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Let Ω− be a bounded region in R3 and Ω+ = R3 \ Ω−. Let Σ = ∂Ω− = ∂Ω+ the interface is of
class C∞, see figure 1. Throughout this work, D denote the space consisting of all C∞-functions
with compact support and D

′ is the topological dual space of D (space of distributions).

Figure 1 : Region of the problem

Consider the basic weight

(1)ℓ(r) =
√

1 + r2,

with r =
√

x21 + x22 + x23, for x = (x1, x2, x3), is the distance of the origin. For any scalar function
u = u(x1, x2, x3), we define the laplace and grad operator of u by

∆u =

3
∑

i=1

∂2u

∂x2i
,

and

∇u =

(

∂u

∂x1
,
∂u

∂x2
,
∂u

∂x3

)

.

Due to the unboundedness of the exterior domain A = Ω+, the transmission problem is based on
the weighted Sobolev spaces, also known as the Beppo-Levi spaces (see [1], [2]), these spaces were
introduced and studied by Hanouzet in [3].
For any multi-index α in N3, we denote by ∂α the differential operator of order α:
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Abstract- In this work, we present an a priori estimate for a scalar transmission problem of the Laplacian with parameter 
in R3. The solution at infinity is described in the family of weighted Sobolev spaces.
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Then, for all m in N and all k in Z, we define the weighted Sobolev space:

(2)Wm
k (Ωis) :=

{

v ∈ D
′(Ωis) | ∀α ∈ N3, 0 ≤ |α| ≤ m, ℓ(r)|α|−m+k∂αv ∈ L2(Ωis)

}

,

which is a Hilbert space for the norm:

‖v‖Wm
k
(Ωis) =







m
∑

|α|=0

‖ℓ(r)|α|−m+k∂αv‖2L2(Ωis)







1
2

.

And a wide range of basic elliptic problems were solved in these spaces by Giroire in [4],

(3)W1
0(A) =

{

u ∈ D
′(A) | (ℓ(r))−1u ∈ L2(A),∇u ∈ L2(A)

}

and

(4)W2
1(A) =

{

u ∈ D
′(A)









u

ℓ(r)
∈ L2(A),∇u ∈ L2(A), ℓ(r)

∂2u

∂xi∂xj
∈ L2(A), 1 ≤ i, j ≤ 3

}

.

They are reflexive Banach spaces equipped, respectively, with natural norms:

(5)‖u‖W1
0(A) =

(

‖(ℓ(r))−1u‖2L2(A) + ‖∇u‖2
L2(A)

)
1
2

,

and

‖u‖W2
1(A) =





∥

∥

∥

∥

u

ℓ(r)

∥

∥

∥

∥

2

L2(A)

+ ‖∇u‖2
L

2(A) +
∑

1≤i,j≤3

∥

∥

∥

∥

ℓ(r)
∂2u

∂xi∂xj

∥

∥

∥

∥

2

L2(A)





1
2

We also define semi-norms

|u|W1
0(A) = ‖∇u‖L2(A),

and

|u|W2
1(A) =





∑

1≤i,j≤3

∥

∥

∥

∥

ℓ(r)
∂2u

∂xi∂xj

∥

∥

∥

∥

2

L2(A)





1
2

.

Here L2(A) = (L2(A))3, and also we define for all m in N ∪ {0} and all k in Z

L2
m,k(R

3) :=
{

u ∈ R | ∀α ∈ N3, 0 ≤ |α| ≤ m, ℓ(r)|α|−m+ku ∈ L2(R3)
}

,

with the norm

‖u‖L2
m,k

(R3) =







m
∑

|α|=0

‖ℓ(r)|α|−m+ku‖L2(R3)







1
2

.

Hence

W0
0(Ω+) = L2(Ω+) and W0

−1(R
3) = L2

0,−1(R
3).

We set the following spaces:

W̊1
0(A) = D(A)

‖·‖
W1

0(A) and W̊2
1(A) = D(A)

‖·‖
W2

1(A) .

We denote by W−1
0 (A) (respectively W0

1(A)) the dual space of W̊1
0(A)

(respectively of W̊2
1(A)). They are spaces of distributions.

