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Abstract-

 

The paper deals with the computer implementation of direct computational

 

experiments in fluid mechanics, 
constructed on the basis of the approach developed by

 

the authors. The proposed approach allows the use of explicit 
numerical scheme, which

 

is an important condition for increasing the efficiency of the algorithms developed by

 

numerical procedures with natural parallelism. The paper examines the main objects

 

and operations that let you 
manage computational experiments and monitor the status

 

of the computation process. Special attention is given to a) 
realization of tensor representations

 

of numerical schemes for direct simulation; b) realization of representation of

 

large 
particles of a continuous medium motion in two coordinate systems (global and

 

mobile); c) computing operations in the 
projections of coordinate systems, direct and inverse

 

transformation in these systems. Particular attention is paid to the 
use of hardware

 

and software of modern computer systems.
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The problems of the Computational Fluid Dynamics (CFD) are among the most complex for imple-

mentation on modern computers both because of their strong connectivity and because of the complex

nature of the problem. Not surprising that a large number of “grand challenges” to one degree or an-

other gets reduced to CFD problems.

Traditionally, the calculation of flows is associated with the solution of Navier-Stokes equations.

The problems in this area can be divided into three broad groups [1]:

1. Incorrectness of the Navier-Stokes equations underlying the simulation, since it is a certain

idealization of real processes.

2. Idealization is also present in the geometry of these flows. This concerns sharp edges, corners,

etc. in calculations. Such ideal forms were due to the method of approximation using large

meshes. This causes a very big problem in the solution, because in reality most of these features

are absent. Currently, the size of the mesh may be significantly reduced, which means that the

methods of dealing with the problems that arise should be different.

3. Every time when the current problems are mapped on a new computer architecture, there arise

porting problems of such applications. Since long ago it became clear that the appearance of

new architectures is related with the appearance of new programming environments, which

means the development of new libraries for currents will also be needed. Thus, we need to

approach the problem of fluid dynamics programming in a different way.

A distinctive feature of the solution of the first problem is the traditional use of the implicit nu-

merical schemes. Such a way reduces the solution to linear algebra problems that do not allow to
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1 fluens, fluentis are functions on the argument of time ; fluxio are time derivatitives 
2 In scalar notation: 

3 Tensor object without indices here and later are marked by bold.

efficiently control nonstationary processes and qualitative changes of the continuum for the consid-

ered complex problem. Moreover, the disadvantage of the implicit schemes as compared with the

explicit ones is in the raise of complexity and parallelization problems. We know that it is a price to

pay for the stability of the numerical scheme. However, the attractiveness of the explicit schemes has

led to the development of an approach based on the description of the behavior of many large liquid

particles [2]. Problems of numerical schemes instability in this case are avoided by providing a large

particle with additional degrees of freedom. Geometrically this requires the introduction of a dual

basis for describing the state of a large particle [3], [4].

The second group of problems is connected just with the geometric description of these flows.

The efficiency of the calculations (especially in the case of direct numerical schemes) depends sig-

nificantly on the description of the modeled objects, computational meshes and possibilities of their

transformation and manipulation [5], [6]. This article is focused on the construction of such formal

computational basis. Special attention is paid to programming procedures, which take into account

the architecture of the computing systems.

The algorithmic realization of direct numerical simulations using explicit schemes has a beautiful his-

torical analogy [2] in the form of calculus of fluxions by Isaac Newton. In the up-to-date algorithms,

such implementation is represented as three-dimensional space numeric objects. Between them, con-

nections are established for hydromechanics laws implementation.

Fluxions calculus1 creates the basis of Newton classic mechanics for the motion in vector space

and scalar time. Velocity �V [m/s] becomes first fluxia in kinematics. It is differential (in accordance

with Newton “moment”) in multiplication with time step Δt [s] or just t. If we adapt such reasoning

with reference to modern algorithms, then motion of control point in space is presented as follows2:

+−→A = −→R + −→V · t +←−a · (∧r + ∧v ·t) = 0−→A + (
−→
V +←−a · ∧v) · t, (1)

where t is the calculated time interval [s];←−a is the vector count in the local basis (of the large particle)

[m−2]; +
−→
A and 0−→A are new and initial positions of the control point in the global reference system [m];−→

R is the location of the local basis in the global reference system [m];
−→
V is the velocity of the local

basis translational displacement [m/s];
∧
v [m3/s] is the tensor of rotation and deformation of the basis

axes of the tensor form3 ∧r [m3].

