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I.

 

Introductions

 

One of the central tasks of dynamic elasticity theory is the study of the spread of 
a perturbation of the stress-strain state in deformed bodies with geometric structures 
that combine the concept of a mechanical waveguide [1,2,3]. The main features are the 
length of the waveguide in one direction, as well as restrictions and localization of the 
wave beam in other directions. Accounting for the damping capacity of the waveguide 
material plays an important role in the dynamic behavior of the structure [4,5]. It leads 
to a marked weakening of the natural oscillations, a significant decrease in amplitudes 
of forced vibrations and smoothing of the stresses in the concentration zone of the 
oscillations. The complexity of their solutions for many reasons, for example, rheological 
properties of real waveguides, not the classic geometric shapes and so on. N., Resulting 
in a wide variety of schematized models to describe in some approximation of real 
phenomena and makes it difficult to create a unified mathematical model of the 
mechanical system [6] . In the viscoelastic cylinder with radial crack is a limiting case of 
the wedge with an angle 0360 . A method and a solution algorithm for the study of wave 
propagation in viscoelastic cylinder with radial crack and wedge with an arbitrary angle 
vertex.   
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II. Waves in an Infinite Cylinder with Radial Crack 

The propagation of harmonic waves in an infinite elastic cylinder with radial 
crack is dialed. The task is put in cylindrical coordinates. The elastic cylinder with 
radial crack is a limiting case of the wedge with an angle 0360 . The basic equations of 
motion of an elastic medium, which occupies a region B are defined by three groups of 
relations [6]:  
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Here ikσ - stress tensor, ikε - strain tensor, θ - volumetric deformation, λ~  and µ~  - 

operator elastic moduli [7,8,9]: 
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( )tϕ –
 
Arbitrary function of time; ( )τλ −tR

 
and ( )τµ −tR

 
–
 
core and relaxation 0101 ,µλ –

 

Instant elastic modules. We accept the integral terms in (2) small, then the function

( ) ( ) ti Rett ωψϕ −= , where ( )tψ - a slowly varying function of time, Rω - real constant. Next, 

using the freezing procedure [9], we
 
note the relation (3) approximate species 

 

                                   
( ) ( )[ ]

( ) ( )[ ] ,1

;1

01

01

ϕωωµϕµ

ωωλϕλ

µµ

λλ

R
S

R
С

R
S

R
С

i

i

Γ−Γ−=

Γ−Γ−=
 

  
                                   

(3)

 

Where      

 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) .sin,cos

,sin;cos

00

00

∫∫

∫∫
∞∞

∞∞

=Γ=Γ

=Γ=Γ

ττωτωττωτω

ττωτωττωτω

µµµµ

λλλλ

dRdR

dRdR

RR
S

RR
C

RR
S

RR
C

 

Respectively cosine and sine Fourier transform of the relaxation of the core 
material. As an example, the viscoelastic material take three parametric relaxation 

nucleus ( ) ( ) αβ
µλ

−−== 1/ tAetRtR t
. On the effect of the function 𝑅𝑅(𝑡𝑡 − 𝜏𝜏)

 

superimposed 

usual requirements integral ability, continuity (except𝑡𝑡 = 𝜏𝜏), sign certainty and 
monotony: 
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.1)(0,0)(,0
0
∫
∞

〈〈≤〉 dttR
dt

tdRR  

In a cylindrical coordinate system, the equation (1), (2), (3) have the form  

;1

;
21

;1

2

2

2

2

2

2

t
u

rrrz

t
u

zrrr

dt
u

zrrdr

zzzzrzzz

zrr

rrzrrrrrr

∂
∂

=
∂

∂
++

∂
∂

+
∂
∂

∂

∂
=

∂

∂
+

∂

∂
++

∂

∂

∂
=

∂
∂

+
∂

∂
+

−
+

∂

ρ
ϕ
σσσσ

ρ
σσσ

ϕ
σ

ρ
σ

ϕ
σσσσ

ϕ

ϕϕϕϕϕϕ

ϕϕ

 
            (4)