With a(x) = a− ∈ Ω−, a(x) = a+ ∈ Ω+ for constants a±, its jump [a]Σ = a+ − a−, across Σ and
the restriction ϕ+(ϕ−) of a function ϕ to Ω+(Ω−) we consider the problem:
For given

(6)f ∈ L2(Ω−) ∪W0
1(Ω+) and g ∈ H

1
2 (Σ),
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∂α =
∂|α|

∂xα1
1 ∂xα2

2 ∂xα3
3

, with |α| = α1 + α2 + α3.
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and ϕ satisfies the decay condition at infinity

(9)ϕ = O

(

1

|x|

)

, ∂nϕ = o

(

1

|x|2

)

as |x| −→ ∞,

The transmission problem (6)-(7) is elliptic. By elliptical regularity, ϕ has more regularity on
sub-domains when the data are more regular.
We introduce

PH2(R3) = {ϕ = (ϕ+, ϕ−) | ϕ+ ∈ W2
1(Ω+) and ϕ− ∈ H2(Ω−)},

with norm

(10)‖ϕ‖2PH2(R3) = ‖ϕ−‖2H2(Ω
−
) + ‖ϕ+‖2

W2
1(Ω+).

The following result is an extension of Peron’s results [5] (for a bounded exterior domain) to an
unbounded exterior domain Ω+.

Let ϕ be a solution of the problem (7). For f and g satisfying (6) we have

(11)ϕ ∈ PH2(R3),

ϕ solves

(12)

a+∆ϕ
+ = f+ in Ω+,

a−∆ϕ
− = f− in Ω−,

ϕ+ = ϕ−,

a+∂nϕ
+ − a−∂nϕ

− = [a]Σ · g on Σ,

ϕ = O

(

1

|x|

)

, ∂nϕ = o

(

1

|x|2

)

as |x| −→ ∞,

where ∂n denote the normal derivative.

Proof. We choose a ball BR with radius R > 0 and boundary ∂BR containing Ω−. Let
Ω+ = limR→∞ ΩR and ΩR = BR ∩ Ω+, with ∂ΩR = ∂BR ∪ Σ, see figure 2.

Ω

Ω

Σ

R

BR

R

_

Proposition 1.

Figure 2 : The domain 
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)

with

(8)ϕ ∈ V = H1
0 (Ω−) ∪W1

0(Ω+), H1
0 (Ω−) =

{

ϕ ∈ H1(Ω−)











∫

Ω
−

ϕdx = 0

}

,

find ϕ ∈ V , such that

(7)a+

∫

Ω+

∇ϕ+ · ∇ +dx+ a−

∫

Ω
−

∇ϕ− · ∇ −dx = −

∫

Ω+∪Ω
−

f · ψdx+ [a]Σ

∫

Σ

g · ψds, ∀ ∈ V

Ref

5.
V

. 
P

er
on

, 
M

od
´e

li
sa

ti
on

 m
at

h
´e

m
at

iq
u
e 

d
e 

p
h
´e

n
om

`e
n
es

 ´
el

ec
tr

om
ag

n
´e

ti
q
u
es

 d
an

s 
d
es

 
m

at
´e

ri
au

x
 
`a

 
fo

rt
 
co

n
tr

as
te

,
P

h
D

 
th

es
is

, 
U

n
iv

er
si

t´
e 

d
e 

R
en

n
es

 
I,
 
R

en
n
es

, 
F
ra

n
ce

, 
(2

00
9)

.

An a Priori Estimate for a Scalar Transmission Problem of the Laplacian in ℝ3

R = BR ∩ Ω+Ω

© 2016   Global Journals Inc.  (US)



 
 

 
 

 
 
 
 
 
 
 
 
 
 

and by integration by parts in ΩR

a+

∫

ΩR

∇ϕ+ · ∇ψdx = a+

∫

ΩR

∆ϕ+ · ψdx+ a+

∫

∂ΩR

∂nϕ
+ · ψds

= a+

∫

ΩR

∆ϕ+ · ψdx+ a+

∫

Σ

∂nϕ
+ · ψds+ a+

∫

∂BR

∂nϕ
+ · ψds,

then, when R → ∞, comes

a+

∫

Ω+

∇ϕ+ · ∇ψdx = a+

∫

Ω+

∆ϕ+ · ψdx+ a+

∫

Σ

∂nϕ
+ · ψds+ lim

R→∞
a+

∫

∂BR

∂nϕ
+ · ψds.

