Global Journal of Science Frontier Research: f MATHEMATICS AND DECISION SCIENCES
Volume 16 Issue 4 Version 1.0 Year 2016
Type : Double Blind Peer Reviewed International Research Journal
Publisher: Global Journals Inc. (USA)
Online ISSN: 2249-4626 \& Print ISSN: 0975-5896

An a Priori Estimate for a Scalar Transmission Problem of the Laplacian in \mathbb{R}^{3}

By Ospino Portillo Jorge Eliécer
Fundación Universidad del Norte

Abstract- In this work, we present an a priori estimate for a scalar transmission problem of the Laplacian with parameter in R^{3}. The solution at infinity is described in the family of weighted Sobolev spaces.

Keywords: scalar transmission problem, laplacian, a priori estimate.
GJSFR-F Classification : MSC 2000: 65N15, 35A35.

Strictly as per the compliance and regulations of :

3d virtual
journal

$R_{\text {ef }}$

An a Priori Estimate for a Scalar Transmission Problem of the Laplacian in \mathbb{R}^{3}

Ospino Portillo Jorge Eliécer

Abstract- In this work, we present an a priori estimate for a scalar transmission problem of the Laplacian with parameter in R^{3}. The solution at infinity is described in the family of weighted Sobolev spaces.
Keywords: scalar transmission problem, laplacian, a priori estimate.

I. The Scalar Transmission Problem

Let Ω_{-}be a bounded region in \mathbb{R}^{3} and $\Omega_{+}=\mathbb{R}^{3} \backslash \overline{\Omega_{-}}$. Let $\Sigma=\partial \Omega_{-}=\partial \Omega_{+}$the interface is of class C^{∞}, see figure 1. Throughout this work, \mathfrak{D} denote the space consisting of all C^{∞}-functions with compact support and \mathfrak{D}^{\prime} is the topological dual space of \mathfrak{D} (space of distributions).

Figure 1 : Region of the problem

Consider the basic weight

$$
\begin{equation*}
\ell(r)=\sqrt{1+r^{2}} \tag{1}
\end{equation*}
$$

with $r=\sqrt{x_{1}^{2}+x_{2}^{2}+x_{3}^{2}}$, for $\mathbf{x}=\left(x_{1}, x_{2}, x_{3}\right)$, is the distance of the origin. For any scalar function $u=u\left(x_{1}, x_{2}, x_{3}\right)$, we define the laplace and grad operator of u by

$$
\Delta u=\sum_{i=1}^{3} \frac{\partial^{2} u}{\partial x_{i}^{2}}
$$

and

$$
\nabla u=\left(\frac{\partial u}{\partial x_{1}}, \frac{\partial u}{\partial x_{2}}, \frac{\partial u}{\partial x_{3}}\right)
$$

Due to the unboundedness of the exterior domain $A=\Omega_{+}$, the transmission problem is based on the weighted Sobolev spaces, also known as the Beppo-Levi spaces (see [1], [2]), these spaces were introduced and studied by Hanouzet in [3].
For any multi-index α in \mathbb{N}^{3}, we denote by ∂^{α} the differential operator of order α :

[^0]$$
\partial^{\alpha}=\frac{\partial^{|\alpha|}}{\partial x_{1}^{\alpha_{1}} \partial x_{2}^{\alpha_{2}} \partial x_{3}^{\alpha_{3}}}, \quad \text { with } \quad|\alpha|=\alpha_{1}+\alpha_{2}+\alpha_{3}
$$

Then, for all m in \mathbb{N} and all k in \mathbb{Z}, we define the weighted Sobolev space:

$$
\begin{equation*}
\mathbb{W}_{k}^{m}\left(\Omega^{i s}\right):=\left\{v \in \mathfrak{D}^{\prime}\left(\Omega^{i s}\right)\left|\forall \alpha \in \mathbb{N}^{3}, \quad 0 \leq|\alpha| \leq m, \quad \ell(r)^{|\alpha|-m+k} \partial^{\alpha} v \in L^{2}\left(\Omega^{i s}\right)\right\}\right. \tag{2}
\end{equation*}
$$

which is a Hilbert space for the norm:

$$
\|v\|_{\mathbb{W}_{k}^{m}\left(\Omega^{i s}\right)}=\left\{\sum_{|\alpha|=0}^{m}\left\|\ell(r)^{|\alpha|-m+k} \partial^{\alpha} v\right\|_{L^{2}\left(\Omega^{i s}\right)}^{2}\right\}^{\frac{1}{2}}
$$

And a wide range of basic elliptic problems were solved in these spaces by Giroire in [4],

$$
\begin{equation*}
\mathbb{W}_{0}^{1}(A)=\left\{u \in \mathfrak{D}^{\prime}(A) \mid(\ell(r))^{-1} u \in L^{2}(A), \nabla u \in \mathbf{L}^{2}(A)\right\} \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathbb{W}_{1}^{2}(A)=\left\{u \in \mathfrak{D}^{\prime}(A) \left\lvert\, \frac{u}{\ell(r)} \in L^{2}(A)\right., \nabla u \in \mathbf{L}^{2}(A), \ell(r) \frac{\partial^{2} u}{\partial x_{i} \partial x_{j}} \in L^{2}(A), 1 \leq i, j \leq 3\right\} \tag{4}
\end{equation*}
$$

They are reflexive Banach spaces equipped, respectively, with natural norms:

$$
\begin{equation*}
\|u\|_{\mathbb{W}_{0}^{1}(A)}=\left(\left\|(\ell(r))^{-1} u\right\|_{L^{2}(A)}^{2}+\|\nabla u\|_{\mathbf{L}^{2}(A)}^{2}\right)^{\frac{1}{2}} \tag{5}
\end{equation*}
$$

and

$$
\|u\|_{\mathbb{W}_{1}^{2}(A)}=\left(\left\|\frac{u}{\ell(r)}\right\|_{L^{2}(A)}^{2}+\|\nabla u\|_{\mathbf{L}^{2}(A)}^{2}+\sum_{1 \leq i, j \leq 3}\left\|\ell(r) \frac{\partial^{2} u}{\partial x_{i} \partial x_{j}}\right\|_{L^{2}(A)}^{2}\right)^{\frac{1}{2}}
$$

We also define semi-norms

$$
|u|_{\mathbb{W}_{0}^{1}(A)}=\|\nabla u\|_{\mathbf{L}^{2}(A)}
$$

and

$$
|u|_{\mathbb{W}_{1}^{2}(A)}=\left(\sum_{1 \leq i, j \leq 3}\left\|\ell(r) \frac{\partial^{2} u}{\partial x_{i} \partial x_{j}}\right\|_{L^{2}(A)}^{2}\right)^{\frac{1}{2}}
$$

