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Abstract- Conservation laws, consisting of the existence of quantities which do not change in time, 
independent of the dynamical evolution of a system, are crucial and vital for the construction of any 
dynamical system theory. The basic properties such as conservation of energy, momentum, angular 
momentum, charge, isospin, or generalization thereof are fundamental and must be guaranteed by a 
physical system, if it is to give a valid description of nature. One persistent objection against the concept 
of superluminal entities is based on the anticipation of fast energy loss which could be incurred under 
Vavilov-Cherenkov radiation, with the consequent prediction that no such particles could be detected. Yet 
presently, no theoretical or experimental explication  exists which justifies this claim. Here we show, in the 
limit of a kinematically permissible and non-dispersive medium, that energy conservation is feasible. 
Corresponding to radiation intensities from large energy-momentum transfer, when the parameter 𝑘𝑘 of the 
generalized linear velocity of the superluminal free spin-half field is made sufficiently large, Cherenkov 
cone becomes flattened at  90𝑜𝑜  with direction of motion, bringing the radiated energy to merge with the 
circulating energy flow in the wave field of the particle.        
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Abstract- Conservation laws, consisting of the existence of quantities which do not change in time, independent of the 
dynamical evolution of a system, are crucial and vital for the construction of any dynamical system theory. The basic 
properties such as conservation of energy, momentum, angular momentum, charge, isospin, or generalization thereof 
are fundamental and must be guaranteed by a physical system, if it is to give a valid description of nature. One 
persistent objection against the concept of

 

superluminal entities is based on the anticipation of fast energy loss which 
could be incurred under Vavilov-Cherenkov radiation, with the consequent prediction that no such particles could be 
detected. Yet presently, no theoretical or experimental explication  exists which justifies this claim. Here we show, in the 
limit of a kinematically permissible and non-dispersive medium, that energy conservation is feasible. Corresponding to 
radiation intensities from large energy-momentum transfer, when the parameter 𝒌𝒌

 

of the generalized linear velocity of the 

 

motion, bringing the radiated energy to merge with the circulating energy flow in the wave field of the particle.
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                                     Cos𝜃𝜃 = 𝑐𝑐

𝑛𝑛𝑛𝑛
 ,                                                                         (1.1)

 
where

 

𝑛𝑛

 

is particle velocity and 𝑛𝑛

 

the medium refractive index (which is the ratio of the 
phase velocity of light in the medium to its velocity in free space). In the presence of 

dispersion, 𝑛𝑛  and cos 𝜃𝜃

 

vary with 𝜔𝜔

 

continuously. As a result, the Cherenkov radiation 

fills continuous sequence of Cherenkov cones, relatively to different frequencies in the 

frequency regions where 𝑛𝑛 > 1. In their derivations, Tamm and Frank suggested that 
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the charge velocity was constant, and they disregarded the recoil effects in case of 

which equation  (1.1)  involves an additive term, given by1

I. Introduction

                                                           
1. (Katharina, 2014)

Notes

superluminal free spin-half field is made sufficiently large, Cherenkov cone becomes flattened at 𝟗𝟗𝟗𝟗𝒐𝒐 with direction of 

superluminal motion, Huygens' construction.

The blue light observed by (Cherenkov, 1934) in his experiments was originally 
given a theoretical explanation by (Frank and Tamm, 1937). They associated it with 
the radiation of a charge moving uniformly with a velocity greater than that of light in
medium. Under the restriction of non-dispersive medium, they derived the radiation 

intensity confined to the surface of the so-called Cherenkov cone defined by



Cherenkov radiation is frequently used in particle identification detectors (PID), 
(Alaeian, 2014; Jelle, 1955; Konrad, 1998; Leroy and Rancoita, 2014), a process which 
separates particles such as protons, electrons, muons, pions, etc at different velocities.

 

A 
threshold measurement

 

mechanism through which the number of particles at given 
velocities would be determined is set on a radiated angle equation

 

in which the particle 
velocity exceeds 𝑐𝑐/𝑛𝑛

 

and photons are generated. If the particles pass through, for 

example, lucite or plexiglass, for which ≈1.5, only those with

 

𝑛𝑛 > 0.67𝑐𝑐  emit Cherenkov 
radiation and so can be detected as an optical signal. Particles with extreme relativistic 

energies can be detected in gas Cherenkov detectors  where the refractive index 𝑛𝑛 of the 
gas is just greater than 1. Another application is in the detection of ultra-high 

energy 𝛾𝛾 − 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

 

when they enter the top of the atmosphere. The high energy 𝛾𝛾 −
𝑟𝑟𝑟𝑟𝑟𝑟 initiates an electron – photon cascade and, if the electron – positron pairs acquire 

velocities greater than the speed of light in air, optical Cherenkov radiation is emitted 
which can be detected by light detectors at sea-level (Longair, 1981; 1995; 1997). At 
present, evaluation of radiation intensities effect of Cherenkov photons on the 

 

                                                       cos 𝜃𝜃 =
1
𝑛𝑛𝑛𝑛

+
ℏ𝑘𝑘
2𝑝𝑝 �

1 −
1
𝑛𝑛2� .                                                            (1.2)

 Here,  𝑛𝑛 = 𝑛𝑛/𝑐𝑐, and  𝑝𝑝  and ℏ𝑘𝑘

 

are particle and photon momentum, respectively. 
Also disregarded in their calculations was the case of arbitrary emission angle produced 
by the use of properly engineered one dimensional metamaterials, where

 
                                         cos𝜃𝜃 = 1

𝑛𝑛𝑛𝑛
+ 𝑛𝑛

𝑘𝑘0
. �𝑑𝑑𝑑𝑑

𝑛𝑛2� .                                                             (1.3)

 This last equation originates from (Ginzburg, 1940) contribution, who evaluated 
the photon emission angle for an arbitrary energy loss of the initial charge, found the 
radiation intensity

 

in the nonrelativistic approximation and showed that corrections to 
the Tamm–Frank formula are negligible in the visible and ultraviolet parts of the 
radiation spectrum. They further assumed smallness of the photon energy with respect 

to the energy of the

 

initial charge. Since then, it is usually believed that the Vavilov–
Cherenkov radiation for the fixed refractive index lies on the surface of the Cherenkov 

cone. As an early remark, it is clear from (1.1)

 

that the emission angle 𝜃𝜃

 

relative to the 

direction of (linear) velocity depends only on particle linear constant velocity and the 
refractive index, but not on the coordinate 𝑥𝑥

 

and hence, not on the particle trajectory.

