vector, ( ),x tφ =Col.( 1φ , 2φ ,... αφ ), whose complex components, equation (183) is a 
vector nonlinear SchrÖdinger  equation with α modes of motion. In Eq. (183), b is a nonlinear parameter and α is
a number of motion modes that exist in the systems. M=[ nlM ]is an α α× real symmetric dispersion matrix, 

2 2
0/ 2mrε =  . Here, n and l are integers denoting the modes of motion. The Hamiltonian and the particle number 

corresponding to Eq. (183), respectively, are

                                l
ln

nnl
N

nn MbH φφεφφω
αα

∑∑
≠=

−





 −=

1

42
0 2

1
 , and ∑

=

=
α

φ
LN

nN 2
                                 (183)

where  2 2
0 0/ 2 ( , )mr V j tω = +  . 

We have assumed that ( ),V j t are independent of j and t. In the canonical second quantization theory, the 

complex amplitude (
*
nφ and nφ ) become boson creation and annihilation operators (  nB

+
and 

nB ) in the number 
representation. If |mn> is an eigenfunction of a particular mode, then  

 ˆ1 | 1 , | | 1n n n n n n n nB m m m B m m m
+

= + + > >= − > and  nB |0>=0.

Since no particular ordering is specified in Eq.(184) thus we use the averages:

2 1 ˆ( )
2 n n n nB B B Bφ + +→ +

and 

4 1 ˆ( +  + +  + + )   
6n n n n n n n n n n n n n n n n n n n n n n n n nB B B B B B B B B B B B B B B B B B B B B B B Bφ + + + + + + + + + + + +→

with the Boson commutation rule  ˆ 1n n n nB B B B+ +− = , the Eq. (184) then becomes  

                               0
1

1 1 1ˆ[( )( ) ]
2 2 2n n n n n n l

n n l
H b B B B B B B M B B

α α

ω ε+ + +

= ≠

= − + − −∑ ∑                                  (184)

                                                                         
1

1ˆ( )
2n n

n
N B B

α
+ +

=

= +∑                                                                     (185)

From now on, we will use the notation [ 1m , 2m ,... mα ] to denote the products of number states| 1m >| 2m
>…| mα >. Thus, stationary states of the vector nonlinear SchrÖdinger  equation (114) must be eigenfunctions of 

both N and H. Consider an m-quantum state (i.e., the nth excited level, m= 1m + 2m +… jm ), with m<α . An 

eigenfunction of N can be established as 

ˆ ˆ ˆ

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ

ˆ ˆ ˆ

+ˆ ˆ ˆ ˆ ˆ
l nnb ˆ ˆ

ˆ

mφ = 1C [m,0,0,…,0]+…+ 2C [0,m,0,0,…,0]+…+ iC [0,0,0,…, m ,]+ …+ 1iC + [m-1,m,0,0,…,0] +…+ pC [0,0,0,…,0,1,1…,1].    (186)        

The number of terms in Eq.(117) is equal to the number of ways that m quanta can be placed on α sites, 

which is given by P=
( 1)

!( 1)!
m
m

α
α
+ −

−
. The wave function | mφ > in Eq.(187) is  an eigenfunction of N for any values of 

the 'Cα . Thus, we are free to choose these coefficients so that
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Equation (188) requires that the column vector C=Col.( 1C , 2C ,… pC ) satisfies the matrix equation: 

                                                                               | H – IE |C = 0                                                                      (188)

where H is a p×p symmetric matrix with real elements. I is a p×p identity matrix, E is just the eigenenergy. Eq. (188) 
is an eigenvalue equation of quantum Hamiltonian operator (185) of the systems. We can find the eigenenergy 
spectra mE of the systems from Eq. (189) for given parameters, 0,ε ω , and

 

b. Scott et al. [69-71]

 

and Pang et al. [72-79]

used this method to calculate the energy-spectra of vibrational excitations (quanta) in many nonlinear systems, for 
example, small molecules or organic molecular crystals and biomolecules. These results can be compared with the 
experimental data.  

ii. The eigenvalue problem of the nonlinear SchrÖdinger equation and its properties
In the quantum mechanics we know that the time-independent linear SchrÖdinger equation is an 

eigenequation of the Hamiltonian operator in the coordinate representation. However, we do not know the meaning 
of the eigenvalue problem of the nonlinear SchrÖdinger equation, which is therefore a new problem. This problem 

comes from the Lax method. According to this method, for any nonlinear equation, ( ),r t
t
φ∂

