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[. [NTRODUCTION

The study of Riemann symmetric manifolds began with the work of Cartan [5]. According
to Cartan, a Riemannian manifold is said to be locally symmetric if its curvature tensor R
satisfies the relation DR = 0, where D is the covariant differentiation operator with respect
to the metric tensor g. During the last five decades the notion of locally symmetric manifolds
has been weakened by many authors in several ways to a different extent such as recurrent
manifold [27], semi symmetric manifold [22], pseudo symmetric manifold [6, 14] etc.,

If the Ricci tensor S of type (0,2) in a Riemannian manifold M satisfies the relation DS =
0, then S is said to be Ricci symmetric. The notion of Ricci symmetry has been studied
extensively by many authors in several ways to a different extent viz., Ricci recurrent manifold
[18], Ricci semi symmetric manifold [22], Ricci pseudo symmetric manifold [7, 13], weakly Ricci
symmetric manifold [23].

A (2n + 1)-dimensional non-flat Riemannian manifold M is said to be pseudo Ricci sym-
metric if its Ricci tensor S of type (0,2) is not identically zero and satisfies the relation

(DxS)(Y, Z) = 2A(X)S(Y, Z) + A(Y)S(X, Z) + A(Z)S(X,Y),

for any vector fields X, Y and Z, where A is a nowhere vanishing 1-form on M. The pseudo
Ricci symmetric manifolds have also been studied by Arslan et. al [1], De and Mazumder [9],
De et. al [11] and many others.

The present paper is organized as follows: In Section 2 we give the definitions and some
preliminary results that will be needed thereafter. In Section 3 we discuss generalized pseudo-
Ricci symmetric (LC'S),-manifold and it is shown that the sum of 24, B and C is always
nonzero. Section 4 is devoted to the study of almost pseudo Ricci-symmetric (LC'S),,-manifold
and obtain that the sum 3A 4+ B is nowhere zero. In section 5 we consider semi pseudo Ricci-
symmetric (LC'S),-manifold and proved that the 1-form A is always non zero.
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[1. PRELIMINARIES

The notion of Lorentzian concircular structure manifolds (briefly (LC'S),-manifolds) was
introduced by A.A. Shaikh [20] in 2003. An n-dimensional Lorentzian manifold M is a smooth
connected paracompact Hausdorff manifold with a Lorentzian metric g, that is, M admits a
smooth symmetric tensor field g of type (0,2) such that for each point p € M, the tensor
gp : T,M x T,M — R is a non-degenerate inner product of signature (—,+,.....,+), where
T,M denotes the tangent vector space of M at p and R is the real number space.

Definition 2.1. In a Lorentzian manifold (M, g), a vector field P defined by
9(X, P) = A(X)),
for any vector field X € x(M) is said to be a concircular vector field if
(VxA)Y) = alg(X,Y) + w(X)A(Y)],

where a s a non-zero scalar function, A is a 1-form and w is a closed 1-form.

Let M be a n-dimensional Lorentzian manifold admitting a unit timelike concircular vector
field &, called the characteristic vector field of the manifold. Then we have

9(£,6) = —1. (2.1)
Since ¢ is a unit concircular vector field, there exists a non-zero 1-form 7 such that
9(X, &) = n(X), (2.2)
the equation of the following form holds
(Vaxn)(Y) = afg(X,Y) +0(X)n(Y)],  (a #0) (2.3)

for all vector fields X, Y, where V denotes the operator of covariant differentiation with respect
to Lorentzian metric g and « is a non-zero scalar function satisfying

Vya = (Xa) = da(X) = pn(X), (2.4)
p being a certain scalar function given by p = —(£a). If we put
1
OX = —Vxe, (2:5)

then from (2.3) and (2.4), we have

pX = X +n(X)E, (2.6)

from which it follows that ¢ is a symmetric (1,1) tensor. Thus the Lorentzian manifold M
together with the unit timelike concircular vector field ¢, its associated 1-form 7 and (1,1)
tensor field ¢ is said to be a Lorentzian concircular structure manifold (briefly (LC'S),-
manifold). Especially, if we take @ = 1, then we can obtain the Lorentzian para-Sasakian
structure of Matsumoto [16]. In a (LC'S),-manifold, the following relations hold ([20], [21]):
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nE = -1, ¢$=0, n(eX)=0, (2.7)

9(eX,9Y) = g(X,Y) +n(X)n(Y), (2.8)

N(R(X,Y)Z) = (o —=p)[g(Y, Z)n(X) — 9(X, Z)n(Y)], (2.9)
(Vxo)(Y) = a[g(X,Y)E+ 2n(X)n(Y)E +n(Y)X], (2.10)
S(X,§) = (n—1)(a® - p)n(X), (2.11)
S(¢X,¢Y) = S(X,Y)+ (n—1)(a® = p)n(X)n(Y), (2.12)

for any vector fields X, Y, Z, where R, S denote respectively the curvature tensor and the Ricci
tensor of the manifold.