Here $\mathbf{L}^{2}(A)=\left(L^{2}(A)\right)^{3}$, and also we define for all m in $\mathbb{N} \cup\{0\}$ and all k in \mathbb{Z}

$$
L_{m, k}^{2}\left(\mathbb{R}^{3}\right):=\left\{u \in \mathbb{R}\left|\forall \alpha \in \mathbb{N}^{3}, \quad 0 \leq|\alpha| \leq m, \quad \ell(r)^{|\alpha|-m+k} u \in L^{2}\left(\mathbb{R}^{3}\right)\right\}\right.
$$

with the norm

$$
\|u\|_{L_{m, k}^{2}\left(\mathbb{R}^{3}\right)}=\left\{\sum_{|\alpha|=0}^{m}\left\|\ell(r)^{|\alpha|-m+k} u\right\|_{L^{2}\left(\mathbb{R}^{3}\right)}\right\}^{\frac{1}{2}}
$$

Hence

$$
\mathbb{W}_{0}^{0}\left(\Omega_{+}\right)=L^{2}\left(\Omega_{+}\right) \quad \text { and } \quad \mathbb{W}_{-1}^{0}\left(\mathbb{R}^{3}\right)=L_{0,-1}^{2}\left(\mathbb{R}^{3}\right)
$$

We set the following spaces:

$$
\mathbb{W}_{0}^{1}(A)=\overline{\mathfrak{D}(A)} \|^{\|\cdot\|_{\mathbb{W}_{0}^{1}(A)}} \quad \text { and } \quad \mathbb{W}_{1}^{2}(A)=\overline{\mathfrak{D}(A)}\|\cdot\|_{\mathbb{W}_{1}^{2}(A)} .
$$

We denote by $\mathbb{W}_{0}^{-1}(A)$ (respectively $\left.\mathbb{W}_{1}^{0}(A)\right)$ the dual space of $\mathbb{W}_{0}^{1}(A)$ (respectively of $\left.\mathbb{W}_{1}^{2}(A)\right)$. They are spaces of distributions.
With $a(\mathbf{x})=a_{-} \in \Omega_{-}, a(\mathbf{x})=a_{+} \in \Omega_{+}$for constants $a \pm$, its jump $[a]_{\Sigma}=a_{+}-a_{-}$, across Σ and the restriction $\varphi^{+}\left(\varphi^{-}\right)$of a function φ to $\Omega_{+}\left(\Omega_{-}\right)$we consider the problem: For given

$$
\begin{equation*}
f \in L^{2}\left(\Omega_{-}\right) \cup \mathbb{W}_{1}^{0}\left(\Omega_{+}\right) \quad \text { and } \quad g \in H^{\frac{1}{2}}(\Sigma) \tag{6}
\end{equation*}
$$

find $\varphi \in \mathcal{V}$, such that

$$
\begin{equation*}
a_{+} \int_{\Omega_{+}} \nabla \varphi^{+} \cdot \overline{\nabla^{+}} d x+a_{-} \int_{\Omega_{-}} \nabla \varphi^{-} \cdot \overline{\nabla^{-}} d x=-\int_{\Omega_{+} \cup \Omega_{-}} f \cdot \bar{\psi} d x+[a]_{\Sigma} \int_{\Sigma} g \cdot \bar{\psi} d s, \quad \forall \in \mathcal{V} \tag{7}
\end{equation*}
$$

with

$$
\begin{equation*}
\varphi \in \mathcal{V}=H_{0}^{1}\left(\Omega_{-}\right) \cup \mathbb{W}_{0}^{1}\left(\Omega_{+}\right), \quad H_{0}^{1}\left(\Omega_{-}\right)=\left\{\varphi \in H^{1}\left(\Omega_{-}\right) \mid \int_{\Omega_{-}} \varphi d x=0\right\} \tag{8}
\end{equation*}
$$

and φ satisfies the decay condition at infinity

$$
\begin{equation*}
\varphi=O\left(\frac{1}{|\mathbf{x}|}\right), \quad \partial_{\mathbf{n}} \varphi=o\left(\frac{1}{|\mathbf{x}|^{2}}\right) \quad \text { as } \quad|\mathbf{x}| \longrightarrow \infty \tag{9}
\end{equation*}
$$

The transmission problem (6)-(7) is elliptic. By elliptical regularity, φ has more regularity on sub-domains when the data are more regular.
We introduce

$$
P H^{2}\left(\mathbb{R}^{3}\right)=\left\{\varphi=\left(\varphi^{+}, \varphi^{-}\right) \mid \varphi^{+} \in \mathbb{W}_{1}^{2}\left(\Omega_{+}\right) \text {and } \varphi^{-} \in H^{2}\left(\Omega_{-}\right)\right\},
$$

with norm

$$
\begin{equation*}
\|\varphi\|_{P H^{2}\left(\mathbb{R}^{3}\right)}^{2}=\left\|\varphi^{-}\right\|_{H^{2}\left(\Omega_{-}\right)}^{2}+\left\|\varphi^{+}\right\|_{\mathbb{W}_{1}^{2}\left(\Omega_{+}\right)}^{2} \tag{10}
\end{equation*}
$$

The following result is an extension of Peron's results [5] (for a bounded exterior domain) to an unbounded exterior domain Ω_{+}.

Proposition 1. Let φ be a solution of the problem (7). For f and g satisfying (6) we have

$$
\begin{equation*}
\varphi \in P H^{2}\left(\mathbb{R}^{3}\right) \tag{11}
\end{equation*}
$$

φ solves

$$
\begin{align*}
& a_{+} \Delta \varphi^{+}=f^{+} \text {in } \Omega_{+} \\
& a_{-} \Delta \varphi^{-}=f^{-} \text {in } \Omega_{-} \\
& \varphi^{+}=\varphi^{-} \tag{12}\\
& a_{+} \partial_{n} \varphi^{+}-a_{-} \partial_{n} \varphi^{-}=[a]_{\Sigma} \cdot g \text { on } \Sigma \\
& \varphi=O\left(\frac{1}{|\boldsymbol{x}|}\right), \quad \partial_{n} \varphi=o\left(\frac{1}{|\boldsymbol{x}|^{2}}\right) \text { as }|x| \longrightarrow \infty
\end{align*}
$$

where ∂_{n} denote the normal derivative.
Proof. We choose a ball B_{R} with radius $R>0$ and boundary ∂B_{R} containing Ω_{-}. Let $\Omega_{+}=\lim _{R \rightarrow \infty} \Omega_{R}$ and $\Omega_{R}=B_{R} \cap \Omega_{+}$, with $\partial \Omega_{R}=\partial B_{R} \cup \Sigma$, see figure 2 .

