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Abstract- This paper, presents three news-improved approximations to the Cumulative Distribution Function (C.D.F.).
The first approximation improves the accuracy of approximation given by Polya (1945). In this first new approximation,
we reduce the maximum absolute error (M.A.E.) from, 0.00314 t00.00103. For this first new approximation, K. M.
Aludaat and M. T. Alodat (2008) was reduce the (M.A.E.) from, 0.00314t0 0.001972 . The second new approximation
improve Tocher's approximation, we reduce the (M.A.E.) from, 0. 166t0 0.00577. For the third new approximation, we
combined the two previous approximations. Hence, this combined approximation is more accurate and its inverse is
hard to calculate. This third approximation reduce the (M.AE.) to be less than 2.232e — 004. The two improved
previous approximations are less accurate, but his inverse is easy to calculate. Finally, we give an application to the
third approximation for pricing a European Call using Black-Scholes Model.
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l. INTRODUCTION

The cumulative distribution function (CDF) play an important role in financial
mathematics and especially in pricing options with Black-Scholes Model. The European
option pricing call given by Black-Scholes Model is

C(S,K,T,r,0) = SO(d) — Ke " Td(d — oT) (1)
Where d= w (2)

S, the current price, K the exercise price, r interest rate, T time option and o volatility.
The cumulative distribution function (C.D.F.) is

t2
®(z) ==’ e 7dt (3)

The (C.D.F) have not a closed form. His evaluation is an expensive task. For
evaluate the (CDF) at a point z we need compute the integral under the probability

density function (PDF) given by ¢(t) = e =05t /\[2m.

In much research, we find approximations, with closed forms, for the area under
the standard normal curve. Otherwise, we need consulting Tables of cumulative
standard normal probabilities. Hence, in the literature, we find several approximations
to this function from polya (1945) to Yerukala (2015). For this raison; we use some
approximations to this C.D.F. (Polya’s approximation and Tocher’s approximation).
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[1. [MPROVING POLYA’S APPROXIMATION

We consider the case of, z > 0. (Forz < 0,0(z) = 1 — ®(—2)).
The original Polya’s approximation given by:

Dporyq (2) = %{1 +V1-— e—azz}, where a = % (2.1)
The Maximum Absolute Error (M.A.E.) N
otes
M.A.E.pyiyq = max,|®pyy, (z) — N(2)| = 0.003138181653387. (2.2)

K.M.Aludaat and M.T.Alodat (2008) proposed the same formula with a =
instead of a = S They have

ey

M. A.E.pjdaa: = MaX, | ®puiaa: (2) — P(2)| = 0.001971820656170 .

In this paper, we write the formula (2.1) and (2.2) as

@i (2) = a+ by1 —e—<?? (2.3)

Hence, we search the parameters a, b and ¢ that

M. A.E.y i = max, |@pyq; (2) — ©(2)] (2.4)
Was the smallest possible using the following algorithm?
1) h=0.00001; H = 20h; Er = 0.00314;
2) ag=05,by = 0.5,cp ==,
3) fora=ay—H:h:ay+H forb=by—H:h:by+H
4) forc=cy—H:hico+H;M =a+by1 —e—c7?,
5) e =max,|M— N(2)|; if(Er >e) Er =e;A=a;B = b;C = c;end;
6) ag=A4,by =B,cy =C.
7) Repeat 3) to 6) until convergence
Using our algorithm, we find the best parameters
a* = 0.50103; b* = 0.49794; c* = 0.62632 (2.4)

Hence the best formula is

Pyai1(2) = 0.50102976 + 0.49794047/ 1 — 0626317743 22 (2.5)

Note that the absolute error as function of z variable noted by
E(z) = | Py 1(z) — ®(2)| = 0.001029767666887 (2.6)