 

;1
2
1

;
2
1;1

2
1

;1;;





∂
∂

+



∂
∂

=





∂
∂

+


∂
∂

=



−

∂
∂

+
∂
∂



=

+
∂
∂

=
∂
∂

=
∂
∂

=

ϕ
ε

ε
ϕ

ε

ϕ
εεε

ϕ
ϕ

ϕϕ
ϕ

ϕϕ

z
z

rz
rz

r
r

rrz
zz

r
rr

u
rz

u

z
u

r
u

r
u

r
uu

r

r
uu

rz
u

r
u

 
  

 

            (5)
 

;2

;12

;21









∂
∂

+
∂
∂

==









−

∂
∂

+
∂
∂

==

∂
∂

+







∂
∂

++
∂
∂

+
∂
∂

=

z
u

r
u

r
u

r
uu

r

r
u

z
u

r
uu

rr
u

rz
rzrz

r
rr

rzrr
rr

µµεσ

ϕ
µµεσ

µ
ϕ

λσ

ϕϕ
ϕϕ

ϕ

 

.21

,1

;121

z
u

z
u

r
u

r
u

rr
u

u
rz

u

r
uu

rz
u

r
uu

rr
u

zzrr
zz

z
z

rzrr

∂
∂

+







∂
∂

++
∂

∂
+

∂
∂

=









∂
∂

+
∂

∂
=



+

∂

∂


+








∂
∂

++
∂

∂
+

∂
∂

=

µλσ

ϕ
µσ

ϕ
µ

ϕ
λσ

ϕ

ϕ
ϕ

ϕϕ
ϕϕ  

Where

 

zzzrzrrr σσσσσσ ϕϕϕϕ ,,,,, - respectively components of the stress 

tensor; zzzrzrrr εεεεεε ϕϕϕϕ ,,,,, -respectively components of the strain 

tensor. The link between stress and strain is given in the third chapter. Equations (4), 
(5) and (6) after algebraic manipulations are identical to the system of six differential 
equations solved with respect to the first derivative of the radial coordinate [10,11]
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Boundary conditions are given in the form: 
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Condition (8) r= 0  physically result can be interpreted as limiting the transition 
from the hollow cylinder with the inner free surface to the solid. Inner radius tends to 
zero. In the case of harmonic waves traveling along the axis z, solution of (7), (8), (9) 
admits separation of variables [12,13] 
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Given (10), problem (7), (8), (9) is transformed into a spectral boundary value 
problem for a system of ordinary differential equations with complex the coefficient:
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with boundary conditions
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Thus formulated spectral boundary value problem (11), (12) describing the 
propagation of harmonic waves in an infinite cylinder with radial crack. Note that the 
choice of boundary conditions at the edges of the slit (9) led primarily to separate 

variables to the coordinates

 

r and φ, which greatly simplifies the solution of the original 
problem. Separation of variables is also possible in the case of the following boundary 
conditions: 
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Indeed, performing in (7), (8) the change of variables so as to satisfy the conditions (13)
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We obtain spectral boundary value problem with complex coefficients and roots 
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Figure 1:

 

Changes in the real and imaginary parts of the frequency of oscillation on к

 

With the boundary conditions
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                     (16) 

It is easy to see that the problem (15), (16) reduces to the problem (11), (12) by 
replacing

 

.~,~,~,~,~,~
zzzz uuuuww =−===−== ϕϕϕϕ σσττττ

 

The solution of (11), (12) was carried out by the orthogonal shooting Godunov 
[14]. Dimensionless quantities in the formulation of the problem chosen in such a way 
that the shear rate Сs , density

 