∂


= K( ( )tr ,φ ), where

 

K( ( )tr ,φ ) is a nonlinear operator. If K( ( )tr ,φ ) is related to two linear operators 
∧
L and

∧
B , which depend on φ and 

satisfy the Lax operator equation:

 [ , ]tiL B L L B B L
∧ ∧ ∧ ∧ ∧ ∧

′ = − =                                                           (189)

H | mφ >=E| mφ >.                                                                    (187)

where 
tt =′ , then the eigenvalue E, which does not vary with time, and eigenfunction ψ of the nonlinear 

equation is determined by the eigenequation of operator L as follows  

                                                                              
Lψ λψ
∧

= ;      ti Bψ ψ
∧

′ =                                                          (190)

where E= λ . Thus, the eigenvector and eigenvalue of nonlinear systems are determined by the eigenvector and 
eigenvalue of the above linear operators. In general, concerning any types of nonlinear equation, the corresponding 
linear eigenequation and time-independent eigenvalue can always be found from the Lax equation. For the nonlinear 

SchrÖdinger  equation (26), the two linear operators 
∧
L and 

∧
B are determined by[25-26]

                                                    22
'

2 2
'

1 0 0ˆ ,
0 1 0

/(1 )1 0ˆ
0 1 /(1 )

x

x

s
L

s x

s i
B

x i s

φ
φ

φ φ

φ φ

+ ∗   ∂
= +   ′− ∂   

 +  ∂  = − +   ′∂ − − −   

                                      (191)

where 2 1 2s b= − , 
22 mxx =′ . Thus the eigenvalue of Eq.(26) is determined by

                                                                    Lψ λψ
∧

= ，     1

2

ψψ
ψ
 

=  
 

，                                                           (192)

Its corresponding solution can be found by use of inverse-scattering or another method.
According to this way the eigenequation corresponding to the nonlinear SchrÖdinger  equation (26) and the 

Galilei invariance are represented by the linear Zakharov-Shabat equation [25-26]]:

                                                                             i 'xψ 3ψ λσ ψ+Φ =                                                                 (193)
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This is an eigenequation of eigenfunctionψ with an eigenvalue λ and potential Φ , where,

                                                                     
3

1 0
0 1

σ
 

=  − 
 , *

0
0
φ

φ
 

Φ =  
 

                                                       (194)

where φ  satisfies Eq.(26). It evolves with time according to Eq. (191). However, what are the properties of the 
eigenvalue problems determined by these equations? This deserves further discussion. 

As is known, the eigenequation is invariant under the Galilei transformation. As a matter of fact, if we 
substitute the following Galilei transformation:  

                                                                2 / 2( , ) ( , ), ,ivx ivx t e x t x x vt t tφ φ′−′ ′ ′ ′ ′ ′= = − =                                        (195)

into Eq. (125), then Φ is transformed into

                                                 

/ 2 / 2

/ 2 / 2

0 0
( ) ( )

0 0

i i

i i

e e
x x

e e

θ θ

θ θ

−

−

   
′ ′Φ = Φ   

   


                                               
(196)

where 2
0

1
2

vx v tθ θ′ ′= − + , here 0θ is an arbitrary constant. If the eigenfunction ( )xψ ′ is transformed as

/ 2

/ 2

0
'( ) ( )

0

i

i

e
x x

e

θ

θ
ψ ψ

−

 
′=  

 
                                                        (197)

  

then Eq. (194) becomes

                                                                        
3( )

2x

viψ ψ λ σ ψ
′
′ ′ ′ ′+Φ = −

                                                      
(198)

It is clear that in the reference frame that is moving with the velocity v, the eigenvalue is reduced to v/2 
compared with that in the rest frame. It shows that the velocity of the microscopic particle is given by 2ℜ( kλ ). When
θ is constant, i.e., 0θ θ= , the eigenvalue is unchanged because v=0. This implies that the nonlinear SchrÖdinger  
equation (26) is invariant under the gauge transformation, 0 ( )ie xθφ φ′ ′= . 