Figure 2 : The domain $\Omega_{R}=B_{R} \cap \Omega_{+}$

Then, the first term in (7) is

$$
a_{+} \int_{\Omega_{+}} \nabla \varphi^{+} \cdot \overline{\nabla \psi} d x=\lim _{R \rightarrow \infty} a_{+} \int_{\Omega_{R}} \nabla \varphi^{+} \cdot \overline{\nabla \psi} d x
$$

and by integration by parts in Ω_{R}

$$
\begin{aligned}
& a_{+} \int_{\Omega_{R}} \nabla \varphi^{+} \cdot \overline{\nabla \psi} d x=a_{+} \int_{\Omega_{R}} \Delta \varphi^{+} \cdot \bar{\psi} d x+a_{+} \int_{\partial \Omega_{R}} \partial_{\mathbf{n}} \varphi^{+} \cdot \bar{\psi} d s \\
& =a_{+} \int_{\Omega_{R}} \Delta \varphi^{+} \cdot \bar{\psi} d x+a_{+} \int_{\Sigma} \partial_{\mathbf{n}} \varphi^{+} \cdot \bar{\psi} d s+a_{+} \int_{\partial B_{R}} \partial_{\mathbf{n}} \varphi^{+} \cdot \bar{\psi} d s,
\end{aligned}
$$

then, when $R \rightarrow \infty$, comes

$$
a_{+} \int_{\Omega_{+}} \nabla \varphi^{+} \cdot \overline{\nabla \psi} d x=a_{+} \int_{\Omega_{+}} \Delta \varphi^{+} \cdot \bar{\psi} d x+a_{+} \int_{\Sigma} \partial_{\mathbf{n}} \varphi^{+} \cdot \bar{\psi} d s+\lim _{R \rightarrow \infty} a_{+} \int_{\partial B_{R}} \partial_{\mathbf{n}} \varphi^{+} \cdot \bar{\psi} d s
$$

The second term in (7) by integration by parts, yields

$$
a_{-} \int_{\Omega_{-}} \nabla \varphi^{-} \cdot \overline{\nabla \psi} d x=a_{-} \int_{\Omega_{-}} \Delta \varphi^{-} \cdot \bar{\psi} d x-a_{-} \int_{\Sigma} \partial_{\mathbf{n}} \varphi^{-} \cdot \bar{\psi} d s
$$

then

$$
\begin{array}{r}
a_{+} \int_{\Omega_{+}} \nabla \varphi^{+} \cdot \overline{\nabla \psi} d x+a_{-} \int_{\Omega_{-}} \nabla \varphi^{-} \cdot \overline{\nabla \psi} d x= \\
=a_{+} \int_{\Omega_{+}} \Delta \varphi^{+} \cdot \bar{\psi} d x+a_{-} \int_{\Omega_{-}} \Delta \varphi^{-} \cdot \bar{\psi} d x+ \\
+\int_{\Sigma}\left(a_{+} \partial_{\mathbf{n}} \varphi^{+}-a_{-} \partial_{\mathbf{n}} \varphi^{-}\right) \cdot \bar{\psi} d s+\lim _{R \rightarrow \infty} a_{+} \int_{\partial B_{R}} \partial_{\mathbf{n}} \varphi^{+} \cdot \bar{\psi} d s .
\end{array}
$$

The right part in (7) is

$$
-\int_{\Omega_{+} \cup \Omega_{-}} f \cdot \bar{\psi} d x+[a]_{\Sigma} \int_{\Sigma} g \cdot \bar{\psi} d s=-\int_{\Omega_{+}} f^{+} \cdot \bar{\psi} d x-\int_{\Omega_{-}} f^{-} \cdot \bar{\psi} d x+[a]_{\Sigma} \int_{\Sigma} g \cdot \bar{\psi} d s
$$

then, we have

$$
\begin{gathered}
a_{+} \int_{\Omega_{+}} \Delta \varphi^{+} \cdot \bar{\psi} d x=-\int_{\Omega_{+}} f^{+} \cdot \bar{\psi} d x \\
a_{-} \int_{\Omega_{-}} \Delta \varphi^{-} \cdot \bar{\psi} d x=-\int_{\Omega_{-}} f^{-} \cdot \bar{\psi} d x \\
\int_{\Sigma}\left(a_{+} \partial_{\mathbf{n}} \varphi^{+}-a_{-} \partial_{\mathbf{n}} \varphi^{-}\right) \cdot \bar{\psi} d s=[a]_{\Sigma} \int_{\Sigma} g \cdot \bar{\psi} d s
\end{gathered}
$$

and

$$
\lim _{R \rightarrow \infty} a_{+} \int_{\partial B_{R}} \partial_{\mathbf{n}} \varphi^{+} \cdot \bar{\psi} d s .=0
$$

This implies (12), because φ satisfies (9).
Next we set $a_{+}=1, a_{-}=\rho \in \mathbb{C}$, and consider:
Find $\varphi_{\rho} \in \mathcal{V}$, such that, for all $\in \mathcal{V}$,

$$
\int_{\Omega_{+}} \nabla \varphi_{\rho}^{+} \cdot \overline{\nabla^{+}} d x+\rho \int_{\Omega_{-}} \nabla \varphi_{\rho}^{-} \cdot \overline{\nabla^{-}} d x=-\int_{\Omega_{+} \cup \Omega_{-}} f \cdot \bar{\psi} d x+(1-\rho) \int_{\Sigma} g \cdot \bar{\psi} d s, \quad\left(\mathbf{P}_{\rho}\right)
$$

with f and g satisfying (6) independent of ρ and φ satisfying (9).
We construct a mapping $\rho \longmapsto \varphi_{\rho}$ where φ_{ρ} solves $\left(\mathbf{P}_{\rho}\right)$ and consider its behavior when $|\rho| \rightarrow \infty$. We assume

$$
\begin{equation*}
\int_{\Omega_{+} \cup \Omega_{-}} f d x=0 \text { and } \int_{\Sigma} g d s=0 . \tag{13}
\end{equation*}
$$

and show an a priori estimate for φ_{ρ} uniformly in ρ.
We show now that $\varphi_{\rho} \in \mathcal{V}$. By construction, φ_{ρ} is a solution of problem (12), with $a_{-}=\rho, a_{+}=1$. Especially $\varphi_{\rho} \in H^{1}\left(\Omega_{-}\right) \cup \mathbb{W}_{0}^{1}\left(\Omega_{+}\right)$. Finally $\int_{\Omega_{-}} \varphi_{\rho}^{-} d x=0$, because φ_{ρ}^{-}has integral mean zero.

To complete the proof of Proposition 1 let as now to prove the following a priori estimate. Its application gives the assertion of Proposition 1.

iI. A Priori Estimate

The main result for this work is to show a priori estimate in $P H^{2}$ uniformly in ρ for a solution $\varphi_{\rho} \in \mathcal{V}$ of $\left(\mathbf{P}_{\rho}\right)$; that is the following theorem ($[\mathbf{6}$, Teorema 3]).