ρ

 

and the outer radius R has the single value. Fig. I 
shows

 

dispersion curves of the first two modes in infinite cylinder with viscoelastic 
radial thickness (curves 1 and 2). For comparison, the same figure shows the 
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dependence of the phase velocity of the wave number of the first bending mode 
vibrations of a solid cylinder (curve 3) without gaps. final solution of the problem has 
been previously found Pohgomerom Cree and with the help of special functions (5) the 
solution was used for testing tasks.
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Figure 2:

 

Changes in the real and imaginary parts of the waveform
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 Figure 3:

 
Changes in the real and imaginary parts of the waveform RV

 and IV on
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Figure 4:
 

Changing the real and imaginary parts of the waveform on R
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Figure 5: Changing the real and imaginary parts of the waveform on R 
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Figure 6:  Change the absolute value of the waveform  V2= 22
IR VV +  on  R  
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Notes



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

   Note the characteristics of the curve 3: at the origin of the phase velocity is equal 
to zero, but not infinite, is committed to the Rayleigh wave velocity for a half. In the 
case of a cylinder with radial crack the first mode has a cut-off frequency and phase 
velocity tends to infinity. At large wave numbers limit the phase velocity of this mode 
also coincides with the velocity of the Rayleigh wave. At the cutoff frequency axial 
displacement are zero and cylinder vibrations occur in the plane strain condition. In the 
second mode at a cut-off frequency are observed only real and opinions of the axial 
displacement, circumferential and radial displacement are zero. The evolution of the 
form of the solution of the complex movements of the first and second modes depending 
on the wave number is shown in Figures 2-4 and 5-7, respectively.

 The curves are numbered in order of growth к. Note the strong dependence on 
the wave number of forms. With the growth of the wave number in the first mode are 
localized oscillations near the outer surface of the cylinder. It is characteristic that the 
second mode, which is on the small wave numbers, is a form of predominantly axial 
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Figure 7: Change the absolute value of the waveform W2= 22
IR WW + on R

vibration, with growth к gradually turning into a form of predominantly radial 
oscillations.

Notes



 
 

III.

 

Waves

 

in

 

a  Deformable  Wedge

 

with

 

an  Arbitrary  Angle  Vertices

 

In this section we consider the propagation of harmonic waves in an infinite 
elastic wedge with an arbitrary angle peaks. For a description of the wave process, use 
the above relations in the preceding paragraph (1), (2), (3). Resolving equation system 
coincides with the system (7) is also saved without changing the boundary conditions 

on the surface (8). The boundary conditions for φ

 

for any angle of the wedge when the 
free lateral surfaces should be written

 

in the form:

 
                    ,0:

2
,

2
00 ===−= zr ϕϕϕϕ σσσϕϕϕ

 

  
  

               (17) 

where φ0  -
 

angle at the apex of the wedge. Harmonic waves propagating along the z 
axis, the essence of the solution of the problem (7), (8), (9), (17) periodic in z and time.

 

Terms periodicity allows to eliminate the dependence of the main unknowns on the time 
axis and the z coordinate with the following change of variables:
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(18) 

Under the condition (17), separation of variables r and φ, as in the previous 
paragraph, it is already impossible. Taking into account (18), the system of equations 
(7) takes the form:

 

Distribution Natural Waves in an Infinite Viscoelastic Cylinder with Radial Cracks and Wedges

92

G
lo
ba

l
Jo

ur
na

l
of

Sc
ie
nc

e
Fr

on
tie

r
R
es
ea

rc
h 

  
  
  
 V

ol
um

e
Y
ea

r
20

16
X
V
I   

Is
s u

e 
  
  
 e

rs
io
n 

I
V

V
I

( F
)

© 2016  Global Journals Inc.  (US)

( )

( )( )

