 
In his note (Vavilov, 1934) accompanying Cherenkov paper,

 

Vavilov suggested that the

 
radiation observed in Cherenkov experiments was due to the electron deceleration. This 

was further admitted by (Afanasiev, 2004) to be at least partly right since electrons 
were completely stopped in Cherenkov experiments(thorough discussion on this may be 

found in Cherenkov’s Doctor of Science dissertation; (Cherenkov, 1944)), thus 
exhibiting deceleration.
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Effect of Cherenkov Radiation on Superluminal Free Spin-half Particles Motion in Spacetime

momentum transfer corresponding to radiation at an angle near to 90𝑜𝑜 leads, as far as 
energy conservation is concerned in superluminal motion.

The plan of our examination is as follows. In Section 2, we review the theory of 
Vavilov-Cherenkov radiation, using John Peacock's approach (Dunlop et al., 1990; 

Notes

𝑛𝑛

superluminal motion of free fermions in spacetime remains to be determined. The aim of 
this observation is to analyze and ascertain where the context of very large energy-



   
 

1996). In Section 3, the true mechanism of spin is re-exposed in order to provide a basis 
for correctly understanding the interaction between the fermion wave field and the 
right-angled radiated photons energy plane, as explained in Section 4; there, we show 

 

dispersion, the radiated energy (conventionally

 

believed to be lost) is a constant of 
motion and could merge with the circulating energy flow of the field; so, in this 
condition, it contributes to the field which carries the particle.
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Effect of Cherenkov Radiation on Superluminal Free Spin-half Particles Motion in Spacetime

II. THEORY OF CHERENKOV RADIATION

Geometrically, the angle of emission (Cherenkov angle) is derived by Huygens’
construction (see Fig.1). The origin of the emission is best appreciated from the 

following two Liénard -Wiechert potentials expressions 𝐴𝐴(𝑟𝑟, 𝑡𝑡) and 𝜙𝜙(𝑟𝑟, 𝑡𝑡) which are given 
by: 

𝐴𝐴(𝑟𝑟, 𝑡𝑡) =
𝜇𝜇0

4𝜋𝜋𝑟𝑟
�

𝑞𝑞𝑛𝑛
1 − (𝒗𝒗. 𝑖𝑖𝑜𝑜𝑜𝑜𝑟𝑟 )/𝑐𝑐

�
𝑟𝑟𝑟𝑟𝑡𝑡

; 

                                                                  

𝜙𝜙(𝑟𝑟, 𝑡𝑡) = 1
4𝜋𝜋𝜀𝜀0𝑟𝑟

� 𝑞𝑞
1−(𝒗𝒗.𝒊𝒊𝑜𝑜𝑜𝑜𝑟𝑟 )/𝑐𝑐

�
𝑟𝑟𝑟𝑟𝑡𝑡

,                                                  (2.1)

where 𝒊𝒊𝑜𝑜𝑜𝑜𝑟𝑟 is the unit vector in the direction of observation from the moving charge 𝑞𝑞
with velocity 𝑛𝑛 at distance 𝑟𝑟, the subscript 𝑟𝑟𝑟𝑟𝑡𝑡 stands for retarded potential, 

and 𝜇𝜇0 and 𝜀𝜀0 are permeability and permittivity of space, respectively. In the case of a 

vacuum, one of the standard results of electromagnetic theory is that a charged particle 

moving at constant velocity 𝑛𝑛 does not radiate electromagnetic radiation. Radiation is 

emitted in vacuum if the particle is accelerated. In a medium with a finite permittivity 𝜀𝜀, 
or refractive index 𝑛𝑛, however, the potentials in (2.1) become singular along the cone, 
invalidating the denominators in this equation. Explicitly, we have: 

                                           1 −
1
𝑐𝑐

(𝒗𝒗. 𝑖𝑖𝑜𝑜𝑜𝑜𝑟𝑟 ) = 0      ⟹     cos𝜃𝜃 =
𝑐𝑐
𝑛𝑛𝑛𝑛

 ,                                       (2.2)

if one takes  𝜃𝜃 to be the angle between velocity direction and the unit vector 𝒊𝒊𝑜𝑜𝑜𝑜𝑟𝑟 .  Thus 
the usual rule that only accelerated charges radiate no longer applies.

We will now determine the main features of Cherenkov radiation, analytically. 

Let us consider an electron moving along the positive 𝑥𝑥- axis at a constant velocity 𝑛𝑛. 

This motion corresponds to a current density 𝑱𝑱  where

Notes

that, in a kinematically permissible localized region of spacetime and in the absence of 

The geometric representation of this process is that, because the particle moves 

superluminally through the medium, a ‘shock wave’ is created behind the particle. The 

wave front of the radiation propagates at a fixed angle with respect to the velocity 
vector of the particle because the wave fronts only add up coherently in this direction 

according to Huygens’ construction. The geometry of this figure shows that the angle of 

the wave vector with respect to the direction of motion of the particle is cos 𝜃𝜃 = 𝑐𝑐/𝑛𝑛𝑛𝑛.
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Fig. 1 : Illustrating the geometry used in the derivation of the expressions for
Cherenkov angle and Cherenkov radiation

Fig. 2 : Sufficiently superluminal helical energy flow of a free fermion field for large 

parameter k. Photons are radiated at nearly 90𝑜𝑜 where Cherenkov cone becomes 
flattened and coincides with the plane of the particle wave field . The flow is shown in 

the transverse direction.