Satsuma and Yajima [80] studied the eigenfunction of Eq. (194) and its properties, where the eigenfunction 

satisfied the boundary condition, ψ = 0 at |x|→∞. The eigenvalues and the corresponding eigenfunctions were
denoted by 1 2 1 2,, ,..., , ..., .N Nandλ λ λ ψ ψ ψ respectively. For a given eigenfunction , ( )n xψ ′ , equation (194) reads

                                              
3

( ) ( ) ( ) ( ), 1, 2,...,n
n n n

d xi x x x n N
dx
ψ ψ λ σ ψ

′
′ ′ ′+Φ = =

′
                                       (199)

( )xψ ′ was expressed in terms of Pauli’s spin matrices 1σ  and 2σ , 

                                                          ( )xψ ′ =ℜ 1[ ( )]xψ σ′ − ℑ 2[ ( )]xψ σ′                                                           (200)

  Multiplying Eq. (200) by 2σ from the left and taking the transpose of the resulting equation, we get  

                                                            
2 2 1

T
T Tm
m m m

di i
dx
ψ σ ψ σ λ ψ σ∗− − Φ =
′

                                                           (201)

where the superscript T denotes transpose. Multiplying the above equation by nψ from right and Eq. (199) by T
mψ 2σ

from the left and subtracting one from the other, Satsuma and Yajima[80] obtained the following equation  

1( ) ' 0T
n m m ndxλ λ ψ σψ

∞

−∞

− =∫
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The boundary conditions, , 0n mψ ψ →  as | |x′ → ∞ , were used in obtaining the above equation. The 
following orthonormal condition was then derived:  

                                                                           1 'T
m ndxψ σψ

∞

−∞

=∫ nmδ                                                                  (202)

Satsuma and Yajima further demonstrated that Eq. (200) has the following symmetry properties.

(1) If ( )xφ ′  satisfies ( ) ( )x xφ φ∗′ ′− = , then replacing 'x by - 'x in Eq. (200) and multiplying it by 2σ from left , we 
can get

2 2 3 2[ ( )] ( )[ ( )] [ ( )]n n n n
di x x x x

dx
σ ψ σ ψ λ σ σ ψ′ ′ ′ ′− +Φ − = −

′

Since 2 ( )n xσ ψ ′− is also an eigenfunction associated with nλ , its behavior resembles that of ( )n xψ ′ in the 
asymptotic region, i.e., 2 ( )n xσ ψ ′− →0  as | |x′ → ∞ , thus nψ has the following symmetry  

2 ( )n xσ ψ ′− =δ ( )n xψ ′ ,or ( )n xψ ′− =δ 2 ( )n xσ ψ ′− ,(δ =±1) 

Therefore,

 

if ( ) ( )x xφ φ∗′ ′− = , then

 

( )xψ ′ satisfies the symmetry property ( )n xψ ′− = δ 1 ( )n xσψ ′− with

δ =±1. This can easily be verified by replacing 1σ with 2σ in the above derivations.

  

  

(2) If ( )xφ ′ is a symmetric (or antisymmetric) function of 'x , i.e., ( ) ( )x xφ φ′ ′− = ± , then
( )

1( ) ( )s
n x xψ σψ′ ′= ∗ −

is the eigenfunction belonging to the eigenvalue nλ
∗− , and 

( )
2' ( ) ( )a

n x xψ σ ψ′ ′= ∗ − is the eigenfunction 

belonging to the eigenvalue nλ
∗ . The suffix s (or a ) to the eigenfunction

,
nψ indicates that φ is symmetric (or 

antisymmetric). Since ( ) ( )x xφ φ′ ′− = , replacing 'x with - 'x in Eq. (130) and taking complex conjugate, we 
get

1 1 3 1[ ( )] ( )[ ( )] [ ( )]n n
di x x x x

dx
σψ ψ σψ λ σ σψ ∗′ ′ ′ ′∗ − + ∗ − = − −

′

Compared with Eq. (200), the above equation implies that nλ
∗− is also an eigenvalue and the associated

eigenfunction ( )s
n xψ ′ is just 1 ( )n xσψ ∗ ′− , with the arbitrary constant. For ( ) ( )x xφ φ′ ′− = − , the same conclusion is 

obtained by replacing 1σ with 2σ in the above derivations.
These symmetry properties are useful in providing a general view of the solution of Eq. (26) with V(x,t)= 