The second term in (7) by integration by parts, yields

a−

∫

Ω
−

∇ϕ− · ∇ψdx = a−

∫

Ω
−

∆ϕ− · ψdx− a−

∫

Σ

∂nϕ
− · ψds

then

a+

∫

Ω+

∇ϕ+ · ∇ψdx + a−

∫

Ω
−

∇ϕ− · ∇ψdx =

= a+

∫

Ω+

∆ϕ+ · ψdx+ a−

∫

Ω
−

∆ϕ− · ψdx+

+

∫

Σ

(a+∂nϕ
+ − a−∂nϕ

−) · ψds+ lim
R→∞

a+

∫

∂BR

∂nϕ
+ · ψds.

The right part in (7) is

−

∫

Ω+∪Ω
−

f · ψdx+ [a]Σ

∫

Σ

g · ψds = −

∫

Ω+

f+ · ψdx −

∫

Ω
−

f− · ψdx+ [a]Σ

∫

Σ

g · ψds,

then, we have

a+

∫

Ω+

∆ϕ+ · ψdx = −

∫

Ω+

f+ · ψdx,

a−

∫

Ω
−

∆ϕ− · ψdx = −

∫

Ω
−

f− · ψdx,

∫

Σ

(a+∂nϕ
+ − a−∂nϕ

−) · ψds = [a]Σ

∫

Σ

g · ψds,

and

lim
R→∞

a+

∫

∂BR

∂nϕ
+ · ψds. = 0.

This implies (12), because ϕ satisfies (9). q.e.d.

Next we set a+ = 1, a− = ρ ∈ C, and consider:
Find ϕρ ∈ V , such that, for all ∈ V ,

∫

Ω+

∇ϕ+
ρ · ∇ +dx+ ρ

∫

Ω
−

∇ϕ−
ρ · ∇ −dx = −

∫

Ω+∪Ω
−

f · ψdx+ (1− ρ)

∫

Σ

g · ψds, (Pρ)

with f and g satisfying (6) independent of ρ and ϕ satisfying (9).
We construct a mapping ρ 7−→ ϕρ where ϕρ solves (Pρ) and consider its behavior when |ρ| → ∞.
We assume
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Then, the first term in (7) is

a+

∫

Ω+

∇ϕ+ · ∇ψdx = lim
R→∞

a+

∫

ΩR

∇ϕ+ · ∇ψdx,

Notes
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To complete the proof of Proposition 1 let as now to prove the following a priori estimate. Its
application gives the assertion of Proposition 1.

The main result for this work is to show a priori estimate in PH2 uniformly in ρ for a solution
ϕρ ∈ V of (Pρ); that is the following theorem ([6, Teorema 3]).

Assuming (6) and (13), there exists a constant ρ0 > 0 such that for all ρ ∈ {~z ∈
C||~z| ≥ ρ0}, problem (Pρ) has a solution ϕρ ∈ PH2(R3) with

(14)‖ϕρ‖PH2(R3) ≤ Cρ0(‖f
−‖L2(Ω

−
) + ‖f+‖W0

1(Ω+) + ‖g‖
H

1
2 (Σ)

),

where Cρ0 > 0 is independent of ρ, f and g.

The proof of Theorem 1 follows the same steps as the approach in [5, 7] and is given via the
following steps.

First we expand ϕρ in a power series in ρ−1.

(15)ϕρ =























∞
∑

n=0

ϕ+
n ρ

−n, in Ω+,

∞
∑

n=0

ϕ−
n ρ

−n, in Ω−.

We show that these series converge in the norm in the space PH2 to a solution of problem (Pρ).