Theorem 1. Assuming (6) and (13), there exists a constant $\rho_{0}>0$ such that for all $\rho \in\{\vec{z} \in$ $\mathbb{C}\left||\vec{z}| \geq \rho_{0}\right\}$, problem $\left(\boldsymbol{P}_{\rho}\right)$ has a solution $\varphi_{\rho} \in P H^{2}\left(\mathbb{R}^{3}\right)$ with

$$
\begin{equation*}
\left\|\varphi_{\rho}\right\|_{P H^{2}\left(\mathbb{R}^{3}\right)} \leq C_{\rho_{0}}\left(\left\|f^{-}\right\|_{L^{2}\left(\Omega_{-}\right)}+\left\|f^{+}\right\|_{W_{1}^{0}\left(\Omega_{+}\right)}+\|g\|_{H^{\frac{1}{2}(\Sigma)}}\right), \tag{14}
\end{equation*}
$$

where $C_{\rho_{0}}>0$ is independent of ρ, f and g.
The proof of Theorem 1 follows the same steps as the approach in $[\mathbf{5}, \mathbf{7}]$ and is given via the following steps.

First we expand φ_{ρ} in a power series in ρ^{-1}.

$$
\varphi_{\rho}= \begin{cases}\sum_{n=0}^{\infty} \varphi_{n}^{+} \rho^{-n}, & \text { in } \Omega_{+} \tag{15}\\ \sum_{n=0}^{\infty} \varphi_{n}^{-} \rho^{-n}, & \text { in } \Omega_{-}\end{cases}
$$

We show that these series converge in the norm in the space $P H^{2}$ to a solution of problem $\left(\mathbf{P}_{\rho}\right)$.
Inserting (15) in (12) and identifying terms of like powers of ρ^{-1} we obtain a family of problems independent of ρ, coupled by their conditions on Σ, and the decay condition at infinity. Then by simple calculation we obtain:

$$
\begin{align*}
& \Delta \varphi_{0}^{-}=0, \quad \text { in } \quad \Omega_{-}, \\
& \partial_{\mathbf{n}} \varphi_{0}^{-}=g, \quad \text { on } \quad \Sigma, \tag{16}
\end{align*}
$$

and

$$
\begin{align*}
& \Delta \varphi_{0}^{+}=f^{+}, \quad \text { in } \quad \Omega_{+}, \\
& \varphi_{0}^{+}=\varphi_{0}^{-}, \quad \text { on } \Sigma, \tag{17}
\end{align*}
$$

and for $k \in \mathbb{N}$ with the Kronecker symbol $\delta_{k, 1}$

$$
\begin{align*}
& \Delta \varphi_{k}^{-}=\delta_{k, 1} f^{-}, \text {in } \Omega_{-}, \\
& \partial_{\mathbf{n}} \varphi_{k}^{-}=-\delta_{k, 1} g+\partial_{\mathbf{n}} \varphi_{k-1}^{+}, \text {on } \Sigma, \tag{18}
\end{align*}
$$

and

$$
\begin{align*}
& \Delta \varphi_{k}^{+}=0, \quad \text { in } \quad \Omega_{+} \\
& \varphi_{k}^{+}=\varphi_{k}^{-}, \quad \text { on } \quad \Sigma \tag{19}
\end{align*}
$$

and the condition at infinity

$$
\begin{equation*}
\varphi_{\rho}=O\left(\frac{1}{|\mathbf{x}|}\right), \quad \partial_{\mathbf{n}} \varphi_{\rho}=o\left(\frac{1}{|\mathbf{x}|^{2}}\right) \quad \text { as } \quad|\mathbf{x}| \longrightarrow \infty \tag{20}
\end{equation*}
$$

We construct every term successively φ_{n}^{-}and φ_{n}^{+}, by beginning in φ_{0}^{-}and φ_{0}^{+}.
Let us assume that $\left\{\varphi_{k}^{-}\right\}_{k=0}^{n-1}$ and $\left\{\varphi_{k}^{+}\right\}_{k=0}^{n-1}$ are known. Then, problem (18) defines a unique φ_{n}^{-}. Its trace on Σ is inserted in (19) as Dirichlet data to determine the external part φ_{n}^{+}.

The Neumann problem (16) has a unique solution $\varphi_{0}^{-} \in H^{1}\left(\Omega_{-}\right)$if $\int_{\Omega_{-}} \varphi_{0}^{-} d x=0$. We remember that we have the compatibility condition $\int_{\Sigma} g d s=0$. Also, by elliptic regularity, $\varphi_{0}^{-} \in H^{2}\left(\Omega_{-}\right)$ and there is a constant $C_{N}>0$, independent of ρ, such that (see [8, Theorem 2.5.2])

$$
\begin{equation*}
\left\|\varphi_{0}^{-}\right\|_{H^{2}\left(\Omega_{-}\right)} \leq C_{N}\|g\|_{H^{\frac{1}{2}(\Sigma)}} \tag{21}
\end{equation*}
$$

We are interested in φ_{0}^{+}in (17). Problem (17) has a unique solution (see [4, Chapter 2]), $\varphi_{0}^{+} \in$ $\mathbb{W}_{0}^{1}\left(\Omega_{+}\right)$. Also, by elliptic regularity and since $\varphi_{0}^{-} \in H^{2}\left(\Omega_{-}\right), \varphi_{0}^{+} \in \mathbb{W}_{1}^{2}\left(\Omega_{+}\right)$and there is a constant $C_{D N}>0$ independent of ρ, such that (see $[\mathbf{2}$, Theorem 6])

$$
\begin{equation*}
\left\|\varphi_{0}^{+}\right\|_{\mathbb{W}_{1}^{2}\left(\Omega_{+}\right)} \leq C_{D N}\left(\left\|\varphi_{0}^{-}\right\|_{H^{2}\left(\Omega_{-}\right)}+\left\|f^{+}\right\|_{\mathbb{W}_{1}^{0}\left(\Omega_{+}\right)}\right) \tag{22}
\end{equation*}
$$

Now that (20) guaranties that $\varphi_{0}^{+} \in \mathbb{W}_{0}^{1}\left(\Omega_{+}\right)$and not only in $\mathbb{W}_{0}^{1}\left(\Omega_{+}\right) \backslash \mathbb{R}$. Similarly we can deal with (18) and (19). Since φ_{ρ} satisfies the decay condition at infinity, φ_{ρ} can not behave like a constant. Therefore the constraints (23) are not necessary.
Next we show that the Neumann problem (18) is compatible.
For $k=1$, is necessary to prove that

$$
\begin{equation*}
\int_{\Omega_{-}} f^{-} d x+\int_{\Sigma}\left(-g+\partial_{\mathbf{n}} \varphi_{0}^{+}\right) d s=0 \tag{23}
\end{equation*}
$$