Effect of Cherenkov Radiation on Superluminal Free Spin-half Particles Motion in Spacetime

Fig. 3 : A graph illustrating the discrete evolution of Cherenkov angle 𝜃𝜃 to a limiting 
value, with respect to discrete parameter 𝑘𝑘

Notes
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Effect of Cherenkov Radiation on Superluminal Free Spin-half Particles Motion in Spacetime

                                      𝑱𝑱 = 𝑟𝑟𝑛𝑛𝑣𝑣(𝑥𝑥 − 𝑛𝑛𝑡𝑡)𝑣𝑣(𝑟𝑟)𝑣𝑣(𝑧𝑧)𝑖𝑖𝑥𝑥 .                                                   (2.3)

Taking the Fourier transform of this current density to find the frequency 

components 𝑱𝑱(𝜔𝜔) corresponding to this motion, we have

𝑱𝑱(𝜔𝜔) =
1

(2𝜋𝜋)1/2 �𝑱𝑱exp (𝑖𝑖𝜔𝜔𝑡𝑡)dt

                               = 𝑟𝑟
(2𝜋𝜋)1/2 𝑣𝑣(𝑟𝑟)𝑣𝑣(𝑧𝑧)exp (𝑖𝑖𝜔𝜔𝑥𝑥/𝑛𝑛)𝒊𝒊𝑥𝑥 .                                                     (2.4)

Equation (2.4) can be regarded as a representation of the motion of the electron 
by a line distribution of coherently oscillating currents. Our task is to work out the 
coherent emission, if any, from this distribution of oscillating currents. The quite 
cumbersome full treatments given in standard texts such as (Jackson, 1999) and 
(Clemmow and Dougherty, 1969) will not be used in this paper. Rather, we will adopt 

Fig. 4 : A graph illustrating the discrete evolution of the energy loss rate per unit path 

length and per frequency unit to a limiting value, with respect to discrete parameter 𝑘𝑘

an approach developed by John Peacock in (Dunlop et al., 1990; 1996), different from 
the usual derivation which employs energy and momentum conservation.

First, let us review some of the standard results concerning the propagation of 
electromagnetic waves in a medium of permittivity 𝜀𝜀, or refractive index 𝑛𝑛 = 𝜀𝜀1/2. It is
a standard result of classical electrodynamics that the flow of electromagnetic energy 

through a surface 𝑑𝑑𝑺𝑺 is given by the Poynting vector flux, 𝑵𝑵.𝑑𝑑𝑺𝑺 = (𝑬𝑬 × 𝑯𝑯).𝑑𝑑𝑺𝑺. The 

electric and magnetic field strengths 𝑬𝑬 and 𝑯𝑯 are related to the electric flux density 𝑫𝑫
and the magnetic flux density 𝑩𝑩 by the constitutive relations

                                              𝑫𝑫 = 𝜀𝜀𝜀𝜀0𝑬𝑬,        𝑩𝑩 = 𝜇𝜇𝜇𝜇0 𝑯𝑯.                                                           (2.5)

The energy density of the electromagnetic field in the medium is given by the 
standard formula

                                      𝑢𝑢 = ∫𝑬𝑬.𝑑𝑑𝑫𝑫 + ∫𝑯𝑯.𝑑𝑑𝑩𝑩.                                                              (2.6)

If the medium has a constant real permittivity 𝜀𝜀 and permeability 𝜇𝜇= 1, the 
energy density in the medium is

                                     𝑢𝑢 = 1
2
𝜀𝜀𝜀𝜀0𝐸𝐸2 + 1

2
𝜇𝜇0 𝐻𝐻2.                                          (2.7)

Notes
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Effect of Cherenkov Radiation on Superluminal Free Spin-half Particles Motion in Spacetime

 

Let us consider the expressions for the retarded values of the current which 

contributes to the vector potential at the point  𝒓𝒓, (Fig.1).   The expression for the 

vector potential  𝑨𝑨 due to the current density 𝑱𝑱 at distance 𝑟𝑟 is

                    𝑨𝑨(𝒓𝒓) = 𝜇𝜇0
4𝜋𝜋 ∫ 𝑑𝑑

3𝒓𝒓′ 𝑱𝑱(𝑟𝑟
′ ,  𝒕𝒕−|𝒓𝒓−𝑟𝑟′ |/𝑐𝑐)

|𝒓𝒓−𝑟𝑟′ |
= 𝜇𝜇0

4𝜋𝜋 ∫ 𝑑𝑑
3𝒓𝒓′ [ 𝑱𝑱  ]

|𝒓𝒓−𝑟𝑟′ |
;                                     (2.8)

the square brackets refer to retarded potentials. Taking the time derivative,

                               𝑬𝑬(𝒓𝒓) = −𝜕𝜕𝑨𝑨
𝜕𝜕𝑡𝑡

= − 𝜇𝜇0
4𝜋𝜋 ∫ 𝑑𝑑

3𝒓𝒓′ [ �̇�𝑱  ]
|𝒓𝒓−𝑟𝑟′ |

.                                    (2.9)

In the distant far field limit, the electric field component  𝐸𝐸𝑟𝑟 of the radiation field 

is perpendicular to the radial vector 𝒓𝒓 and so, as indicated in Fig.1, 𝑬𝑬(𝒓𝒓) = 𝑬𝑬(𝒓𝒓) × 𝒊𝒊𝑘𝑘 ,  
i.e., 

                         |𝑬𝑬(𝒓𝒓)| =
𝜇𝜇0 sin𝜃𝜃

4𝜋𝜋
��𝑑𝑑3𝒓𝒓′

��̇�𝑱�
|𝒓𝒓 − 𝑟𝑟′ |

� .                                                   (2.10)

It should be observed that if we substitute∫𝑑𝑑3𝒓𝒓′ ��̇�𝑱� = 𝒆𝒆�̈�𝒓  into  (2.10), we obtain

                                                                    𝐸𝐸𝑝𝑝𝑐𝑐 = │�̈�𝒑│ sin 𝜃𝜃
4𝜋𝜋𝜀𝜀0𝑐𝑐2𝑟𝑟

;                                                                    (2.11)

this is the expression for the radiation of a point charge, and 𝒑𝒑 is the electric dipole 
moment of the charge with respect to some origin.

We now evaluate the frequency spectrum of the radiation. First of all, we work 
out the total radiation rate by integrating the Poynting vector flux over a sphere at a 
large distance 𝒓𝒓, 

�
𝑑𝑑𝐸𝐸
𝑑𝑑𝑡𝑡 �𝑟𝑟𝑟𝑟𝑑𝑑

= ∫𝑆𝑆𝑛𝑛𝑐𝑐𝜀𝜀0𝐸𝐸𝑟𝑟2𝑑𝑑𝑆𝑆

                                       
                                               = ∫𝛺𝛺

𝑛𝑛𝑐𝑐𝜀𝜀0sin 2𝜃𝜃
16𝜋𝜋2 �∫ 𝑑𝑑3𝒓𝒓′ ��̇�𝑱�

|𝒓𝒓−𝑟𝑟′ |
�

2
𝑟𝑟2𝑑𝑑𝛺𝛺.                                                  (2.12)