Figure one, shows the graph of Absolute Error for Polya, Aludaat and Malkil as
function of—5 <z < 5.
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Absolute Error for Polya, Aludaat and Malkil approx imations
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Figure 1: Comparison of absolute error for Polya, Aludaat and Malkil
1. IMPROVING TOCHER'S APPROXIMATION
_ FZ
The Original Tocher’s approximation is ®rycper (2) = 1/(1 + e V) with

max, [Py, per (2) — ©(z)| = 0.165811983691380 ~ 0.166.
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This approximation have the form:

a

D yaiki2(2) = P

Hence, we search the parameters a, b and ¢ that

= max, |Nyqui 2(2) — N(2)|

Was the smallest possible using the following algorithm?
= 0.00001; H = 20h; Er = 0.166;

1,b0 = 1,C0 :\/g,

ao
fora=ay,—H: ha0+Hf0rb—b0—H h:by + H
f
e=

M.A.E. ‘Malki2 —

2

1) h
)
3)
4) forc=cyo—H:h:cy + H; M_b+ —,

) max,|M — ®(2)|; if (Er >e) Er =e;A=a;B = b;C = c; end,
6) a()—Ab()—B C()—C
7) Repeat 3) to 6) until convergence
Using our algorithm, we find the best parameters

a* = 0.97186; b* = 0.96628; c¢* = 1.69075

(S

Hence the best-improved formula for Tocher’s approximation is

0.97186
0.96628 +¢—1.69075 z

Dyani2(2) =

max,, |®yqari2(2) — N(2)| = 0.005774676414954
Figure 2 gives the curves of original absolute error and the new absolute error

Absolute Error as Function of Z Variable for Original Tocher, Modified Tocher and Malki2
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Figure 2
Malki2 as function of z variable (=5 < z < 5)
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V. COMBINED FORMULA

As the third new approximation formula, we consider the two

®prai1(z) = 0.50103 + 0.497944/1 — e—0-6263222

0.97186
0.96628 +e—1.69075z"

and, D paiki2(2) =

Hence, we consider the third new formula as

previous formula

cDMalkiB(Z) = wq)Malkil(Z) +(1- w)cDMalkiZ(Z)a for, (0 <w <1) (4-1)

We search the optimum parameter w that the
M. A. E.yaikiz = mZaX|(I)Malki3(Z) —0(2)|

Was the smallest possible. We find optimum parameter w* = 0.16
The new third approximation is

Dyraii3(2) = 0.16P 41 (2) + 0.84P 42 (2)

The adjusted formula is

(4.2)

0.1544976
DPpaki3(z) =
Malki 3 ( ) 0.96568 +e—1.68975 Z

For, this approximation we have:

+0.4212652 + 0.4189696+/ 1 — e—062642 7 (4.3)

max, | Py 3 (2) — P(2)| =2.231943559627414e — 004 (4.4)
= Absolute Error as function of Z variable for Malkil, Malki2 and Malki3
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V. APPLICATION WITH BLACK-SCHOLES MODEL
For

S =35K=30;r=0.065T =1.2; 0 = 0.35;

To calculate a Call European option we compute

(5.1)
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»2

d = w = 0.797198914562755 (5.2)

And d — VT = 0.413793124309139 (5.3)
Hence

C =Sd(d) — Ke " ®(d — oVT) = 9.228813813962439 (5.4)

Using, @iz we have
C3 = SOyapiz(d) — Ke 7 ®youis(d — oVT) = 9.231095739041432  (5.5)

The absolute error is|C — €3] < 0.0023 (5.6).

VI.  CONCLUSION

We have proposed three approximations to the cumulative distribution function
of the standard normal distribution. The first approximation improve the Polya’'s
formula in accuracy. The second new approximation improve the accuracy of Tocher’s
formula. The third formula is a combination of the two previous formula. The M.A.E.
for the first approximation is 0.00103. The M.A.E. for the second approximation

is 0.00577. For the third approximation the M.A.E. is less than2.232e — 004. Finally,
we insert an application to option pricing of a Call European option based on Black-
Scholes formula.
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