A(φ )=0 . As is known, the real part of the eigenvalue, nξ , corresponds to the velocity of a soliton and the imaginary 

part, nη , the amplitude. Then, if ( , 0),x tφ ′ ′ = whose initial value has the symmetry ( , 0),x tφ ′ ′ = =± ( , 0),x tφ ′ ′− =
breaks into the series of solutions, the decay is bisymmetric, corresponding to the eigenvalues nλ

∗− . If ( )xφ ′ is real, 
the above symmetry property yields

( ) * ( )
1 2 2

( ) * ( )
2 1 1

' ( ) [ ( )] ' ( )

' ( ) [ ( )] ' ( )

s s
n n n

a a
n n n

x x x

x x x

ψ σ δσ ψ δσ ψ

ψ σ δσψ δσψ

′ ′ ′− = − − =

′ ′ ′− = − − =

  

i.e., ( )' ( )s
n xψ ′ has the same parity as ( ')n xψ , while 

( )' ( )a
n xψ ′ has the opposite one. When ( ) ( )x xφ φ′ ′− = − and 

nλ is pure imaginary ( nλ = nλ
∗− ), the eigenvalues corresponding to the positive and negative parity eigenfunctions

degenerate.  

(3) If ( )xφ ′ is real, but not antisymmetric, then the eigenvalue nλ is pure imaginary，i.e., ℜ( nλ )=0. From Eq.
(200) and its Hermitian conjugate, Satsuma et.al[68] found that

                                                           ℜ( nλ )<n| 2σ |n>=<n|ℑ[ ( )xφ ′ ] 3σ |n>                                                       (203)

with 
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                                                              <m| 2σ |n>= 2m ndxψ σ ψ
∞ +

−∞
′∫                                                                   (204)

where 1 3[ , ] 2 ( )iσ φ σΦ = ℑ was used. We see from Eq. (204) that ( )nλℜ vanishes if

 

φ is real and

 

<m| 2σ |n>≠0.
When φ is a real and an antisymmetric function of x′, the symmetry property (I) gives

<m| 2σ |n>= 2
1 2 1 2( ) ( ) | |m nx x dxδ ψ σ σ σψ σ

∞ +

−∞
′ ′ ′− − = − < >∫

Thus <n| 2σ |n>=0.

(4) If the initial value takes the form of ( )ivxe R xφ ′ ′= , where ( )R x′ is a real, but not antisymmetric function of 'x , 
then all the

 

eigenvalues have the common real part, -v/2. This can be easily shown by the Galilei 
transformation. In fact, when ( , 0) ( )ivxx t e R xφ ′′ ′ ′= = , the solution does not decay to the series of solitons 
moving with the different velocities, but form a bound state. In this case, the real parts are common to all the 
eigenvalues, i.e., the relative velocities of the solitons vanish.

                                                                               3( ) ( )n nx i xψ δσ ψ∗ ′ ′=                                                             (205)

(5) If φ is a real

 

non-antisymmertric function of 'x , it can be shown that

where 1δ = ± . Because ( ) 0nλℜ = , from the complex conjugate of Eq. (200), one can get 3( )n xψ σ ψ∗ ′ ∝ . 
Substituting Eq. (194) into the normalization condition Eq. (202), one then has 1δ = ± . If the eigenvalue of Eq. (124) 
is real, i.e., λ =ξ is real, then

  

  

                                                                              3
di
dx
ψ ψ ξσ ψ+Φ =
′

                                                              (206)

and the adjoint function of 2, ,iψ ψ σ ψ ∗= is also a solution of Eq. (207), i.e., 

3
di
dx
ψ ψ ξσ ψ+Φ =
′

From this and Eq. (207), Satsuma and Yajima obtained the following 

( ) ( ) ( ) ( )d d d d
dx dx dx dx

ψ ψ ψ ψ ψ ψ ψ ψ
+ ++ += = =

′ ′ ′ ′
=0    (207)

Using the above boundary conditions, they found that the solutions of Eq.(194) 1 2( , ), ( , ),x xψ ξ ψ ξ′ ′ and 

2 ( , )xψ ξ′ satisfy the following relations. 