According to (17) and (20)

$$
\begin{array}{ll}
\Delta \varphi_{0}^{+}=f^{+}, & \text {in } \Omega_{+} \\
\varphi_{0}^{+}=\varphi_{0}^{-}, & \text {on } \Sigma, \tag{24}\\
\partial_{\mathbf{n}} \varphi_{0}^{+}=o\left(\frac{1}{|\mathbf{x}|^{2}}\right), & \text { as }|\mathbf{x}| \longrightarrow \infty
\end{array}
$$

We choose a ball B_{R} with radius $R>0$ and boundary ∂B_{R} containing Ω_{-}(see figure 2). Then for the bounded domain $\Omega_{+} \cap B_{R}$, integrating by part in $(24)_{1}$ gives

$$
\begin{array}{r}
\int_{\Omega_{+} \cap B_{R}} f^{+\overline{+}} d x=\int_{\Omega_{+} \cap B_{R}} \Delta \varphi_{0}^{+\overline{+}} d x \\
=\int_{\Omega_{+} \cap B_{R}} \nabla \varphi_{0}^{+} \cdot \overline{\nabla^{+}} d x+\int_{\partial\left(\Omega_{+} \cap B_{R}\right)} \overline{+} \cdot \partial_{\mathbf{n}} \varphi_{0}^{+} d s
\end{array}
$$

for $\equiv 1$ yields

$$
\int_{\Omega_{+} \cap B_{R}} f^{+} d x=\int_{\partial\left(\Omega_{+} \cap B_{R}\right)} \partial_{\mathbf{n}} \varphi_{0}^{+} d s
$$

and $\partial\left(\Omega_{+} \cap B_{R}\right)=\partial B_{R} \cup \Sigma$, then

$$
\begin{array}{r}
\int_{\Omega_{+} \cap B_{R}} f^{+} d x=\int_{\partial B_{R}} \partial_{\mathbf{n}} \varphi_{0}^{+} d s+\int_{\Sigma} \partial_{\mathbf{n}} \varphi_{0}^{+} d s \\
=\int_{\partial B_{R}} o\left(\frac{1}{R^{2}}\right) d s+\int_{\Sigma} \partial_{\mathbf{n}} \varphi_{0}^{+} d s
\end{array}
$$

$$
=o\left(\frac{1}{R^{2}}\right) R^{2}+\int_{\Sigma} \partial_{\mathbf{n}} \varphi_{0}^{+} d s
$$

then

$$
\int_{\Omega_{+}} f^{+} d x=o(1)+\int_{\Sigma} \partial_{\mathbf{n}} \varphi_{0}^{+} d s, \quad \text { as } \quad R \longrightarrow \infty
$$

then

$$
\int_{\Omega_{+}} f^{+} d x=\int_{\Sigma} \partial_{\mathbf{n}} \varphi_{0}^{+} d s
$$

Under the hypothesis (13)

$$
\int_{\Sigma} g d s=0, \quad \text { and } \quad \int_{\mathbb{R}^{3}} f d x=0
$$

then

$$
\int_{\Omega_{+}} f^{+} d x=-\int_{\Omega_{-}} f^{-} d x
$$

the compatibility condition (23) is deducted.
For $k \geq 2$, we assume that the term φ_{k-1}^{+}is constructed. It is necessary to show that

$$
\begin{equation*}
\int_{\Sigma} \partial_{\mathbf{n}} \varphi_{k-1}^{+} d s=0 \tag{25}
\end{equation*}
$$

According to (19) and (20)

$$
\begin{array}{ll}
\Delta \varphi_{k-1}^{+}=0, & \text { in } \Omega_{+} \\
\varphi_{k-1}^{+}=\varphi_{k-1}^{-}, & \text {on } \Sigma, \tag{26}\\
\partial_{\mathbf{n}} \varphi_{k-1}^{+}=o\left(\frac{1}{|\mathbf{x}|^{2}}\right), & \text { as } \quad|\mathbf{x}| \longrightarrow \infty
\end{array}
$$

Again we choose a ball B_{R} with radius $R>0$ and boundary ∂B_{R} containing Ω_{-}. Then for the bounded domain $\Omega_{+} \cap B_{R}$, integrating by part in $(26)_{1}$ gives

$$
0=\int_{\Omega_{+} \cap B_{R}} \Delta \varphi_{k-1}^{+} \overline{+} d x=\int_{\Omega_{+} \cap B_{R}} \nabla \varphi_{k-1}^{+} \cdot \overline{\nabla^{+}} d x+\int_{\partial\left(\Omega_{+} \cap B_{R}\right)} \overline{+} \cdot \partial_{\mathbf{n}} \varphi_{k-1}^{+} d s
$$

for $\equiv 1$ yields

$$
0=\int_{\partial\left(\Omega_{+} \cap B_{R}\right)} \partial_{\mathbf{n}} \varphi_{k-1}^{+} d s
$$

and $\partial\left(\Omega_{+} \cap B_{R}\right)=\partial B_{R} \cup \Sigma$, then

$$
\begin{aligned}
& 0=\int_{\partial B_{R}} \partial_{\mathbf{n}} \varphi_{k-1}^{+} d s+\int_{\Sigma} \partial_{\mathbf{n}} \varphi_{k-1}^{+} d s \\
& =\int_{\partial B_{R}} o\left(\frac{1}{R^{2}}\right) d s+\int_{\Sigma} \partial_{\mathbf{n}} \varphi_{k-1}^{+} d s \\
& \quad=o\left(\frac{1}{R^{2}}\right) R^{2}+\int_{\Sigma} \partial_{\mathbf{n}} \varphi_{k-1}^{+} d s,
\end{aligned}
$$

then

$$
0=o(1)+\int_{\Sigma} \partial_{\mathbf{n}} \varphi_{k-1}^{+} d s, \quad \text { as } \quad R \longrightarrow \infty
$$

then

$$
0=\int_{\Sigma} \partial_{\mathbf{n}} \varphi_{k-1}^{+} d s
$$

then (25) is deducted.