Assuming the size of the emitting region is much smaller than the distance to the 

point of observation, i.e., 𝐿𝐿 ≪ 𝑟𝑟, we can write |𝒓𝒓 − 𝒓𝒓′ | = 𝑟𝑟 and then,

                                     �
𝑑𝑑𝐸𝐸
𝑑𝑑𝑡𝑡
�
𝑟𝑟𝑟𝑟𝑑𝑑

= ∫ 𝑛𝑛 sin 2𝜃𝜃
16𝜋𝜋2𝜀𝜀0𝑐𝑐3 �∫ 𝑑𝑑3𝒓𝒓′ ��̇�𝑱��2𝑑𝑑𝛺𝛺.                                       (2.13)

Notes

The speed of propagation of the waves is found from the dispersion relation 

𝑘𝑘2 = 𝜀𝜀𝜀𝜀0𝜇𝜇0 𝜔𝜔2, that is, (𝜀𝜀) =𝜔𝜔/𝑘𝑘 = (𝜀𝜀𝜀𝜀0𝜇𝜇0 )−1/2 = 𝑐𝑐/𝜀𝜀1/2. This demonstrates the well-

known result that, in a linear medium, the refractive index  𝑛𝑛 is  𝜀𝜀1/2. Another useful 

relation between the 𝑬𝑬 and 𝑩𝑩 fields in the electromagnetic wave, the ratio 𝐸𝐸/𝐵𝐵, is 

𝑐𝑐/𝜀𝜀1/2 = 𝑐𝑐/𝑛𝑛. Substituting this result into the expression for the electric and magnetic 

field energies (2.7), it is found that these are equal. Thus, the total energy density in the 

wave is 𝑢𝑢 = 𝜀𝜀𝜀𝜀0𝐸𝐸2. Furthermore, the Poynting vector flux 𝑬𝑬×𝑯𝑯 is 𝜀𝜀1/2𝜀𝜀0𝐸𝐸2𝑐𝑐= 𝑛𝑛𝜀𝜀0𝐸𝐸2𝑐𝑐.
This energy flow corresponds to the energy density of radiation in the wave 

𝜀𝜀𝜀𝜀0𝐸𝐸2 propagating at the velocity of light in the medium 𝑐𝑐/𝑛𝑛. It follows that 𝑁𝑁 =
𝑛𝑛𝜀𝜀0𝐸𝐸2𝑐𝑐, as expected.
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Effect of Cherenkov Radiation on Superluminal Free Spin-half Particles Motion in Spacetime

Next, we take the time integral of the radiation rate to find the total radiated energy,

𝐸𝐸𝑟𝑟𝑟𝑟𝑑𝑑 = � �
𝑑𝑑𝐸𝐸
𝑑𝑑𝑡𝑡 �𝑟𝑟𝑟𝑟𝑑𝑑

𝑑𝑑𝑡𝑡
∞

−∞

                                      = ∫ ∫𝛺𝛺
𝑛𝑛 sin 2𝜃𝜃

16𝜋𝜋2𝜀𝜀0𝑐𝑐3
∞
−∞ �∫𝑑𝑑3𝒓𝒓′ ��̇�𝑱��2𝑑𝑑𝛺𝛺𝑑𝑑𝑡𝑡.                                 (2.14)

Using Parseval’s theorem to transform from an integral over time to an integral 

over frequency, and restricting our interest to positive frequencies only, we find: 

                        𝐸𝐸𝑟𝑟𝑟𝑟𝑑𝑑 = ∫ ∫𝛺𝛺
𝑛𝑛 sin 2𝜃𝜃
8𝜋𝜋2𝜀𝜀0𝑐𝑐3

∞
0 �∫ 𝑑𝑑3𝒓𝒓′ ��̇�𝑱(𝜔𝜔) ��2𝑑𝑑𝛺𝛺𝑑𝑑𝜔𝜔.                                           (2.15)

Let us now evaluate the volume integral ∫𝑑𝑑3𝒓𝒓′ ��̇�𝑱(𝜔𝜔) �. We take 𝑹𝑹 to be the 

vector from the origin of the coordinate system to the observer, and 𝑥𝑥 to be the position 

vector of the current element 𝑱𝑱(𝜔𝜔)𝑑𝑑3𝒓𝒓′ from the origin; so that 𝒓𝒓′ = 𝑹𝑹 − 𝒙𝒙. Now the 

waves from the current element at 𝑥𝑥 propagate outwards from the emitting region at 

velocity𝑐𝑐/𝑛𝑛 with phase factor exp [𝑖𝑖(𝜔𝜔𝑡𝑡 − 𝒌𝒌. 𝒓𝒓′)] and therefore, relative to the origin at 

𝑂𝑂, the phase factor of the waves, which we need to find for the retarded value of �̇�𝑱(𝜔𝜔), 
is

                  exp�𝑖𝑖�𝜔𝜔𝑡𝑡 − 𝒌𝒌. (𝑹𝑹 − 𝒙𝒙)�� = exp(−𝑖𝑖𝒌𝒌.𝑹𝑹) exp[𝑖𝑖(𝜔𝜔𝑡𝑡 +       𝒌𝒌.𝒙𝒙)].                            (2.16)

So, evaluating ��̇�𝑱(𝜔𝜔) �, we have

��𝑑𝑑3𝒓𝒓′ ��̇�𝑱(𝜔𝜔)�� = �𝑖𝑖𝜔𝜔�𝑑𝑑3𝒓𝒓′ [𝑱𝑱(𝜔𝜔)]�

or, by including the phase factor explicitly

                 
  �∫ 𝑑𝑑3𝒓𝒓′ ��̇�𝑱(𝜔𝜔)�� = |∫𝑑𝑑3𝒓𝒓′𝜔𝜔𝑱𝑱(𝜔𝜔) exp[𝑖𝑖(𝜔𝜔𝑡𝑡 + 𝒌𝒌.𝒙𝒙)]|.                                      (2.17)

Using (2.4) we obtain:

��𝑑𝑑3𝒓𝒓′ ��̇�𝑱(𝜔𝜔)�� = �
𝜔𝜔𝑟𝑟

(2𝜋𝜋)1/2 exp (𝑖𝑖𝜔𝜔𝑡𝑡)∫ exp [𝑖𝑖(𝒌𝒌.𝒙𝒙 +
𝝎𝝎𝒙𝒙
𝒗𝒗

)]𝑑𝑑𝑥𝑥�

                                = � 𝜔𝜔𝑟𝑟
(2𝜋𝜋)1/2 ∫ exp [𝑖𝑖(𝒌𝒌.𝒙𝒙 + 𝝎𝝎𝒙𝒙

𝒗𝒗
)]𝑑𝑑𝑥𝑥�.                                           (2.18)