2 2 2 21 1 2 2 2 21,ψ ψ ψ ψ ψ ψ ψ ψ ψ ψ
+ ++ + += = = = =0

From 21 2( ) ( ) ,a bψ ξ ψ ξ ψ= + we get a= 2 1ψ ψ
+

and b= 2 1ψ ψ
+

, where 1

1
( , )

0
i xx e ξψ ξ ′−′= = ，as

'x = −∞and 2

0
( , )

1
i xx e ξψ ξ ′+ ′= =  

 
，

2

1
( , )

0
i xx e ξψ ξ ′− ′ =  

 
as 'x = ∞ . As pointed out earlier, if a real (not 

antisymmetric) initial value is considered, the microscopic particle does not decay into moving solitons, but forms a 
bound states of solitons pulsating with the proper frequency. Satauma and Yajima developed a perturbation 
approach to investigate the conditions for the solutions to evolve and decay into moving solitons.

 
 
 

If the wave function φ in Eq. (124) undergoes a small change, i.e., ,φ φ φ φ′→ = + ∆ the corresponding 
change in Φ is given by

0
.

* 0
φ

φ
∆ 

∆Φ =  ∆ 
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Then, nλ and nψ changes as nλ + nλ∆ and ,n nψ ψ+ ∆ respectively. To the first order in the variation, Eq.
(194) becomes  

3 3[ ( )] ( ) 0n n n n
di

dx
λ σ ψ λ σ ψ+ Φ − ∆ + ∆Φ −∆ =

′

Multiplying the above equation by 2
T
nψ σ from the left and integrating with respect to 'x over ( ,−∞ ∞ ), we get  

2 3( ) ( )T T T
n n n n n n ni dx dx i dxλ ψ σ ψ ψ φ σ ψ ψ φ ψ

∞ ∞ ∞

−∞ −∞ −∞
′ ′ ′∆ = − ∆Φ = − ℜ ∆ + ℑ ∆∫ ∫ ∫

If φ is a real and non-antisymmetric function of 'x , Eq.(207) holds and

                                               
3| ( ) | | ( ) |n n n i n nλ δ φ σ δ φ∆ = < ℑ ∆ > + < ℜ ∆ >                                            (208)

Equation (209) indicates that if 3| ( ) |n nφ σ< ℑ ∆ >≠0, the perturbation φ∆ makes the real part of the 
eigenvalue finite. That is, for the initial value, ( ) ( )x xφ φ′ ′+ ∆ , the solution of Eq.(26) breaks up into moving solitons 
with velocity 2 ( )nλℜ ∆ . If φ is real and is either a symmetric or an antisymmetric function of 'x , the above

 

symmetry properties of eigenvalues of the nonlinear Schrodiger equation (26) lead to

3 3| ( ( )) | | ( ( )) |n x n n x nφ σ φ σ′< ℑ ∆ >= − < ℑ ∆ − >

Therefore, if ( )φℑ ∆ is a symmetric function, then 3| ( ) |n nφ σ< ℑ ∆ > vanishes, i.e., ( ) 0nλℜ ∆ = , and the

soliton bound state does not resolve into moving solitons even in the presence of the perturbation φ∆ . 

Satsuma and Yajima[80] also obtained the shifts of the eigenvalues of Eq.(194) under the double-humped 
initial values, 0

0 0 0( , 0) ( ) ( ),ix t x x e x xθφ φ φ′ ′ ′ ′ ′ ′= = − + + where 0φ is a real and symmetric function of 0,x x′ ′ and 

0φ are real. The shifts of the eigenvalues were finally written as

0

0

0 0

2 ( / )0
3 0 0 3 0

2 ( / )0
0 0 0 0

2 ( / ) 2 ( /0 0
0 3 0

[sin | ( 2 ) | sin( ) | ( ) | ]
2

[cos | ( 2 ) | cos( ) | ( ) ) | ]
2

cos( ) | ( ) ) | sin( ) | ( )
2 2

x d dx
n

x d dx

x d dx x d dx

n x x n n x e n

i n x x n n x e n

where

n x e n i n x e

θλ δ θ σ φ σ φ

θδ θ φ φ

θ θδ φ δ σ φ

′ ′±

′ ′

′ ′ ′ ′

′ ′ ′∆ = < + > < > +

′ ′ ′< + > ± < >

′ ′− < > − <



)