Consequently, the Neumann problem (18) admits a solution $\varphi_{k}^{-} \in H^{1}\left(\Omega_{-}\right)$, which is unique under condition $\int_{\Omega_{-}} \varphi_{k}^{-} d x=0\left(\right.$ see $\left[\mathbf{8}\right.$, Theorem 2.5.10]). Also, $\varphi_{k}^{-} \in H^{2}\left(\Omega_{-}\right)$and (see [5, 7])

$$
\begin{equation*}
\left\|\varphi_{k}^{-}\right\|_{H^{2}\left(\Omega_{-}\right)} \leq C_{N}\left[\delta_{k}^{1}\left(\left\|f^{-}\right\|_{L^{2}\left(\Omega_{-}\right)}+\|g\|_{H^{\frac{1}{2}}(\Sigma)}\right)+\left\|\partial_{\mathbf{n}} \varphi_{k-1}^{+}\right\|_{H^{\frac{1}{2}}(\Sigma)}\right] . \tag{27}
\end{equation*}
$$

Finally, problem (19) has a unique solution $\varphi_{k}^{+} \in \mathbb{W}_{0}^{1}\left(\Omega_{+}\right)$(see [4, Chapter 2] and the estimate (see [8, Theorem 2.5.14])

$$
\begin{equation*}
\left\|\varphi_{k}^{+}\right\|_{\mathbb{W}_{1}^{2}\left(\Omega_{+}\right)} \leq C_{D N}\left\|\varphi_{k}^{-}\right\|_{H^{2}\left(\Omega_{-}\right)} . \tag{28}
\end{equation*}
$$

Next, we demonstrate the convergence in $P H^{2}\left(\mathbb{R}^{3}\right)$ of the series (15) for large $|\rho|$.
For the Neumann trace (see $[\mathbf{5}, \mathbf{7}]$)

$$
\begin{aligned}
\gamma_{1, \Sigma}: \mathbb{W}_{1}^{2}\left(\Omega_{+}\right) & \longrightarrow H^{\frac{1}{2}}(\Sigma), \\
\varphi & \longmapsto \partial_{\mathbf{n}} \varphi
\end{aligned}
$$

we have with a constant $C_{1}>0$,

$$
\begin{equation*}
\left\|\gamma_{1, \Sigma}(\varphi)\right\|_{H^{\frac{1}{2}}(\Sigma)} \leq C_{1}\|\varphi\|_{\mathbb{W}_{1}^{2}\left(\Omega_{+}\right)} . \tag{29}
\end{equation*}
$$

We pose $\alpha=C_{N} C_{1} C_{D N}$, where C_{N} and $C_{D N}$ are the respective constants of estimates (21) and (22). With (27), (28) and (29) we show by induction

$$
\begin{align*}
& \left\|\varphi_{n}^{-}\right\|_{H^{2}\left(\Omega_{-}\right)} \leq \alpha^{n-1}\left\|\varphi_{1}^{-}\right\|_{H^{2}\left(\Omega_{-}\right)} \tag{30}\\
& \left\|\varphi_{n}^{+}\right\|_{\mathbb{W}_{1}^{2}\left(\Omega_{+}\right)} \leq C_{D N} \cdot \alpha^{n-1}\left\|\varphi_{1}^{-}\right\|_{H^{2}\left(\Omega_{-}\right)}
\end{align*}
$$

$(30)_{1}$ can be see as follows: For $n=1$,

$$
\left\|\varphi_{1}^{-}\right\|_{H^{2}\left(\Omega_{-}\right)}=\alpha^{0}\left\|\varphi_{1}^{-}\right\|_{H^{2}\left(\Omega_{-}\right)}
$$

With (27) we have for $k=2$

$$
\left\|\varphi_{2}^{-}\right\|_{H^{2}\left(\Omega_{-}\right)} \leq C_{N}\left\|\partial_{\mathbf{n}} \varphi_{1}^{+}\right\|_{H^{\frac{1}{2}}(\Sigma)}
$$

and with (29)

$$
\left\|\varphi_{2}^{-}\right\|_{H^{2}\left(\Omega_{-}\right)} \leq C_{N} C_{1}\left\|\varphi_{1}^{+}\right\|_{\mathbb{W}_{1}^{2}\left(\Omega_{+}\right)}
$$

hence by (28) we have for $k=1$

$$
\left\|\varphi_{1}^{+}\right\|_{W_{1}^{2}\left(\Omega_{+}\right)} \leq C_{D N}\left\|\varphi_{1}^{-}\right\|_{H^{2}\left(\Omega_{-}\right)}
$$

and therefore

$$
\left\|\varphi_{2}^{-}\right\|_{H^{2}\left(\Omega_{-}\right)} \leq C_{N} C_{1} C_{D N}\left\|\varphi_{1}^{-}\right\|_{H^{2}\left(\Omega_{-}\right)}=\alpha\left\|\varphi_{1}^{-}\right\|_{H^{2}\left(\Omega_{-}\right)}
$$

We assume that $(30)_{1}$ is true for $k=n-1$, this is

$$
\left\|\varphi_{n-1}^{-}\right\|_{H^{2}\left(\Omega_{-}\right)} \leq \alpha^{n-2}\left\|\varphi_{1}^{-}\right\|_{H^{2}\left(\Omega_{-}\right)}
$$

then, according to (27), for $k=n$

$$
\left\|\varphi_{n}^{-}\right\|_{H^{2}\left(\Omega_{-}\right)} \leq C_{N}\left\|\partial_{\mathbf{n}} \varphi_{n-1}^{+}\right\|_{H^{\frac{1}{2}}(\Sigma)},
$$

and for (29)

$$
\left\|\varphi_{n}^{-}\right\|_{H^{2}\left(\Omega_{-}\right)} \leq C_{N} C_{1}\left\|\varphi_{n-1}^{+}\right\|_{\mathbb{W}_{1}^{2}\left(\Omega_{+}\right)}
$$

according to (28) for $k=n-1$

$$
\left\|\varphi_{n-1}^{+}\right\|_{W_{1}^{2}\left(\Omega_{+}\right)} \leq C_{D N}\left\|\varphi_{n-1}^{-}\right\|_{H^{2}\left(\Omega_{-}\right)}
$$

then

$$
\begin{aligned}
\left\|\varphi_{n}^{-}\right\|_{H^{2}\left(\Omega_{-}\right)} & \leq C_{N} C_{1} C_{D N}\left\|\varphi_{n-1}^{-}\right\|_{H^{2}\left(\Omega_{-}\right)} \\
& \leq \alpha \cdot \alpha^{n-2}\left\|\varphi_{1}^{-}\right\|_{H^{2}\left(\Omega_{-}\right)} \\
& =\alpha^{n-1}\left\|\varphi_{1}^{-}\right\|_{H^{2}\left(\Omega_{-}\right)},
\end{aligned}
$$

then $(30)_{1}$ is true for all n.
$(30)_{2}$ can be see as follows: According to (28) for $k=1$

$$
\left\|\varphi_{1}^{+}\right\|_{W_{1}^{2}\left(\Omega_{+}\right)} \leq C_{D N}\left\|\varphi_{1}^{-}\right\|_{H^{2}\left(\Omega_{-}\right)},
$$

and for $k=2$

$$
\left\|\varphi_{2}^{+}\right\|_{W_{1}^{2}\left(\Omega_{+}\right)} \leq C_{D N}\left\|\varphi_{2}^{-}\right\|_{H^{2}\left(\Omega_{-}\right)}
$$