This is the key integral in deciding whether or not the particle radiates. If the 
electron propagates in a vacuum, 𝜔𝜔/𝑘𝑘 = 𝑐𝑐 and we can write the exponent as 

                                       𝑘𝑘𝑥𝑥 �cos 𝜃𝜃 +
𝜔𝜔
𝑘𝑘𝑛𝑛
� = 𝑘𝑘𝑥𝑥 �cos𝜃𝜃 +

𝑐𝑐
𝑛𝑛
�.                                                         (2.19)

In a vacuum, 𝑐𝑐/𝑛𝑛 > 1, and so this exponent is always greater than zero and 
hence the exponential integral over all 𝑥𝑥 is always zero, assuming boundary limits 
vanish. This means that a particle moving at constant velocity in a vacuum does not 
radiate. However, if the medium has refractive index 𝑛𝑛, 𝜔𝜔/𝑘𝑘 = 𝑐𝑐/𝑛𝑛, and then the 
exponent is zero if cos 𝜃𝜃 = −𝑐𝑐/𝑛𝑛𝑛𝑛. This is the origin of the Cherenkov radiation 
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Effect of Cherenkov Radiation on Superluminal Free Spin-half Particles Motion in Spacetime

phenomenon. The radiation is only coherent along the angle 𝜃𝜃 corresponding to the 

Cherenkov cone derived from Huygens’ construction, i.e., given by (1.1). 
We can therefore write down formally the energy spectrum using the relation 

(2.22) (below) of the average number of photons in a given state in the phase space, 

recalling that the radiation is only emitted at an angle cos 𝜃𝜃 = 𝑐𝑐/𝑛𝑛𝑛𝑛. But first, we need 
the equation which describes how the spectrum of radiation evolves towards the so 
called Bose-Einstein distribution (Einstein, 1905; 1915).

In the non-relativistic limit, this equation is known as the Kompaneets equation. 
It is written in terms of the occupation number of photons in phase space, because we
need to include both spontaneous and induced processes in the calculation. Let us 
compare this approach with that involving the coefficients of emission and absorption of 
radiation. As a good reference for understanding the basic physics of spontaneous and 
induced processes, we present in the following Feynman's enunciation of the key rule for 
the emission and absorption of photons, which are spin-1 bosons (Feynman, Leighton 
and Sands, 1965; Feynman, 1972):

𝑇𝑇ℎ𝑟𝑟 𝑝𝑝𝑟𝑟𝑜𝑜𝑜𝑜𝑟𝑟𝑜𝑜𝑖𝑖𝑝𝑝𝑖𝑖𝑡𝑡𝑟𝑟 𝑡𝑡ℎ𝑟𝑟𝑡𝑡 𝑟𝑟𝑛𝑛 𝑟𝑟𝑡𝑡𝑜𝑜𝑎𝑎 𝑤𝑤𝑖𝑖𝑝𝑝𝑝𝑝 𝑟𝑟𝑎𝑎𝑖𝑖𝑡𝑡 𝑟𝑟 𝑝𝑝ℎ𝑜𝑜𝑡𝑡𝑜𝑜𝑛𝑛 𝑖𝑖𝑛𝑛 𝑟𝑟
𝑝𝑝𝑟𝑟𝑟𝑟𝑡𝑡𝑖𝑖𝑐𝑐𝑢𝑢𝑝𝑝𝑟𝑟𝑟𝑟 𝑓𝑓𝑖𝑖𝑛𝑛𝑟𝑟𝑝𝑝 𝑟𝑟𝑡𝑡𝑟𝑟𝑡𝑡𝑟𝑟 𝑖𝑖𝑟𝑟 𝑖𝑖𝑛𝑛𝑐𝑐𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑑𝑑 𝑜𝑜𝑟𝑟 𝑟𝑟 𝑓𝑓𝑟𝑟𝑐𝑐𝑡𝑡𝑜𝑜𝑟𝑟 (𝑛𝑛

+  1) 𝑖𝑖𝑓𝑓 𝑡𝑡ℎ𝑟𝑟𝑟𝑟𝑟𝑟 𝑟𝑟𝑟𝑟𝑟𝑟 𝑟𝑟𝑝𝑝𝑟𝑟𝑟𝑟𝑟𝑟𝑑𝑑𝑟𝑟 𝑛𝑛 𝑝𝑝ℎ𝑜𝑜𝑡𝑡𝑜𝑜𝑛𝑛𝑟𝑟 𝑖𝑖𝑛𝑛 𝑡𝑡ℎ𝑟𝑟𝑡𝑡 𝑟𝑟𝑡𝑡𝑟𝑟𝑡𝑡𝑟𝑟.

The statement is made in terms of probabilities rather than quantum mechanical 

amplitudes; in the latter case, the amplitude would be increased by a factor √𝑛𝑛 + 1. We

will use probabilities in our analysis. The number 𝑛𝑛 will turn out to be the occupation 
number. To derive the Planck spectrum, consider an atom which can be in two states, 

an upper state 2 with energy ℏ𝜔𝜔 greater than the lower state 1. 𝑁𝑁1 is the number of 

atoms in the lower state and 𝑁𝑁2 the number in the upper state. In thermodynamic 
equilibrium, the ratio of the numbers of atoms in these states is given by the Boltzmann 
relation, 