"( ) "( ) "( ) "( )
2 2 1 1 2 2

" '
0 0 0 3 0 0

"( ) "( ) "( ) "( )
1 2 2 1 2 2 1 2

1 2 1 1 0 0

|

co ( ) | ( 2 ) | sin ) | ( 2 ) |

,

( ) ( ) ( ), ( ) ( )

n T n n T n

n T n n T n

n

dx dx

n x x n i n x x n

dx dx

here

x x x x x x

ψ σ ψ ψ σ ψ

δ θ φ δ θ σ φ

ψ σ ψ ψ σ ψ

σ φ

∞ ∞

−∞ −∞

∞ ∞

−∞ −∞

>

′ ′= Φ = Φ

′ ′− < + > − < + >

′ ′= Φ = Φ

′ ′ ′ ′ ′ ′Φ = Φ +Φ Φ = −

∫ ∫

∫ ∫

2 0 1 2 0 0( ) [(cos( ) sin( ) ] ( )x x xθ σ θ σ φ′ ′ ′Φ = − +

s (

The corresponding eigenvalue equation is given by 

3( ) ( )n n n n
di x x

dx
ψ ψ λ σ ψ′′ ′ ′′ ′′ ′+Φ =
′
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  The eigenfunction " ( )n xψ ′ satisfies the following symmetry and orthogonality requirements:   

0 0
2 1

"
1

( ) [cos( ) sin( ) ] ( ), 1
2 2

( ) ( ) 0

n n

T
n n

x x

x x dx

θ θψ δ σ σ ψ δ

ψ σψ

± ±

∞

+ −−∞

′′ ′ ′′ ′− = ± + ±

′ ′′ ′ ′ =∫
When 0θ =0, ( )xφ ′ is real and symmetric, ( )

nλ
±∆ is pure imaginary, when 0θ π= , ( )xφ ′ is real and 

antisymmetric, ( )
nλ
±∆ is real, 

 

                                                 

02 ( / )( )
0 3 0

( )
0 3 0 0

[ ( )] | ( ) |

[ ( )] | ( 2 ) |

x d dx
n

n

n x e n

n x x n

λ θ π δ σ φ

λ θ π δ σ φ

′ ′±

±

′ℜ ∆ = = < >

′ ′ℑ ∆ = = − < + >



                                       
(210)

Thus, the solution of the nonlinear SchrÖdinger equation (26) decays into paired solitons and each pair 
consists of solitons with equal amplitude and moving in the opposite directions with the same speed. For arbitrary 

'
0θ , we can see from Eq. (210) that the solution of Eq. (26) breaks up into an even number of moving solitons with 

different speeds and amplitudes.  
From the above investigations we know that the eigenvalues and eigenequations of nonlinear Schrodiger 

equation are a very complicated and different properties.  

  

  

III. The Nonlinear Schrödinger  Equation is a Correct and Universal Dynamic
Equation of the Microscopic Particles in all Physical Systems

a) The results brought by the using the nonlinear SchrÖdinger  equation 
As known, the states and properties of microscopic particles were described by the linear Schrodiner 

equation (7) in the quantum mechanics, but the microscopic particles have only the wave feature, not corpuscle 
nature in such a case. This feature is contradictory with the traditional concept of particles. At the same time, 
position and momentum of the particles meet also the uncertainty relation, the occurrence of particles at a point in 
time-space is represented by a probability, the mechanical quantities of the particles are denoted by some average 
values, and so on. These uncertain descriptions to the properties of the microscopic particles bring us plenty of 
difficulties and troubles to understand their natures and essences. At the same time, these properties of microscopic 
particles also correspond not with the experimental results of electronic diffraction on double seam by Davisson and 
Germer in 1927[8-12] and de Broglie’s relation of wave-corpuscle duality[8-9]. Thus there are considerable, intense and 
durative controversies in physics, which elongate and continue a century. Very surprisingly, these difficulties, 
contradictions and controversies have not been solved up to now.  