According to (27) for $k=2$

$$
\left\|\varphi_{2}^{-}\right\|_{H^{2}\left(\Omega_{-}\right)} \leq C_{N}\left\|\partial_{\mathbf{n}} \varphi_{1}^{+}\right\|_{H^{\frac{1}{2}}(\Sigma)}
$$

and for (29)

$$
\left\|\varphi_{2}^{-}\right\|_{H^{2}\left(\Omega_{-}\right)} \leq C_{N} C_{1}\left\|\varphi_{1}^{+}\right\|_{\mathbb{W}_{1}^{2}\left(\Omega_{+}\right)},
$$

then

$$
\begin{aligned}
\left\|\varphi_{2}^{+}\right\|_{W_{1}^{2}\left(\Omega_{+}\right)} & \leq C_{D N} C_{N} C_{1}\left\|\varphi_{1}^{+}\right\|_{W_{1}^{2}\left(\Omega_{+}\right)} \\
& \leq C_{D N} \cdot \alpha\left\|\varphi_{1}^{-}\right\|_{H^{2}\left(\Omega_{-}\right)} .
\end{aligned}
$$

We assume that $(30)_{2}$ is true for $k=n-1$, this is

$$
\left\|\varphi_{n-1}^{+}\right\|_{W_{1}^{2}\left(\Omega_{+}\right)} \leq C_{D N} \cdot \alpha^{n-2}\left\|\varphi_{1}^{-}\right\|_{H^{2}\left(\Omega_{-}\right)}
$$

then, according to (28), for $k=n$

$$
\left\|\varphi_{n}^{+}\right\|_{W_{1}^{2}\left(\Omega_{+}\right)} \leq C_{D N}\left\|\varphi_{n}^{-}\right\|_{H^{2}\left(\Omega_{-}\right)}
$$

and according to (27) for $k=n$

$$
\left\|\varphi_{n}^{-}\right\|_{H^{2}\left(\Omega_{-}\right)} \leq C_{N}\left\|\partial_{\mathbf{n}} \varphi_{n-1}^{+}\right\|_{H^{\frac{1}{2}(\Sigma)}},
$$

and for (29)

$$
\left\|\varphi_{n}^{-}\right\|_{H^{2}\left(\Omega_{-}\right)} \leq C_{N} C_{1}\left\|\varphi_{n-1}^{+}\right\|_{W_{1}^{2}\left(\Omega_{+}\right)}
$$

then

$$
\begin{aligned}
\left\|\varphi_{n}^{-}\right\|_{H^{2}\left(\Omega_{-}\right)} & \leq C_{N} C_{1} C_{D N} \cdot \alpha^{n-2}\left\|\varphi_{1}^{-}\right\|_{H^{2}\left(\Omega_{-}\right)} \\
& =\alpha^{n-1}\left\|\varphi_{1}^{-}\right\|_{H^{2}\left(\Omega_{-}\right)},
\end{aligned}
$$

then

$$
\left\|\varphi_{n}^{+}\right\|_{\mathbb{W}_{1}^{2}\left(\Omega_{+}\right)} \leq C_{D N} \cdot \alpha^{n-1}\left\|\varphi_{1}^{-}\right\|_{H^{2}\left(\Omega_{-}\right)}
$$

then $(30)_{2}$ is true for all n.
Hence for all $\rho \in \mathbb{C}$, with $|\rho|^{-1} \alpha<1$, the series (15) converges in $\mathbb{W}_{1}^{2}\left(\Omega_{+}\right)$and $H^{2}\left(\Omega_{-}\right)$, respectively. Now we are in the position to prove Theorem 1.
We show first the estimate (14) for φ_{ρ} in (15). Let $\rho_{0}>0$, such that $\rho_{0}^{-1} \alpha<1$, where $\alpha=$ $C_{N} C_{1} C_{D N}$.
Let $\rho \in\left\{z \in \mathbb{C}\left||z| \geq \rho_{0}\right\}\right.$. According to (30) φ_{ρ} converges geometrically in $P H^{2}\left(\mathbb{R}^{3}\right)$ with convergence ratio $\left|\rho^{-1}\right| \alpha$, bounded by $\rho_{0}^{-1} \alpha$. Hence,

$$
\begin{align*}
& \left\|\varphi_{\rho}^{+}\right\|_{W_{1}^{2}\left(\Omega_{+}\right)} \leq C_{D N} \frac{1}{1-\rho_{0}^{-1} \alpha} \rho_{0}^{-1}\left\|\varphi_{1}^{-}\right\|_{H^{2}\left(\Omega_{-}\right)}+\left\|\varphi_{0}^{+}\right\|_{W_{1}^{2}\left(\Omega_{+}\right)}, \tag{31}\\
& \left\|\varphi_{\rho}^{-}\right\|_{H^{2}\left(\Omega_{-}\right)} \leq \rho_{0}^{-1} \frac{1}{1-\rho_{0}^{-1} \alpha}\left\|\varphi_{1}^{-}\right\|_{H^{2}\left(\Omega_{-}\right)}+\left\|\varphi_{0}^{-}\right\|_{H^{2}\left(\Omega_{-}\right)}
\end{align*}
$$

From $(15)_{1},(30)_{2}$ and the triangular inequality, we have

$$
\begin{aligned}
\left\|\varphi_{\rho}^{+}\right\|_{W_{1}^{2}\left(\Omega_{+}\right)} & =\left\|\sum_{n=0}^{\infty} \varphi_{n}^{+} \rho^{-n}\right\|_{\mathbb{W}_{1}^{2}\left(\Omega_{+}\right)} \\
& \leq\left\|\varphi_{0}^{+}\right\|_{W_{1}^{2}\left(\Omega_{+}\right)}+\sum_{n=1}^{\infty}\left\|\varphi_{n}^{+}\right\|_{\mathbb{W}_{1}^{2}\left(\Omega_{+}\right)}\left|\rho^{-n}\right| \\
& \leq\left\|\varphi_{0}^{+}\right\|_{\mathbb{W}_{1}^{2}\left(\Omega_{+}\right)}+C_{D N} \cdot \alpha^{-1}\left\|\varphi_{1}^{-}\right\|_{H^{2}\left(\Omega_{-}\right)} \sum_{n=1}^{\infty}\left|\rho^{-n}\right| \alpha^{n},
\end{aligned}
$$

and

$$
\begin{equation*}
\sum_{n=1}^{\infty}\left|\rho^{-n}\right| \alpha^{n}=\sum_{n=1}^{\infty}\left(\rho^{-1} \alpha\right)^{n}=\frac{1}{1-\rho^{-1} \alpha} \leq \frac{1}{1-\rho_{0}^{-1} \alpha}, \tag{32}
\end{equation*}
$$

then

$$
\left\|\varphi_{\rho}^{+}\right\|_{W_{1}^{2}\left(\Omega_{+}\right)} \leq C_{D N} \frac{1}{1-\rho_{0}^{-1} \alpha} \rho_{0}^{-1}\left\|\varphi_{1}^{-}\right\|_{H^{2}\left(\Omega_{-}\right)}+\left\|\varphi_{0}^{+}\right\|_{\mathbb{W}_{1}^{2}\left(\Omega_{+}\right)} .
$$