[11.  GENERALIZED Pstubpo-Ricci SYMMETRIC (LCS)n-MANIFOLD

Let M be a (2n + 1)-dimensional generalized pseudo-Ricci symmetric (LC'S),-manifold.
Then by definition, we have

(DxS)(Y, Z) = 2A(X)S(Y, Z) + B(Y)S(X, Z) + C(Z)S(X,Y), (3.1)

where A, B and C are three non-zero 1-forms.
Putting Z = ¢ in (3.1) and using (2.11), we get

(DxS)(Y.€) = 2(n—1)(a” = p)AX)n(Y) + (n— 1)(a® = p)BY)n(X)  (3.2)

+ C(§S(X,Y).

Also we have

(Dx9)(Y,§) = (n—1)2ap—BnX)n(Y) + (n — 1)(a® = p)a[g(X,Y) +n(X)n(Y)] (3.3)
— aS(X,Y).

By using (3.3) in (3.2), we get
(n = 1)(20p = B)n(X)n(Y) + (n = 1)(a® = p)alg(X, V) +n(X)n(Y)] — aS(X,Y) (34)
=2(n—1)(a” = p) A(X)n(Y) + (n — 1)(a® — p) B(Y)n(X) + C(§)S(X,Y).

Again putting X =Y = ¢ in (3.2), yields

24(¢) + BE) + C§) = ~ o — (35
Taking X = ¢ in (3.2) and by virtue of (3.5), we have
B(Y) = —n(Y)B($). (3.6)
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Similarly by taking Y = £ in (3.2) and using (3.5), we get

A(X) = —n(X)A(E). (3.7)

C(2) = =C(En(2). (3.8)
In view of (3.6), (3.7) and (3.8), we have Ref
2A(X) + B(X) + C(X) = 22‘2”__/)5 n(X) for all X.

Hence we can state the following theorem:
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Theorem 3.1. In a (2n+1)-dimensional generalized pseudo Ricci-symmetric (LC'S)n-manifold

the sum of 2A, B and C' is always nonzero.
[V. ALMOsT Pseupo RicCl-SYMMETRIC (LCS)n-MANIFOLD

In 2007, Chaki and Kawaguchi [8] introduced a type of non-flat Riemannian manifold whose
Ricci tensor S of type (0,2) satisfies the condition

(DxS)(Y, Z) = [A(X) + B(X)|S(Y, Z) + AYV)S(X, Z) + A(Z)S(X,Y), (4.1

where A, B are non-zero 1-forms called the associated 1-forms and D denotes the operator of
covariant differentiation with respect to the metric g. Such a manifold was called an almost
pseudo Ricci symmetric manifold. If in particular A = B then the manifold becomes a pseudo
Ricci symmetric manifold introduced by Chaki [7].

Let us consider M be an almost pseudo Ricci-symmetric N(k)-contact metric manifold.
Now putting Z = ¢ in (4.1), we get

(DxS)(Y:€) = [A(X) + BIYIS(Y, ) + AY)S(X, ) + AQS(X,Y).  (42)
By using (2.3), (2.4), (2.5) and (2.11) in (4.2), we have
(n = 1)2ap = B(X)n(Y) = (0= 1)(a® = pACX) + Bty (43)
£ (= 1)(a® = AV IN(X) + A©)S(X,Y).
Putting X = ¢ in (4.3), we get
~ 2ap=An(Y) = (a* = p)[A(E) + BEO(Y) (44)
— (a* = DAW) + A©)a* — p(Y).

Again putting Y = £ in (4.4), gives

3ma+mo:—%§i§. (4.5)
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Next putting Y = ¢ in (4.3), we get
— (20p = B)n(X) = —(a® — p)[A(X) + B(X)] +2(a” — p) A(E)n(X). (4.6)
Now replacing Y by X in (4.4) and adding with (4.6), and by virtue of (4.5), we obtain

(2ap — B)

BAY) + BX) = 27—

n(X). (4.7)

Hence we can state the following:

Theorem 4.2.  An (2n+1)-dimensional (LCS),,-manifold is almost pseudo Ricci-symmetric,
if the sum 3A + B is nowhere zero.

V.  Semi Pseupo Riccl-SYMMETRIC (LCSn-MANIFOLD

The notion of semi pseudo Ricci Symmetric Manifolds introduced by Tarafdar and Jawarneh
in 1993 [24], a non flat Riemannian manifold whose Ricci tensor S satisfies:

(DxS)(Y, Z) = A(Y)S(X, Z) + A(Z)S(X,Y), (5.1)

where A is a non-zero 1-form.
Put Z =¢in (5.1), we get

(n—1)(2ap = Bn(X)n(Y) + (n — 1)(a® = p)alg(X,Y) +n(X)n(Y)] - aS(X,Y) (5.2)
— 2(n— 1)(a® — PAX)n(Y) + (n — D)(a? = p) BE(X) + CE)S(X,Y).
Putting X = ¢ in (5.2), gives

(o = p)A(Y) = [(2ap — B) + (o® — p)A(E)In(Y). (5-3)

Again putting Y = £ in (5.3), we have

__(2ap-p)
Using (5.4) in (5.3), gives
_ (2ap =P

Hence we can state the following theorem:

Theorem 5.3.  In a semi pseudo Ricci-symmetric (LCS),-manifold, the 1-form A is always
non zero and is given by (5.5).

Also from above theorem we can state the following corollary:
Corollary 5.1. There exists a semi pseudo Ricci-symmetric (LC'S),-manifold.
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