In such a case we have broken through the hypothesis of independence of Hamiltonian operator of the 
systems on states of microscopic particles, forsaken the traditional quantum mechanical method of average field 
approximation to replace real and complicated interactions among the particles or between the particle and 
background field and introduced further the nonlinear interaction between them into the dynamic equation of 
particles to build the nonlinear SchrÖdinger equation. And we used it to replace the linear SchrÖdinger equation in 
quantum mechanics and to study further the nature and states of microscopic particles. From this investigation we 
find that the states and properties of microscopic particles are considerably and essentially changed relative to 
those in quantum mechanics, a lot of interesting and important results are obtained from this investigation. These 
considerable changes are described as follows.

(1) An outstanding and obvious change is that the microscopic particles have a wave- corpuscle duality and is 
embedded by organic combination of envelope and carrier wave. The particle has not only wave features of 
certain amplitude, velocity, frequency, and wavevector, but also corpuscle natures of a determinant mass 
centre, size, mass, momentum and energy. This is first time to shed light theoretically on the wave-corpuscle 
duality of microscopic particles in quantum theory. At the same time, we proved that the wave-corpuscle 
duality of microscopic particles is quite stable, even though they are in an externally applied potential field.

(2) The motion of the particles satisfy the classical Newtonian law, Lagrangian equation and Hamilton equation, 
which exhibit the classical properties of microscopic particles.

(3) The microscopic particles have determinant mass, momentum and energy, and obey the universal
conservation laws of mass, momentum, energy and angular momentum.
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(4) The microscopic particles meet also the classical collision rule when they collide with each other. Although 
these particles are deformed in collision process, they can still retain themselves form and amplitude to move 
towards after collision, where a phase shift may occur.  

(5) The position and momentum of the mass centre of microscopic particles are determinant, but their coordinate
and momentum obey still a minimum uncertainty relation, which differs from those in quantum mechanics. 
This property of the particle displays its wave-corpuscle duality.

(6) We can determine that the microscopic particles possess a wave feature from its features of reflection and 
transmission features on the interface , but this wave feature are different from that of both linear wave and 
KdV solitary wave.  

(7) We know from the investigations of eigenvalue problem of nonlinear SchrÖdinger  equation that the 
eigenvalue states of microscopic particles described by the nonlinear SchrÖdinger  equation  have a lot of 
unusual features which are completely different from that in quantum mechanics, the eigenenergy spectra of 
Hamiltonian operator of the microscopic particles can be obtained in second quantum representation or 
number representation. This suggests that the natures of microscopic particles described by the nonlinear 
SchrÖdinger equation are in essence different from those in quantum mechanics.

The above new properties of the microscopic particles exhibit and display clearly both corpuscle and wave 
features which are consistent with the concepts of traditional particle and wave, respectively. Therefore the natures 
of microscopic particles described by the nonlinear SchrÖdinger equation (20) differ in essence from those 
described by the linear SchrÖdinger equation (7) and relate directly to these difficult and disputed problems as 
mentioned above, thus this investigation pounds considerably the quantum mechanics, its influences on quantum 
mechanics are crucial and considerable. Thus this research idea and results could overcome and solve the century 
difficulties and disputations existed in the quantum mechanics. To sum up, the influences of such a investigation on 
the quantum mechanics can be described as follows.   

b) The essences of quantum mechanics 
First influence is that we see clearly the essences of the quantum mechanics. As far as the quantum 

mechanics is concerned, we should confirm that its birth is a revolution of physics or science, it is the foundation of 
modern science, its applications acquire the great successes, especially when it was applied in hydrogen atom and 
molecule as well as helium atom and molecule, the theoretical results obtained are consistent with experimental 
data. However, it nevertheless encountered some problems and difficulties, which are embodied in not only the 
elementary hypothesizes of quantum mechanics but also its applications. In its hypothesizes the difficulties and 
controversies are the occurrence of particles at a point in time-space to be represented by a probability, the 
mechanical quantities of the particles to be denoted by some average values and the hypothesis of independence 
of Hamiltonian operator of the systems on states of microscopic particles. In the applications the difficulties come 
from its applications in the systems of many particles and many bodies. When the quantum mechanics is used to 
study the properties of motion of microscopic particles in these complicated systems, we have to utilize  ever many 
simple and approximate method unassociated with the states of particles in virtue of different approximate methods, 
such as, the signal and free electronic approximations, compact -binding approximation and average field 
approximation, and so on, to replace some complicated and real nonlinear interaction among these particles, or 
between the particle and backgrounds, which could determine the essences and natures of particles, in the systems 
in calculation.Thus we obtained only some approximation, but not real, complete and correct, solutions in which the 
effects and results arising from these complicated effects and nonlinear interactions are ignored completely. Then 
the states and properties of particles determined by the average potential as well as the studied method are not real 
and correct. Therefore, we can conclude that the linear SchrÖdinger equation is a linearity of dynamic equation, can 
only describe the properties and states of a single microscopic particle in vacuum or the system of less body without 
nonlinear interaction, then the quantum mechanics is correct, but has some limitations and is only a simple,
approximate and linear theory and cannot represent in truth the properties and states of motion of the microscopic 
particles in general and complicated systems. These are just the essence of the quantum mechanics. Therefore the 
quantum mechanics must develop toward.   