Inserting (15) in (12) and identifying terms of like powers of ρ−1 we obtain a family of problems
independent of ρ, coupled by their conditions on Σ, and the decay condition at infinity. Then by
simple calculation we obtain:

(16)

∆ϕ−
0 = 0, in Ω−,

∂nϕ
−
0 = g, on Σ,

and

(17)

∆ϕ+
0 = f+, in Ω+,

ϕ+
0 = ϕ−

0 , on Σ,

and for k ∈ N with the Kronecker symbol δk,1

(18)

∆ϕ−
k = δk,1f

−, in Ω−,

∂nϕ
−
k = −δk,1g + ∂nϕ

+
k−1, on Σ,

and

(19)
∆ϕ+

k = 0, in Ω+,

ϕ+
k = ϕ−

k , on Σ,

and the condition at infinity

II. A Priori Estimate

Theorem 1.
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)

and show an a priori estimate for ϕρ uniformly in ρ.
We show now that ϕρ ∈ V . By construction, ϕρ is a solution of problem (12), with a− = ρ, a+ = 1.
Especially ϕρ ∈ H1(Ω−) ∪ W1

0(Ω+). Finally
∫

Ω
−

ϕ−
ρ dx = 0, because ϕ−

ρ has integral mean zero.

(13)

∫

Ω+∪Ω
−

fdx = 0 and

∫

Σ

gds = 0.
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The Neumann problem (16) has a unique solution ϕ−
0 ∈ H1(Ω−) if

∫

Ω
−

ϕ−
0 dx = 0. We remember

that we have the compatibility condition
∫

Σ
gds = 0. Also, by elliptic regularity, ϕ−

0 ∈ H2(Ω−)
and there is a constant CN > 0, independent of ρ, such that (see [8, Theorem 2.5.2])

(21)‖ϕ−
0 ‖H2(Ω

−
) ≤ CN‖g‖

H
1
2 (Σ)

.

We are interested in ϕ+
0 in (17). Problem (17) has a unique solution (see [4, Chapter 2]), ϕ+

0 ∈
W1

0(Ω+). Also, by elliptic regularity and since ϕ−
0 ∈ H2(Ω−), ϕ

+
0 ∈ W2

1(Ω+) and there is a constant
CDN > 0 independent of ρ, such that (see [2, Theorem 6])

(22)‖ϕ+
0 ‖W2

1(Ω+) ≤ CDN (‖ϕ−
0 ‖H2(Ω

−
) + ‖f+‖W0

1(Ω+)).

Now that (20) guaranties that ϕ+
0 ∈ W1

0(Ω+) and not only in W1
0(Ω+)�R. Similarly we can deal

with (18) and (19). Since ϕρ satisfies the decay condition at infinity, ϕρ can not behave like a
constant. Therefore the constraints (23) are not necessary.
Next we show that the Neumann problem (18) is compatible.
For k = 1, is necessary to prove that

(23)

∫

Ω
−

f−dx+

∫

Σ

(−g + ∂nϕ
+
0 )ds = 0.

According to (17) and (20)

(24)

∆ϕ+
0 = f+, in Ω+,

ϕ+
0 = ϕ−

0 , on Σ,

∂nϕ
+
0 = o

(

1

|x|2

)

, as |x| −→ ∞.

We choose a ball BR with radius R > 0 and boundary ∂BR containing Ω− (see figure 2). Then
for the bounded domain Ω+ ∩BR, integrating by part in (24)1 gives

∫

Ω+∩BR

f+ +dx =

∫

Ω+∩BR

∆ϕ+
0

+dx

=

∫

Ω+∩BR

∇ϕ+
0 · ∇ +dx+

∫

∂(Ω+∩BR)

+ · ∂nϕ
+
0 ds,

for ≡ 1 yields
∫

Ω+∩BR

f+dx =

∫

∂(Ω+∩BR)

∂nϕ
+
0 ds

and ∂(Ω+ ∩BR) = ∂BR ∪ Σ, then
∫

Ω+∩BR

f+dx =

∫

∂BR

∂nϕ
+
0 ds+

∫

Σ

∂nϕ
+
0 ds

=

∫

∂BR

o

(

1

R2

)

ds+

∫

Σ

∂nϕ
+
0 ds
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We construct every term successively ϕ−
n and ϕ+

n , by beginning in ϕ−
0 and ϕ+

0 .
Let us assume that {ϕ−

k }
n−1
k=0 and {ϕ+

k }
n−1
k=0 are known. Then, problem (18) defines a unique ϕ−

n .
Its trace on Σ is inserted in (19) as Dirichlet data to determine the external part ϕ+

n .