                              
𝑁𝑁2
𝑁𝑁1

= exp(−∆𝐸𝐸/𝑘𝑘𝑡𝑡) = exp �− ℏ𝜔𝜔
𝑘𝑘𝑇𝑇
� ,                                                 (2.20)

where ∇𝐸𝐸 = ℏ𝜔𝜔 and the corresponding statistical weights 𝑔𝑔2 and 𝑔𝑔1 are assumed to be the 

same. When a photon of energy ℏ𝜔𝜔 is absorbed, the atom is excited from state 1 to state 
2 and, when a photon of the same energy is emitted from state 2, the atom de-excites 
from state 2 to state 1. In thermodynamic equilibrium, the rates for the emission and 
absorption of photons between the two levels must be exactly balanced. These rates are 
proportional to the product of the probability of the events occurring and the number 
of atoms present in the appropriate state. Suppose 𝑛𝑛� is the average number of photons 
in a given state in the phase space of the photons with energy ℏ𝜔𝜔. Then, the absorption 
rate of these photons by the atoms in the state 1 is 𝑁𝑁1𝑛𝑛�𝑝𝑝12 , where 𝑝𝑝12 is the probability 
that the photon will be absorbed by an atom in state 1, which is then excited to state 2. 
According to the rule enunciated above by Feynman, the rate of emission of photons 
when the atom de-excites from state 2 to state 1 is 𝑁𝑁2(𝑛𝑛� + 1)𝑝𝑝12. At the quantum 

mechanical level, the probabilities 𝑝𝑝12  and 𝑝𝑝21 are equal. This is because the matrix 
element for, say, the 𝑝𝑝12 transition is the complex conjugate of the transition 𝑝𝑝21 and,
since the probabilities depend upon the square of the magnitude of the matrix elements, 
these must be equal. This is called the principle of jump rate symmetry. Therefore,

Notes



  

   

 

 

 

                                       

 

𝑁𝑁1𝑛𝑛� = 𝑁𝑁2(𝑛𝑛� + 1).                                            (2.21)

 

Solving for

 

𝑛𝑛�

 

and using (2.20), we obtain

 

                                            

  

                                        (2.22)

 

 

                            𝑑𝑑𝐸𝐸𝑟𝑟𝑟𝑟𝑑𝑑
𝑑𝑑𝜔𝜔

= ∫𝛺𝛺
𝑛𝑛𝜔𝜔2𝑟𝑟2

 

sin 2𝜃𝜃
16𝜋𝜋2𝜀𝜀0𝑐𝑐3 �∫ exp [𝑖𝑖𝑘𝑘𝑥𝑥 �cos 𝜃𝜃 + 𝜔𝜔

𝑘𝑘𝑛𝑛
�]𝑑𝑑𝑥𝑥�

2
𝑑𝑑𝛺𝛺

 

                 = 𝑛𝑛𝜔𝜔2𝑟𝑟2

16𝜋𝜋2𝜀𝜀0𝑐𝑐3 (1 − 𝑐𝑐2

𝑛𝑛2𝑛𝑛2)∫𝛺𝛺 �∫ exp [𝑖𝑖𝑘𝑘𝑥𝑥 �cos𝜃𝜃 +

 

𝜔𝜔
𝑘𝑘𝑛𝑛
�]𝑑𝑑𝑥𝑥�

2

 

𝑑𝑑𝛺𝛺  .                

 

(2.23)

 

If one sets 𝑘𝑘(cos 𝜃𝜃 + 𝜔𝜔/𝑘𝑘𝑛𝑛) = 𝛼𝛼, one gets

 

∫𝛺𝛺 �∫ exp [𝑖𝑖𝑘𝑘𝑥𝑥 �cos𝜃𝜃 +
𝜔𝜔
𝑘𝑘𝑛𝑛
�]𝑑𝑑𝑥𝑥�

2

 

𝑑𝑑𝛺𝛺

 

                            

 

= ∫𝜃𝜃�∫ exp (𝑖𝑖𝛼𝛼𝑥𝑥)𝑑𝑑𝑥𝑥�22𝜋𝜋 sin𝜃𝜃 𝑑𝑑𝜃𝜃

 

.                                   (2.24)

 

We will evaluate the line integral along a finite path length from−𝐿𝐿 to 𝐿𝐿, avoiding 

however the use of contour integration at values of 𝜃𝜃 ranging from −∞ to ∞. The 

integral should be taken over a small finite range

 

of angles about 𝜃𝜃= cos−1(𝑐𝑐/𝑛𝑛𝑛𝑛)

 

for 

which (cos + 𝜔𝜔/𝑘𝑘𝑛𝑛)

 

or

 

(−cos 𝜃𝜃 + 𝜔𝜔/𝑘𝑘𝑛𝑛)

 

is close to zero. Integration therefore can be 

taken over all values of 𝜃𝜃

 

or 𝛼𝛼 = 𝑘𝑘(−cos𝜃𝜃 + 𝜔𝜔/𝑘𝑘𝑛𝑛) knowing that most of the integral is 

contributed by values of 𝜃𝜃

 

very close to cos−1(𝑐𝑐/𝑛𝑛𝑛𝑛); so that 𝑑𝑑𝛼𝛼 = 𝑑𝑑(𝑘𝑘(−cos 𝜃𝜃 +
𝜔𝜔/𝑘𝑘𝑛𝑛)) = 𝑘𝑘 sin 𝑑𝑑𝜃𝜃.  Thence, with respect to 𝛼𝛼, the integral (2.24)

 

becomes

 

                                              ∫𝛺𝛺 �∫ exp [𝑖𝑖𝑘𝑘𝑥𝑥 �cos 𝜃𝜃 + 𝜔𝜔
𝑘𝑘𝑛𝑛
�]𝑑𝑑𝑥𝑥�

2

 

𝑑𝑑𝛺𝛺
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= 8𝜋𝜋∫

sin2𝛼𝛼𝐿𝐿
𝛼𝛼2

𝑑𝑑𝛼𝛼
𝑘𝑘

 ,                                                                (2.25)

This is an improper integral to be taken over all values of 𝛼𝛼  from  −∞ to   ∞. 
Combining test for convergence methods for such integrals and integration by parts, 

(2.25) is evaluated as

                                 8𝜋𝜋∫ sin 2𝛼𝛼𝐿𝐿
𝛼𝛼2

𝑑𝑑𝛼𝛼
𝑘𝑘

= 8𝜋𝜋2 �𝐿𝐿
𝑘𝑘
� = 8𝜋𝜋2𝑐𝑐

𝑛𝑛𝜔𝜔
𝐿𝐿.                                               (2.26)

It follows that the energy radiated per unit bandwidth is

                                    𝑑𝑑𝑢𝑢
𝑑𝑑𝜔𝜔

= 𝜔𝜔𝑟𝑟2

2𝜋𝜋𝜀𝜀0𝑐𝑐2 �1 − 𝑐𝑐2

𝑛𝑛2𝑛𝑛2� 𝐿𝐿.                                                               (2.27)

We obtain the energy loss rate per unit path length directly by dividing by 2𝐿𝐿. 
Thus, the energy loss rate per unit path length follows as

                                     