′−++







+

∂
∂

−−=′

−







+

∂
+∂

−−=′

−







∂
∂

−+−=′

+=′









∂
∂

−+=′

















∂
∂

++−=′

wkukB
r

u

kBA
r

v

kA
r

w

kwu

wv
r

v

vw
r

ku
kk

w

zz

z

z

µστ
ϕ

ρωτ

τ
ϕ
σρωτ

τ
ϕ
τ

ρωσ

µ
τ

ϕµ
τ

ϕ
λσ

ϕϕ

ϕ

ϕ

21

21

1

1

1

2

2

2    (19) 

Notes



( )

( )( )

























′−++







+

∂
∂

−−=′

−







+

∂
+∂

−−=′

−







∂
∂

−+−=′

+=′









∂
∂

−+=′

















∂
∂

++−=′

wkukB
r

u

kBA
r

v

kA
r

w

kwu

wv
r

v

vw
r

ku
kk

w

zz

z

z

µστ
ϕ

ρωτ

τ
ϕ
σρωτ

τ
ϕ
τ

ρωσ

µ
τ

ϕµ
τ

ϕ
λσ

ϕϕ

ϕ

ϕ

21

21

1

1

1

2

2

2
     (19) 

Where  

.1;
2
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Similarly transformed boundary conditions (8) 
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It is easy to see that the components of the stress tensor, ϕϕσ , zϕσ and zzσ   
expressed in terms of the main unknowns on formulas:
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Then, taking into account the first equation (21), the boundary conditions (20) 
take the form:
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where
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Notes
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A boundary value problem for the alignment of the system in the frequency of 
derivatives (19) (20) (22) can be reduced to a boundary value problem for a system of 
ordinary differential equations by the method of lines that will be used in solving a 
software unit orthogonal shooting method. According to the method of direct 
rectangular domain of the function key unknown is covered by lines parallel to the axis 
r and evenly spaced (Figure 8).  

The solution is sought only on these lines, and the directional derivative φ, is 
replaced by the approximate finite differences. Used a second-order approximation 
formulas for the first and second derivatives are of the form [14,15]:  

∆
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                (24) 

where i  it varies from 0 to  ( )1+=+ NiN                            , iy  -  the projection of the unknown 

function on the line number i; Δ  –  move  partition to the coordinate φ  
As a result, the main vector of the sample of unknown total 6N  dimension can be 

written as:  

{ } { } { } { } { }{ }( )Tziiriiii uvwY ττσ ϕ ,,,,,=   Ni ,1=    (25) 

The central difference (23), (25) are used for domestic direct (1 i N ), the
 

difference between the left and right (24), (25) make it possible to take into account the 
boundary conditions for φ. In the first case, the derivative with respect φ  on the right 
sides of equations (19) is expressed by the formulas:  
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(26) 

The boundary conditions at 
2
0ϕϕ −=

 

accounted for in the equations 

corresponding straight i =

 

I .   For the main unknown outside the boundary conditions
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wi , vi , ui Use the right difference (24):
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For variable ϕτ  Conditions (22) are recorded by means of the central difference 
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The first and third of the conditions (22) is taken into account in the 
approximation of the derivatives of the function in the software φ
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Similarly, derivatives are presented to the line with number i = N, taking into 

account the boundary conditions at 
2

0ϕϕ = .  The only difference is the replacement of 

the right finite difference Left:
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The number of lines can be reduced by half if the conditions of use of anti 
symmetry transverse plate vibrations at 0=ϕ

 

0=== ϕσuw    

 

                (31) 

The corresponding difference ratio, taking into account the conditions
 
(31) can 

be written as:
 

i =N:
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The resolution of a system of ordinary differential equations according to (21) 
has the form:

 

( )( ) ( )

[ ( ) ]

( ) ( )( )

( ) ( ).2

;2

;2;

;;

,,
2

,
2

,,
2

,,

iiiiii

iiziiizi

ziiiiiiizii

iiiiiiiii

kvRukrv

wkukrBu

krwRvwwkwu

RwvvRvwkuakw

i

−−++−=′

′−+++−−=′

−−




 ′−++−=′+=′

−+=′++−=′

ϕϕϕϕ

ϕ

ϕϕϕ

ϕϕϕ

τσωτ

στωτ

ττωστ

τσ

 