(20)ϕρ = O

(

1

|x|

)

, ∂nϕρ = o

(

1

|x|2

)

as |x| −→ ∞,
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Under the hypothesis (13)
∫

Σ

gds = 0, and

∫

R3

fdx = 0,

then
∫

Ω+

f+dx = −

∫

Ω
−

f−dx,

the compatibility condition (23) is deducted.
For k ≥ 2, we assume that the term ϕ+

k−1 is constructed. It is necessary to show that

(25)

∫

Σ

∂nϕ
+
k−1ds = 0.

According to (19) and (20)

(26)

∆ϕ+
k−1 = 0, in Ω+,

ϕ+
k−1 = ϕ−

k−1, on Σ,

∂nϕ
+
k−1 = o

(

1

|x|2

)

, as |x| −→ ∞.

Again we choose a ball BR with radius R > 0 and boundary ∂BR containing Ω−. Then for the
bounded domain Ω+ ∩BR, integrating by part in (26)1 gives

0 =

∫

Ω+∩BR

∆ϕ+
k−1

+dx =

∫

Ω+∩BR

∇ϕ+
k−1 · ∇

+dx +

∫

∂(Ω+∩BR)

+ · ∂nϕ
+
k−1ds,

for ≡ 1 yields

0 =

∫

∂(Ω+∩BR)

∂nϕ
+
k−1ds

and ∂(Ω+ ∩BR) = ∂BR ∪ Σ, then

0 =

∫

∂BR

∂nϕ
+
k−1ds+

∫

Σ

∂nϕ
+
k−1ds

=

∫

∂BR

o

(

1

R2

)

ds+

∫

Σ

∂nϕ
+
k−1ds

= o

(

1

R2

)

R2 +

∫

Σ

∂nϕ
+
k−1ds,

then

0 = o(1) +

∫

Σ

∂nϕ
+
k−1ds, as R −→ ∞,

then

0 =

∫

Σ

∂nϕ
+
k−1ds,

then (25) is deducted.
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∫

Ω+

f+dx = o(1) +

∫

Σ

∂nϕ
+
0 ds, as R −→ ∞,

then
∫

Ω+

f+dx =

∫

Σ

∂nϕ
+
0 ds.

= o

(

1

R2

)

R2 +

∫

Σ

∂nϕ
+
0 ds,

then
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For the Neumann trace (see [5, 7])

γ1,Σ : W2
1(Ω+) −→ H

1
2 (Σ),

ϕ 7−→ ∂nϕ

we have with a constant C1 > 0,

(29)‖γ1,Σ(ϕ)‖
H

1
2 (Σ)

≤ C1‖ϕ‖W2
1(Ω+).

We pose α = CNC1CDN , where CN and CDN are the respective constants of estimates (21) and
(22). With (27), (28) and (29) we show by induction

(30)

‖ϕ−
n ‖H2(Ω

−
) ≤ αn−1‖ϕ−

1 ‖H2(Ω
−
),

‖ϕ+
n ‖W2

1(Ω+) ≤ CDN · αn−1‖ϕ−
1 ‖H2(Ω

−
).

(30)1 can be see as follows: For n = 1,

‖ϕ−
1 ‖H2(Ω

−
) = α0‖ϕ−

1 ‖H2(Ω
−
).

With (27) we have for k = 2

‖ϕ−
2 ‖H2(Ω

−
) ≤ CN‖∂nϕ

+
1 ‖H

1
2 (Σ)

,

and with (29)

‖ϕ−
2 ‖H2(Ω

−
) ≤ CNC1‖ϕ

+
1 ‖W2

1(Ω+);

hence by (28) we have for k = 1

‖ϕ+
1 ‖W2

1(Ω+) ≤ CDN‖ϕ−
1 ‖H2(Ω

−
),

and therefore

‖ϕ−
2 ‖H2(Ω

−
) ≤ CNC1CDN‖ϕ−

1 ‖H2(Ω
−
) = α‖ϕ−

1 ‖H2(Ω
−
).