Using the triangle inequality, $(15)_{2}$ and $(30)_{1}$, we have

$$
\begin{aligned}
\left\|\varphi_{\rho}^{-}\right\|_{H^{2}\left(\Omega_{-}\right)} & =\left\|\sum_{n=0}^{\infty} \varphi_{n}^{-} \rho^{-n}\right\|_{H^{2}\left(\Omega_{-}\right)} \\
& \leq\left\|\varphi_{0}^{-}\right\|_{H^{2}\left(\Omega_{-}\right)}+\sum_{n=1}^{\infty}\left\|\varphi_{n}^{-}\right\|_{H^{2}\left(\Omega_{-}\right)}\left|\rho^{-n}\right| \\
& \leq\left\|\varphi_{0}^{-}\right\|_{H^{2}\left(\Omega_{-}\right)}+\alpha^{-1}\left\|\varphi_{1}^{-}\right\|_{H^{2}\left(\Omega_{-}\right)} \sum_{n=1}^{\infty}\left|\rho^{-n}\right| \alpha^{n},
\end{aligned}
$$

this and (32) implies (31) ${ }_{2}$.
Now, from (27), for $k=1$

$$
\begin{equation*}
\left\|\varphi_{1}^{-}\right\|_{H^{2}\left(\Omega_{-}\right)} \leq C_{N}\left[\left\|f^{-}\right\|_{L^{2}\left(\Omega_{-}\right)}+\|g\|_{H^{\frac{1}{2}}(\Sigma)}+\left\|\partial_{\mathbf{n}} \varphi_{0}^{+}\right\|_{H^{\frac{1}{2}}(\Sigma)}\right], \tag{33}
\end{equation*}
$$

according to (33) and (29), get

$$
\begin{equation*}
\left\|\varphi_{1}^{-}\right\|_{H^{2}\left(\Omega_{-}\right)} \leq C_{N}\left[\left\|f^{-}\right\|_{L^{2}\left(\Omega_{-}\right)}+\|g\|_{H^{\frac{1}{2}(\Sigma)}}+C_{1}\left\|\varphi_{0}^{+}\right\|_{\mathbb{W}_{1}^{2}\left(\Omega_{+}\right)}\right] . \tag{34}
\end{equation*}
$$

From (34), (31), (21) and (22), we have

$$
\begin{aligned}
& \left\|\varphi_{\rho}^{+}\right\|_{\mathbb{W}_{1}^{2}\left(\Omega_{+}\right)} \leq C_{D N} \frac{1}{1-\rho_{0}^{-1} \alpha} \rho_{0}^{-1} C_{N}\left[\left\|f^{-}\right\|_{L^{2}\left(\Omega_{-}\right)}+\|g\|_{H^{\frac{1}{2}(\Sigma)}}\right. \\
& \left.+C_{1} C_{D N}\left(C_{N}\|g\|_{H^{\frac{1}{2}(\Sigma)}}+\left\|f^{+}\right\|_{\mathbb{W}_{1}^{0}\left(\Omega_{+}\right)}\right)\right]+C_{D N}\left(C_{N}\|g\|_{H^{\frac{1}{2}(\Sigma)}}+\left\|f^{+}\right\|_{W_{1}^{0}\left(\Omega_{+}\right)}\right),
\end{aligned}
$$

and

$$
\begin{aligned}
& \left\|\varphi_{\rho}^{-}\right\|_{H^{2}\left(\Omega_{-}\right)} \leq \rho_{0}^{-1} \frac{1}{1-\rho_{0}^{-1} \alpha} C_{N}\left[\left\|f^{-}\right\|_{L^{2}\left(\Omega_{-}\right)}+\|g\|_{H^{\frac{1}{2}(\Sigma)}}\right. \\
& \left.+C_{1} C_{D N}\left(C_{N}\|g\|_{H^{\frac{1}{2}}(\Sigma)}+\left\|f^{+}\right\|_{W_{1}^{0}\left(\Omega_{+}\right)}\right)\right]+C_{N}\|g\|_{H^{\frac{1}{2}(\Sigma)}} .
\end{aligned}
$$

This yields the estimate (14).

III. Acknowledgements

This research was supported in part by the Progama ALECOL-DAAD and Universidad del Norte, Barranquilla-Colombia. Also We thank the anonymous referees for their suggestions.

References Références Referencias

1. A. Kufner, Weighted Sobolev spaces, John Wiley and Sons, (1985).
2. T. Z. Boulmezaoud, On the Laplace operator and on the vector potential problems in the half-space: an approach using weighted spaces, Math. Meth. in the Appl. Scienc., 23, (2003), 633-669.
3. B. Hanouzet, Espaces de Sobolev avec poids. Application au probl'eme de Dirichlet dans un demi-espace, Rend. Sem. Mat. Univ. Padova XLVI, (1971), 227-272.
4. J. Giroire, Etude de quelques probl'emes aux limites extjerieurs et rjesolution par jequations intjegrales, PhD thesis, UPMC, Paris, France, (1987).
5. V. Peron, Modjelisation mathjematique de phjenom'enes jelectromagnjetiques dans des matjeriaux 'a fort contraste, PhD thesis, Universitje de Rennes I, Rennes, France, (2009).
6. J. E. Ospino P., Finite elements/boundary elements for electromagnetic interface problems, especially the skin effect, PhD thesis, Institut of Applied Mathematics, Hannover University, Germany, (2011)
7. G. Caloz and M. Dauge and V. Peron, Uniform estimates for transmission problems with high contrast in heat conduction and electromagnetism, Journal of Mathematical Analysis and applications. 370 (2) (2010), 555-572.
8. J. C. Nedelec, Acoustic and electromagnetic equations. Integral representations for harmonic problems, Springer-Verlag, (2001).

[^0]: Author: División de Ciencias Básicas, Departamento de Matemáticas y Estadística, Universidad del Norte, Barranquilla, Colombia. e-mail: jospino@uninorte.edu.co