This equation presents a point shift during one step of the direct computational experiment. As

shown, it can be represented in the form of the recalculation from the local coordinates of the point

into the global reference system in accordance with the time interval t.

x, y, z
+Ax =

0Ax + (Vx + vxxax + vxyay + vxzaz) · t;
+Ay = 0Ay + (Vy + vyxax + vyyay + vyzaz) · t;
+Az =

0Az + (Vz + vzxax + vzyay + vzzaz) · t.

t ẋ, ẏ, ż x, y, z.

Renewed spatial field of velocities and deformations are used at conjugate stage of computational

experiment. They are necessary for the control of the dynamic state as well as for redefining rheolog-

ical characteristics of fluid, which are presented in the form of scalar, vector and tensor objects. In

up-to-date complex computational models similar hydrodynamic characteristics are associated with

spatial distribution of polarized dipole cores, initiated sources of vortexes, etc.

Obviously, the direct computational experiment efficiency directly depends on the manipulation

efficiency with reference systems, numerical objects and algorithmic operations on these objects.

Let us consider the principles of construction of the computational objects in direct computational

experiment. The described approach allows to partly automate the validation of code writing and to

improve its computational efficiency.

II. The Subject of Application 

III. Geometric Synthesis of Computational Objects and Related
Algorithmic Operations
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∨
Ω

∧
r (ω)); i, j, k

Elementary numerical objects are formed by non-coplanar basis vectors (Fig. 1). They serve to

build indissoluble physical fields in the vicinity of adjacent mesh nodes (T
Ω

−→
R ) and centers of mass (ω).

Products of vector and tensor quantities are performed with convolution, i.e. by summation over a

repeated index in the monomial product (←−a = −→a · ∨r or a j = ai · ri j), the transition to local basis and

back (−→a =←−a · ∧r or ak = a j · r jk). The latter occurs at the return to absolute coordinates.

The proposed notation is similar to that in [7] and [8]. The symbol notations and the principles of

their construction are summarized below.

– A Left upper index marks the current time, which may be indicated by a capital letter TΩ in

absolute terms or the calculated step in time tR. In addition, badges +ω and −ω designate links to the

next or previous time interval.

– A Left low index marks a location in the mesh space {X,Y,Z}
∧
r, or links to adducent knots {+}

∧
r,

or centers of mass of liquid particles {−}
∨
r. It is performed on conjugate stages of the computational

experiment.

Right indices connect vector and tensor components in absolute and local bases. They serve to a

strict definition of the dynamics and deformation of numeric cells (particles of a continuous medium).

– Low right indices, tensor “box” and the right arrow show the belonging to an absolute coordinate

system (Fig. 1). For example, the tensor
∧
r [m3] is a collection by columns of basis vectors −→ri in

matrices of geometric transformations (like −→a =←−a · ∧r [m]).

– Upper right indices mark projections inside mobile and deformable mesh cells. The display of

unitary vectors of absolute coordinates lies in row vectors in matrix of inverse coordinate transforma-

tions,
∨
r=
←−
r j = r jk =

∧
r
−1

[m−3]. They are marked by tensor “tick” and vector left arrow ←−a = −→a · ∨r
[m−2].

– Capital letters are used for big numerical values measured in scale of global space (Ω) and

general absolute time (T );

– Lowercase letters are used for especially small quantities or finite differences which are com-

mensurable with the physical dimensions of local bases of particle continuum ω, as well as in the

range of the current time step t.

Figure 1 : Geometry of global space ( ) and local basis ( denote unitary vectors in the 
connected reference system

(

4 The real time is set by the numeric structure Event with Julian data: D (from 4713 BC), and local time in hours from the day beginning: 
T. 
5 In software environment points in global coordinates (Point) are separated with free vectors in local bases (Vector). It unifies 
computing operations with tensor numerical objects Tensor and Basis.
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The geometrical construction of spatial problems includes scalar, vector and tensor numerical ob-

jects. Algorithmic procedures and arithmetic-logic operations are defined in the dimensional physical

form and associate numerical objects and interpolation basis in a tensor mesh space.

The absolute time T can contain the Julian date and time from the beginning of the day4: kT =
T + k · t. Absolute values in space may also be presented5:

−→
A =

−→
R +←−a · ∧r [m] (geographical and
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∧
v · t = −→vi · t = ΔΔ−→ri =

t
+
−→ri − 0

Ω
−→ri , (2)

The tensor
∧
v [m3/s] defines the current speed of the displacement of the liquid particle basis vectors

on a local scale (lowercase letters) that is measured in the projection of the global coordinate system

(lower indices). The independent convective rates tensor describing the local motion of the fluid is

obtained after transformation of the velocity tensor reference frame6 to the local basis of the large

liquid particle (geometric normalization):
<
v=
∧
v · ∨r [1/s].