We assume that (30)1 is true for k = n− 1, this is

‖ϕ−
n−1‖H2(Ω

−
) ≤ αn−2‖ϕ−

1 ‖H2(Ω
−
),

then, according to (27), for k = n

‖ϕ−
n ‖H2(Ω

−
) ≤ CN‖∂nϕ

+
n−1‖H

1
2 (Σ)

,

and for (29)

‖ϕ−
n ‖H2(Ω

−
) ≤ CNC1‖ϕ

+
n−1‖W2

1(Ω+);

according to (28) for k = n− 1

‖ϕ+
n−1‖W2

1(Ω+) ≤ CDN‖ϕ−
n−1‖H2(Ω

−
),

then
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Next, we demonstrate the convergence in PH2(R3) of the series (15) for large |ρ|.

Finally, problem (19) has a unique solution ϕ+
k ∈ W1

0(Ω+) (see [4, Chapter 2] and the estimate
(see [8, Theorem 2.5.14])

(28)‖ϕ+
k ‖W2

1(Ω+) ≤ CDN‖ϕ−
k ‖H2(Ω

−
).

Consequently, the Neumann problem (18) admits a solution ϕ−
k ∈ H1(Ω−), which is unique

under condition
∫

Ω
−

ϕ−
k dx = 0 (see [8, Theorem 2.5.10]). Also, ϕ−

k ∈ H2(Ω−) and (see [5, 7])

(27)‖ϕ−
k ‖H2(Ω

−
) ≤ CN [δ1k(‖f

−‖L2(Ω
−
) + ‖g‖

H
1
2 (Σ)

) + ‖∂nϕ
+
k−1‖H

1
2 (Σ)

].

Ref
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then

‖ϕ+
2 ‖W2

1(Ω+) ≤ CDNCNC1‖ϕ
+
1 ‖W2

1(Ω+)

≤ CDN · α‖ϕ−
1 ‖H2(Ω

−
).

We assume that (30)2 is true for k = n− 1, this is

‖ϕ+
n−1‖W2

1(Ω+) ≤ CDN · αn−2‖ϕ−
1 ‖H2(Ω

−
)

then, according to (28), for k = n

‖ϕ+
n ‖W2

1(Ω+) ≤ CDN‖ϕ−
n ‖H2(Ω

−
),

and according to (27) for k = n

‖ϕ−
n ‖H2(Ω

−
) ≤ CN‖∂nϕ

+
n−1‖H

1
2 (Σ)

,

and for (29)

‖ϕ−
n ‖H2(Ω

−
) ≤ CNC1‖ϕ

+
n−1‖W2

1(Ω+),

then

‖ϕ−
n ‖H2(Ω

−
) ≤ CNC1CDN · αn−2‖ϕ−

1 ‖H2(Ω
−
)

= αn−1‖ϕ−
1 ‖H2(Ω

−
),

then

‖ϕ+
n ‖W2

1(Ω+) ≤ CDN · αn−1‖ϕ−
1 ‖H2(Ω

−
),

then (30)2 is true for all n.

Hence for all ρ ∈ C, with |ρ|−1α < 1, the series (15) converges inW2
1(Ω+) andH

2(Ω−), respectively.
Now we are in the position to prove Theorem 1.

We show first the estimate (14) for ϕρ in (15). Let ρ0 > 0, such that ρ−1
0 α < 1, where α =

CNC1CDN .

Let ρ ∈ {z ∈ C||z| ≥ ρ0}. According to (30) ϕρ converges geometrically in PH2(R3) with

convergence ratio |ρ−1|α, bounded by ρ−1
0 α. Hence,
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According to (27) for k = 2

‖ϕ−
2 ‖H2(Ω

−
) ≤ CN‖∂nϕ

+
1 ‖H

1
2 (Σ)

,

and for (29)

‖ϕ−
2 ‖H2(Ω

−
) ≤ CNC1‖ϕ

+
1 ‖W2

1(Ω+),

and for k = 2

‖ϕ+
2 ‖W2

1(Ω+) ≤ CDN‖ϕ−
2 ‖H2(Ω

−
).

then (30)1 is true for all n.
(30)2 can be see as follows: According to (28) for k = 1

‖ϕ+
1 ‖W2

1(Ω+) ≤ CDN‖ϕ−
1 ‖H2(Ω

−
),

≤ α · αn−2‖ϕ−
1 ‖H2(Ω

−
)

= αn−1‖ϕ−
1 ‖H2(Ω

−
),

‖ϕ−
n ‖H2(Ω

−
) ≤ CNC1CDN‖ϕ−

n−1‖H2(Ω
−
)

Notes
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this and (32) implies (31)2.