𝑑𝑑𝑢𝑢(𝜔𝜔)
𝑑𝑑𝑥𝑥

=
𝜔𝜔𝑟𝑟2

4𝜋𝜋𝜀𝜀0𝑐𝑐2 �1 −
𝑐𝑐2

𝑛𝑛2𝑛𝑛2�.                                                           (2.28)
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Notes

𝜃𝜃

𝜃𝜃

as the required average number of photons in a given state in the phase space. Now 

from (2.15) and (2.22) we have

n =
1

eh̄ω/kT −1



 

 

 

  

 

 

 

 

Finally, the energy loss rate per unit path length and per frequency unit is obtained :

 

                                     𝑑𝑑2𝐸𝐸
𝑑𝑑𝑥𝑥𝑑𝑑𝜔𝜔

= 𝑟𝑟2

4𝜋𝜋𝜀𝜀0𝑐𝑐2 �1 − 𝑐𝑐2

𝑛𝑛2𝑛𝑛2� ,                                                     (2. 29)

 

where it should be recalled that  𝑛𝑛is the particle superluminal velocity in the medium. 

Equations (1.1)

 

and  (2.29)

 

are valid for arbitrary dependence (𝜔𝜔)

 

. 

 

As an important side remark, notice from (2.29) that the energy loss rate is a 
constant of motion with respect to constant ultra-relativistic (i.e., superluminal) 
velocity 𝑛𝑛 and the medium refractive index 𝑛𝑛. We will now investigate what this means 
in the special context of free spin-1/2 particles superluminal motion in space time. 
However, before coming to the application in our field of interest, let us capture the 
true mechanism underlying the spin phenomenon.

 

III.

 

UNDERSTANDING THE

 

TRUE

 

MECHANISM

 

OF THE

 

FREE

 

SPIN-1/2

 

FIELD

 

What is spin? This is a short but exact query which had been perfectly clarified 
in (Belinfante, 1939; Ohanian, 1984). As echo of these references, we say that persistent 
prevailing speculations would have the spin of the electron or of some other particle a 
mysterious internal process for which no concrete

 

physical picture exists, and for which 
there is no classical analogue. Judging from arguments which surface in scientific 
criticisms and statements found in modem textbooks on atomic physics and quantum 
theory, it is surprising to observe that our understanding of spin (or the lack thereof) 
has not made any advance since the early years of quantum mechanics (Dirac, 1928). It 
is usually believed that the spin is a nonorbital, "internal," "intrinsic," or "inherent" 
angular momentum (these words being often incorrectly used as synonyms), and often 
treated as an irreducible entity that cannot be explained further. Sometimes, the 
speculation goes that the spin is a product of an (unspecified) internal structure of the 
electron, or arises in a natural way from Dirac's equation or from the analysis of the 
representations of the Lorentz group. The mathematical formalism of the Dirac 
equation and of group theory resort to the existence of the spin to achieve the 

Effect of Cherenkov Radiation on Superluminal Free Spin-half Particles Motion in Spacetime

conservation of angular momentum and to construct the generators of the rotation 
group, but when it comes to understanding the physical mechanism that produces the 
spin, no explication is given. This lack of a concrete picture of the spin leaves a grievous 
gap in our understanding of quantum mechanics, and hinder the derivation of 
applications therefrom. However, the solution of this problem has been at hand since 
(Belinfante, 1939)  who, on the basis of an old calculation, was able to give the true 
(concrete) picture of the spin. He established that the spin could be regarded as due to 
a circulating flow of energy, or a momentum density, in the electron wave field. He 
stressed that this picture of the spin is valid not only for electrons, but also for photons, 
vector mesons, and gravitons, and in all cases the spin angular momentum is due to a 
circulating energy flow in the fields. Thus, in contradistinction to the common 
prejudice, the spin of the electron has a close classical analogue; It is an angular 
momentum of exactly the same kind as carried by the fields of a classical circularly 
polarized electromagnetic wave. Moreover, according to a demonstration by (Gordon, 
1928), the magnetic moment of the electron is due to the circulating flow of charge in 
the electron wave field. Definitely, as a result, neither the spin nor the magnetic 
moment are internal properties of the electron and other particles: they have nothing to 
do with the internal structure of the electron, but only depend on the structure of its 
wave field.
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Further, a comparison between calculations of angular momentum in the Dirac 
field and the electromagnetic fields shows that the spin of the electron is entirely 
analogous to the angular momentum carried by a classical circularly polarized wave 
(Ohanian, 1984). From a theoretical point [cf.(Greiner,2000)], Maxwell 
(electromagnetic) equations given by

 

𝑐𝑐𝑢𝑢𝑟𝑟𝑝𝑝

 

𝑬𝑬 +
1
𝑐𝑐
𝜕𝜕𝑯𝑯
𝜕𝜕𝑡𝑡

= 0,    𝑐𝑐𝑢𝑢𝑟𝑟𝑝𝑝

 

𝑯𝑯−
1
𝑐𝑐
𝜕𝜕𝑬𝑬
𝜕𝜕𝑡𝑡

=
4𝜋𝜋
𝑐𝑐
𝒋𝒋

 

can be represented in the form of the Dirac equations (spinor equation)

 

1
𝑖𝑖
∑ 𝛼𝛼�𝑟𝑟 𝜕𝜕

𝜕𝜕𝑥𝑥𝑟𝑟
𝜓𝜓3

𝑟𝑟=0 = 4𝜋𝜋
𝑐𝑐
𝜙𝜙.

 

This relates the physics of self-interaction of the field of the particle, where it is 
known that a moving electron generates an electromagnetic field. All of these put 
together corroborate the above observations.

 

Having clarified the mechanism of spin, it is noteworthy that the Dirac (free) 
field is a plane

 

wave, and so the axis of rotation of a free Dirac particle (which coincides 
with the direction of the field linear phase velocity) is perpendicular to this plane, Fig.2. 
Thus, a spinning free fermion is carried by a circularly polarized electromagnetic plane

 

wave; in other words, a spinning free fermion rolls helically in an electromagnetic plane

 

wave.

 

IV.

 

CONSERVATION

 

OF

 

ENERGY BY SUPERLUMINAL

 

FREE

 

SPIN-1/2

 

PARTICLES

 

UNDER

 

CHERENKOV

 

RADIATION

 

Theoretically (Afanasiev et al., 1999) and experimentally (Stevens et al., 2001; 
Wahlstr

 

and and Merlin, 2003) it has been shown that the inclusion of the medium 
dispersion (a case we will not however consider in this work) leads to the appearance of 
additional radiation intensity maxima (or striped-like structure) in the angular 
distribution of the radiation. 