  (33) 

In equations (33) the expression for the derivatives wiφ, viφ

 

, uiφ

 

,σi,φ  β

 

i,φ

 

τ

 

i,φ

 

are 

selected from (29) - (32) depending on the boundary conditions of the coordinate φ. free 
surface conditions equivalent (20) and forming together with the equations (33), the 
boundary value problem, is obtained in the form of

 
                            

.0,0,0 === ϕϕ στ iiB    

 

        (i=1,N)                  

 

(34)

 Thus, the initial spectral problem (19), (20), (22) by means of sampling 

coordinate φ

  

by the method of direct reduced to the canonical problem (33), (34), for 
solutions which use the method of orthogonal sweep method previously used. The table 
shows the limit values of the phase velocity of the first edge of fashion, depending on 
the angle of the wedge. Found phase velocity for a material with a Poisson's ratio υ

 

=  
0,25

 

Kirchhoff theory on plates - Love (column 3), Timoshenko - (column 4), contained 
within this section of the wedge method for calculating three-dimensional (column 5 - 6) 
and the formula ( )ϕmСC ч sin0 =

 

/8/,  m =

 

1, 2,

 

…, mφ

 

 90   (column 6). Column 5 
corresponds to the embodiment of calculation with three internal lines (N = 3) and the 
boundary conditions (17), column 6 corresponds to the boundary conditions:

 .0:0;0:
2

0 =======−= ϕϕϕϕϕϕ σϕσσσϕϕ zrzч uu

 
In accordance with the numerical results and shown in Table 1,

 

embodiments of 
methods for calculating the Kirchhoff - Love, a three-dimensional theory of Timoshenko 
and agree with each other within 7

 

% for a thickness of the wedge angles of the base h2 , 
not exceeding 0.5 (the wedge angle

 

φ0

 

= 28 ).

 

Note that for the angle  φ

 

= 90   
limiting  phase velocity was calculated as in [16,17,18], where  the value is for her 0,90I
ν

 

= 0,25). Thus, in contrast to the waveguides with a rectangular cross-section in the 
tapered waveguide with

 

a sufficiently small wedge angle in the analysis of the dispersion 
relations of the first mode is permissible to use the theory of plates Kirchhoff - Love. 
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Established fact is explained by the phenomenon of localization waveform near the 
acute angle of the wedge, as described in [8]. This phenomenon should be seen as a 
characteristic feature of the dynamic behavior of a plate of variable thickness.
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Figure 8:

 

The settlement scheme

 

Table 1

 
         

 
    

       
       

       
       

      IV.

 

Conclusions

 1.

 
It was revealed that in an elastic cylinder with radial crack no waves having a real 
part of the phase velocity, localized near the axis of the cylinder.

 2.

 
The results of calculation of the maximum speed the spread of the first tapered 
waveguide modes in the theory of plates Kirchhoff - Love and dynamic elasticity 
does not differ by more than 6% to the top of

 

the wedge angles not exceeding 28 .

 At  00 9028 << ϕ   characterized by certain surcharges to 20%. Thus, for small wedge 
angles permissible use of the simplified theory of Kirchhoff - Love and Timoshenko 
in the whole wavelength range. Thus, for small wedge angles permissible use of the 
simplified theory of Kirchhoff - Love and Timoshenko in the whole wavelength 
range. 

3.

 

Accounting for the viscoelastic properties of the wedge material reduces the real part 
of the wave propagation velocity is 10-15%, as well as to evaluate the ability of the 
system damping in general. The work was supported by the Foundation for 

Fundamental Research Ф-4-14 of the Republic of Uzbekistan.
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Notes

3. Ewing W. M., Jardetzku W. S., Press F. Elastic Waves in Layered Media, McGraw 

– Hill, New York, 1962.
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