Now, from (27), for k = 1

(33)‖ϕ−
1 ‖H2(Ω

−
) ≤ CN [‖f−‖L2(Ω

−
) + ‖g‖

H
1
2 (Σ)

+ ‖∂nϕ
+
0 ‖H

1
2 (Σ)

],

according to (33) and (29), get

(34)‖ϕ−
1 ‖H2(Ω

−
) ≤ CN [‖f−‖L2(Ω

−
) + ‖g‖

H
1
2 (Σ)

+ C1‖ϕ
+
0 ‖W2

1(Ω+)].

From (34), (31), (21) and (22), we have

‖ϕ+
ρ ‖W2

1(Ω+) ≤ CDN

1

1− ρ−1
0 α

ρ−1
0 CN [‖f−‖L2(Ω

−
) + ‖g‖

H
1
2 (Σ)

+C1CDN (CN‖g‖
H

1
2 (Σ)

+ ‖f+‖W0
1(Ω+))] + CDN (CN‖g‖

H
1
2 (Σ)

+ ‖f+‖W0
1(Ω+)),

and

‖ϕ−
ρ ‖H2(Ω

−
) ≤ ρ−1

0

1

1− ρ−1
0 α

CN [‖f−‖L2(Ω
−
) + ‖g‖

H
1
2 (Σ)

+C1CDN (CN‖g‖
H

1
2 (Σ)

+ ‖f+‖W0
1(Ω+))] + CN‖g‖

H
1
2 (Σ)

.

This yields the estimate (14).
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≤ ‖ϕ+
0 ‖W2

1(Ω+) + CDN · α−1‖ϕ−
1 ‖H2(Ω

−
)

∑∞
n=1 |ρ

−n|αn,

and

(32)

∞
∑

n=1

|ρ−n|αn =

∞
∑

n=1

(ρ−1α)n =
1

1− ρ−1α
≤

1

1− ρ−1
0 α

,

then

‖ϕ+
ρ ‖W2

1(Ω+) ≤ CDN

1

1− ρ−1
0 α

ρ−1
0 ‖ϕ−

1 ‖H2(Ω
−
) + ‖ϕ+

0 ‖W2
1(Ω+).

Using the triangle inequality, (15)2 and (30)1, we have

‖ϕ−
ρ ‖H2(Ω

−
) = ‖

∑∞
n=0 ϕ

−
n ρ

−n‖H2(Ω
−
)

≤ ‖ϕ−
0 ‖H2(Ω

−
) +

∑∞
n=1 ‖ϕ

−
n ‖H2(Ω

−
)|ρ

−n|

≤ ‖ϕ−
0 ‖H2(Ω

−
) + α−1‖ϕ−

1 ‖H2(Ω
−
)

∑∞
n=1 |ρ

−n|αn,

From (15)1, (30)2 and the triangular inequality, we have

‖ϕ+
ρ ‖W2

1(Ω+) = ‖
∑∞

n=0 ϕ
+
n ρ

−n‖W2
1(Ω+)

≤ ‖ϕ+
0 ‖W2

1(Ω+) +
∑∞

n=1 ‖ϕ
+
n ‖W2

1(Ω+)|ρ
−n|

(31)

‖ϕ+
ρ ‖W2

1(Ω+) ≤ CDN

1

1− ρ−1
0 α

ρ−1
0 ‖ϕ−

1 ‖H2(Ω
−
) + ‖ϕ+

0 ‖W2
1(Ω+),

‖ϕ−
ρ ‖H2(Ω

−
) ≤ ρ−1

0

1

1− ρ−1
0 α

‖ϕ−
1 ‖H2(Ω

−
) + ‖ϕ−

0 ‖H2(Ω
−
)
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