   

c) The roots of localization of microscopic particle and the necessity developing nonlinear quantum mechanics
Second influence on the quantum mechanics is that we know clearly the basic root of no localization of 

microscopic particles, in other word, these difficulties and disputations in quantum mechanics, which are just that 
the Hamiltonian operator of the systems is too simple, composed only of kinetic and externally applied potential 
energy operators and depends not with wave function of states of the particles. Concretely speaking, plenty of 
complicated and nonlinear interactions among the particles or the particle and background field related to the states 
of the particles have been completely forsaken in the Hamiltonian operator of the system. Thus its dynamic equation 
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is linear. If these nonlinear interactions are introduced into the dynamic equation of particles, then the linear 
SchrÖdinger equation (7) in the quantum mechanics is replaced by the nonlinear SchrÖdinger equation (20). In the 
latter the nonlinear interaction related to the states of particle can balance and suppress the dispersion effect of the 
kinetic term in the dynamic equation (7), then the effective potential of the system becomes a double-well potential 
from a signal well’s, thus wave feature of the particle is suppressed, the shape of wave becomes the form of sech(x-
vt), its mass, energy, and momentum are gathered and maintained, thus the microscopic particle is localized at x0 

and become eventually as a soliton with wave-corpuscle duality. Thus the natures of the microscopic particle are 
thoroughly changed in such a case. The results obtained from use of nonlinear SchrÖdinger equation (20) also verify 
that the natures of microscopic particles described by the nonlinear SchrÖdinger equation (20) differ in essence 
from those described by the linear SchrÖdinger equation (7). Thus, the basic root of localization of the microscopic 
particles described by nonlinear SchrÖdinger equation is just this nonlinear interactions, which suppress and cancel 
the dispersive effect of kinetic energy in the dynamic equation.

The third influence is that the quantum mechanics seeks the development direction, namely, it is necessary 
to establish and develop nonlinear quantum mechanics based on the nonlinear SchrÖdinger equation. In such a 
case the Hamiltonian operator of the systems must be related to the wave function of state of the microscopic 
particles and is nonlinear function of states of the particles. Based on these ideas and the properties of wave 
functions of the particles in the nonlinear SchrÖdinger equation we could establish the nonlinear quantum 
mechanics. To develop nonlinear quantum mechanics can promote the development of physics and can enhance 
and raise the knowledge and recognition to the essences of microscopic matter. This just is the most great influence 
on quantum mechanics [22-25]. 

In fact, all realistic physics systems are always composed of many particles and many bodies, hydrogen 
atom is a most simple system and composed also of two particles, thus the system composed only of one particle 
does not exist in nature. In such a case, the nonlinear interactions exist always in any realistic physics systems 
including the hydrogen atom[10-15]. Therefore, when the states and properties of microscopic particles in a realistic 

  

physics systems are studied by using quantum theory, we should use the nonlinear SchrÖdinger equation (20) or 
nonlinear quantum mechanics[22-25], instead of the linear SchrÖdinger  equation (7) in quantum mechanics. Only if 
the coupling interaction among the particles, or between the particle and background field equal to zero or exists 
not, then equation(20) can degenerate to the linear SchrÖdinger  equation (7). This indicates again that the linear 
SchrÖdinger equation in quantum mechanics is only an especial and approximate case of nonlinear SchrÖdinger  
equation, and can only describe the states and properties of a single particle without the nonlinear interaction.  
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