 

Effect of Cherenkov Radiation on Superluminal Free Spin-half Particles Motion in Spacetime

Let us consider a free spin-1/2 particle moving in a localized, kinematically 
permissible region of spacetime with superluminal generalized linear velocity component 
of parameter 𝑘𝑘, given by(Gazoya et al., 2015; 2016):

𝑉𝑉Sup (𝑘𝑘) = �cos−1 �
1
4�
� × 𝑐𝑐 ≈ �

21𝜋𝜋
50

+ 2𝜋𝜋𝑘𝑘� × 𝑐𝑐,
   

                                                                                                                 
𝑘𝑘 = 0, 1, 2, …                                                                                      (4.1)

where 𝑐𝑐 is the universal value of the speed of light in a vacuum. In the absence of 
dispersion, the Cherenkov angle expression (1.1), as a function of the parameter 𝑘𝑘 takes 
the form

                             cos 𝜃𝜃(𝑘𝑘) = 𝑐𝑐
𝑛𝑛𝑉𝑉Sup (𝑘𝑘)

= 50
𝑛𝑛𝜋𝜋
� 1

100𝑘𝑘+21
�,                                    (4.2)

that is,

                                                 𝜃𝜃(𝑘𝑘) = arc cos �50
𝑛𝑛𝜋𝜋
� 1

100𝑘𝑘+21
��.                                                           (4.3)

Clearly, as the parameter 𝑘𝑘 assumes large numerical values, the argument of the 
inverse cosine function in (4.3) tends to zero, this brings the direction of the radiated 
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Cherenkov photons to an angle near to 90𝑜𝑜

 

with the direction of the

 

particle linear 
velocity; at this point Cherenkov cone becomes flattened. Mathematically, we write

 

                                             lim𝑘𝑘→∞ 𝜃𝜃(𝑘𝑘) = 𝜋𝜋
2

 .                                                              (4.4)

 

This situation corresponds to Cherenkov radiation at an angle of approximately 

90𝑜𝑜

 

of moving free spin-1/2 particles with 'sufficiently' superluminal linear velocity in 

spacetime (of refractive index 𝑛𝑛 = 1.000277  taken at Standard Temperature and 
Pressure (STP), for example) (see Fig.2). 

 

On the other hand, the expression (2.29) of the radiated energy loss rate per unit 

path length and per frequency unit in terms of the parameter 𝑘𝑘

 

becomes

 

                            

 

𝑑𝑑2𝐸𝐸(𝑘𝑘)
𝑑𝑑𝑥𝑥𝑑𝑑𝜔𝜔

= 𝑟𝑟2

4𝜋𝜋𝜀𝜀0𝑐𝑐2 �1 −
2500
𝑛𝑛2𝜋𝜋2 �

1
100𝑘𝑘+21

�
2
�.                                   (4.5)

 

Upon taking the limit as 𝑘𝑘

 

assumes large numerical values in (4.5)

 

we obtain

 

                                    lim𝑘𝑘→∞ �
𝑑𝑑2𝐸𝐸(𝑘𝑘)
𝑑𝑑𝑥𝑥𝑑𝑑𝜔𝜔

� = 𝑟𝑟2

4𝜋𝜋𝜀𝜀0𝑐𝑐2 = const.                                                  (4.6)

 

Thus, in the particular case of large 𝑘𝑘, the radiated energy is still a constant of 

motion, independent of the medium refractive index 𝑛𝑛(𝜔𝜔), and so independent of 
frequency. 

V.

 

Discussions

 

In light of the true mechanism of the free spin-1/2 field exposed in Section 3 

above, the question arises: Is the radiated energy in (4.6) really lost, as conventionally 

claimed so far? For sufficiently superluminal motion induced by large parameter 𝑘𝑘, the 

direction of the radiated photons tends near to 90𝑜𝑜with that of the plane

 

wave spin-half 

Effect of Cherenkov Radiation on Superluminal Free Spin-half Particles Motion in Spacetime

field. There, the Cherenkov cone becomes flattened to a plane which in turn coincides 
with the plane wave field of the particle (see Fig. 2). As a result, the radiated energy 
could be regarded as merging with the planewave of the circulating energy flow which 
carries the particle. It could not be considered lost; it could rather contribute to the 
fermion wave field, or, precisely, 're-invested' in the fermion wave field. Clearly, in case 
this radiated energy (being a constant of motion) could really go into waste, this could 
not significantly affect the superluminal nature of the propagation. In Fig.3 and Fig.4, 

graphs of the parameter 𝑘𝑘 against angle 𝜃𝜃(𝑘𝑘) and energy loss rate  𝑑𝑑2𝐸𝐸(𝑘𝑘)/𝑑𝑑𝑥𝑥𝑑𝑑𝜔𝜔 are 

plotted. A limiting value is reached in each case by these functions as the parameter 𝑘𝑘
takes on big values. Thus, clearly, the result of this demonstration completely 
contradicts the speculative anticipation of instant collapse of such superluminal 
particles  due to fast energy loss under Cherenkov radiation.

VI. Conclusions

Theoretically it has been shown that, in the limit of a kinematically permissible 
medium with absence of dispersion, the superluminal motion of free spin-half particles 
could be a reliable dynamical system in conformity with one of nature's basic laws of 
conservation of energy. The other side-argument which anticipates and insists on fast 
energy loss that would bring this kind of systems to instant collapse in their dynamical 
evolution could not hold. The radiated energy, which is a constant of motion in this 
case, whether lost or re-invested (as shown) in the wave field of the particle, could not 

46

G
lo
ba

l
Jo

ur
na

l
of

Sc
ie
nc

e
Fr

on
tie

r
R
es
ea

rc
h 

  
  
  
 V

ol
um

e
Y
ea

r
20

16
X
V
I   

Is
s u

e 
  
  
 e

rs
io
n 

I
V

V
( F

)

© 2016  Global Journals Inc.  (US)

Notes



   

 

 

  

 

significantly affect the superluminal nature of the propagation. Moreover, the larger the 
number the parameter 𝑘𝑘

 

assumes in the quantization of the superluminal linear 
velocity, the less energy loss would be expected. In other words, the highly superluminal 
the propagation,the less the radiated energy wouldbe gone into waste. 
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