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  The nonlinear partial differential equations (NPDEs) are widely used to describe many 
important phenomena and dynamic processes in physics, chemistry, biology, fluid dynamics, 
plasma, optical fibers and other areas of engineering. Many efforts have been made to study 
NPDEs. One of the most exciting advances of nonlinear science and theoretical physics has been 
a development of methods that look for exact solutions for nonlinear evolution equations. The 
availability of symbolic computations such as Mathematica, has popularized direct seeking for 
exact solutions of nonlinear equations. Therefore, exact solution methods of nonlinear evolution 
equations have become more and more important resulting in methods like  the tanh method [1–
3], extended tanh function method [4, 5], the modified extended tanh function method [6], the 
generalized hyperbolic function [7].  Most of exact solutions have been obtained by  these 
methods, including the solitary wave solutions, shock wave solutions, periodic wave solutions, 
and the like. In this paper, we propose the extended ( 

    

    
)-expansion method to find the exact 

solutions of the improved Korteweg de Vries ( IKdV) equation and the two dimension Korteweg 
de Vries (2D KdV) equation. Our main goal in this study is to present the improved ( 

    

    
)-

expansion method [12-15] for constructing the travelling wave solutions. In section 2, we 

describe the ( 
    

    
)-expansion method. In section 3, we apply the method to two physically

important nonlinear evolution equations.,
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The ( 
    

    
)-expansion method will be introduced as presented by A.Hendi [8] and by [12–15].The 

method is applied to find out an exact solution of a nonlinear ordinary differential equation.
Consider the nonlinear partial differential equation in the form

                

                                                                                                                               

Where       is the solution of nonlinear partial differential equation Eq. (1). We use the 
transformation,           , to transform        to      give :

           

  
  

   
   

 

   
, 

  

   
  

 

   
, 

   

      
  

    
, 

   

      
  

    
,                                                                               

and so on, then Eq. (1) becomes an ordinary differential equation

              

                                            
 

  

                                                                         

The solution of Eq.(3) can be expressed by a polynomial in        

      

                    ∑     
       

      
 
 

 
    ,                                                                    

Where         satisfies,

                         

                                                                                    
Where       

      

  
  ,        

       

  
,  ,  and  are constants to be determined later,    ,

the unwritten part in (4) is also a polynomial in  
      

      
),but the degree of which is generally equal 

to or less than    ,the positive integer  can be determined by balancing the highest order 
derivative terms with nonlinear term appearing in Eq.(3). The solutions of Eq.(5) for (   

 
) can be 

written in the form of hyperbolic, trigonometric and rational functions as given below[8].
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Where   and   are integration constants. Inserting Eq.(4) into (3) and using Eq.(5), collecting 

all terms with the same order       

      
together, the left hand side of Eq.(3) is converted into another 

II. Outline of the  -Expansion Method

(2.6)
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( (ξ))Ǵ
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polynomial in ( 
    

    
). Equating each coefficients of this polynomial to zero, yields a set of 

algebraic equations for   ,  , and  .with the knowledge of the coefficients   and general solution
of Eq.(5) we have more travelling wave solutions of the nonlinear evolution Eq.(1).

In order to illustrate the effectiveness of the proposed method two examples in mathematical are 
chosen as follows

We Consider the IKdV equation in the form [11]

                                                                                                                   

We make the transformation                                                                                                               

                   ,                                                                                                                           

Eq. (3.1) becomes                                                                                                                            

                                                                                                               

Integrating the above equation with respect to  , we get                                                                    

      

 
                                                                                                          

Balancing   with    gives      thus we suppose solutions of Eq. (3.3) can be expressed by           

           
     

    
     

     

    
                                                                              

Where         are constants, Substituting Eq.(3.5) into Eq.(3.4),collecting the coefficients of 

( 
    

    
) we obtain a set of algebraic equations for         and  ,and solving this system we 

obtain the two sets of solutions as

      
  (     )

 (          )
     

     

             
,     

   

             
, and    
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By using Eq.(21) , Eq.(20)can written as         

              
  (     )

 (          )
 

    

             
  

     

    
  

    

             
 
      

     
  ,

or by using Eq.(3.7),Eq.(3.6)can written as

           
    

              
 

    

              
(
       

      
)  

   

              
 
       

      
  

We have three types of travelling wave solutions of the IKdV equation as

III. Applications

a) The improved Korteweg de Vries (IKdV) equation 

Case (1) 

Case (2) 
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for IKdV equation where       ,     ,      , and            

           

          
    

 
(

  

      
)
 

,    Where      
 (     )

          
                                                        (3.14)

The first type: 
  

The second type:

The Third type: when
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                                (3.10)

                                (3.11)

                                (3.12)

                                (3.13)

Notes

Figure 1 :



 
 

 
 

 
 
 
 
 
 
 
 
 
 

Consider the two dimensions Korteweg de Vries in the form, [11]

                                                                                                                   (3.15)

Put                          , Eq. (3.15) become
                                                                                                                   (3.16)

Integrating the above equation with respect to  , we get
       

         
 

 
                                                                                                     (3.17)

Balancing   with    gives      thus the solution of Eq. (3.15) can be expressed by
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By solving this system we obtain         and  , we have two sets of solutions as
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By using Eq.(34)and Eq(35),Eq.(33) can written as
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With the knowledge of the solution of Eq.(5) and Eqs.(21-22),we have three types of travelling
wave solutions of the Eq.(3.15) as
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Where      
 
              

when           

b) The two dimension Korteweg de Vries (2D KdV) equation

Case (1) 

Case (2) 

The first type: 

The second type:
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Where                     

          ,

     
      

    
 

          
,                                                                                                              (3.27)

Where             ,                                                                                                         
The behavior of the solutions        and         for 2DKdV equation are shown in Figure(2)

     ,     ,    , and    

The Third type: when

IV. Conclusion

In this work the ( )- expansion method was applied successfully for solving 
some solitary wave equations in one and two dimensions. Two equations which are the 
IKdV and 2D KdV have been solved exactly. As a result, many exact solutions are 
obtained which include the hyperbolic functions, trigonometric functions and rational 
functions. It is worthwhile to mention that the proposed method is reliable and effective 
and gives more solutions. The method can also be efficiently used to construct new and 
more exact solutions for some other generalized nonlinear wave equations arising in 
mathematical physics. 
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