The tensor (
<
v [1/s]) contains the extended set of kinematic elements of the differential equations

with cross derivative components of deformable liquid particle motion:

<
v=
∧
v · ∨r= vi jr jk =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

vxxrxx + vxyryx + vxzrzx vxxrxy + vxyryy + vxzrzy vxxrxz + vxyryz + vxzrzz

vyxrxx + vyyryx + vyzrzx vyxrxy + vyyryy + vyzrzy vyxrxz + vyyryz + vyzrzz

vzxrxx + vzyryx + vzzrzx vzxrxy + vzyryy + vzzrzy vzxrxz + vzyryz + vzzrzz

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (3)

Alternatively, such products can be presented in the form of complete differentiation
<
v=
∧
v /

∧
r=

Δ
ω
−→vi /Δω−→ri executed without artificial exceptions of “small” or convective elements in substantial deriva-

tive approximations. Thus correct physical interpretation of rheological characteristics of liquid and

living conditions of currents is remained.

Computing space is constructed on fixed nonregularized nodes (Point) in indexed set of mesh cells.

Three-dimensional interpolation is carried out using Euclidean bases (Base). Inside and in the vicin-

ity, coordination of physical laws with the use of free vectors (Vector) is realized.

Object-oriented programming allows to move the control of the basic math operations correctness

at the stage of the source program compilation, if they are applied to uniquely determined numerical

objects (in accordance with physical characteristics).

Figure 2 : Movement of basis vectors of calculation cell in space

IV. Construction of Tensor Numerical Objects and Modeling 
Algorithms 

T is eliminated in the balanced numerical schemes. In this case, the use of numerical values at nodes

and centers of mass of conjugate mesh cells is sufficient at all stages of calculations
∧
r [m3].

Kinematics of internal streams is defined by the speed difference tensor (Fig. 2). It is given on the

large liquid particles basis vectors form shifted in time,

6 Prohibition improving rank in product operation enables automatic permutation of factors in geometric transformations:
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other generalized coordinates). The need of involvement of absolute encoder in space T
Ω

−→
R and time

The main computational objects (see, e.g., [9]) are defined by the requirement of fast and indepen-

dent performance of computational operations. Particular attention is paid to the possibility of quick

adjustment of the calculations for the application of hybrid algorithms depending upon conditions of

the physical phenomena existing in a local subdomain. The following objects are introduced:
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only give a value of Vector. Addition of objects of type Vector with Vector or Point values will

result in the same type of data, and no other.

The development of modern computers goes rather towards adding more RAM, than towards im-

proving the processing of large amounts of data. The basic data arrows Space and Volume have to

be retained at current, previous and subsequent cuts in time for the technical support of the paral-

lelization. This allows to synchronize the parallel processing in the case of complete separation of

the stages of the experiment into independent physical processes, or to create any cycles for matching

parameters of the computing environment in complex and ill-conditioned mathematical models, if

necessary.

The solution of any computational problem consists of several stages:

– problem identification;

– formalization of the physical problem;

– construction of a computational procedure;

– creation of code for the chosen computer architecture.

At the transition between any successive stages, qualitative change in the essence of the described

phenomenon can occur. Problems associated with incorrect mathematical models, numerical schemes

to replace them, mapping problems on the architecture of a computer system, etc. are quite well

known. For an adequate creation of a complete solution of the problem, it is necessary to develop

consistent mapping of one stage onto another. The above approach is an attempt to adequately repre-

sent the final stage of solving the overall problem.

a local value real determines the length of the vector and the determinant of the matrix. Any other

transformation are marked as wrong by a translator. The difference between values of type Point can

The control of the correctness of the mathematical operations with respect to the listed objects

can be illustrated as follows. The automatic conversion of a complex variable Vector or Tensor to

typedef double Real; // scalar quantity in global space and time

typedef double real; // local or differential counts in space and time

struct Tensor; // tensor object without contextual links for quick calculation

struct Base; // location coordinates and related Euclidean basis

struct Cell; // numerical cell with contextual links to adjacent particles

struct Point; // point in scale of absolute reference system

struct Vector; // free difference vector in scale of local reference system

struct Space; // space of nodal elements for net area in general

struct Volume; // set of free/moving and deformable cells

V. Conclusion

VI. Acknowledgements
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