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Authors determine different properties of simple semiring which was introduced by Golan [3]. We also proved 
some results based on the papers of Fitore Abdullahu [1]. P. Sreenivasulu Reddy and Guesh Yfter tela [4].
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This paper reveals the properties of simple semirings by considering that the
multiplicative semigroup is singular.

1.1. Definition: A semigroup (S, .) is said to be left(right) singular if it satisfies  the  
identity ab = a (ab = b) for all a, b in S

1.2. Definition: A semigroup (S, .) is rectangular if it satisfies the identity aba = a for 
all a, b in S.

1.3. Definition:  A semigroup S is called medial if xyzu = xzyu, for every x,y,z,u in S.

1.4. Definition: A semigroup S is called left (right) semimedial if it satisfies the identity

x2yz = xyxz (zyx2 = zxyx), where x,y,z ∈ S and x, y are idempotent elements.

1.5. Definition:  A semigroup S is called a semimedial if it is both left and right 
semimedial.

Example: The semigroup S is given in the table is I-semimedial                       

                                      
                                      

1.6. Definition:  A semigroup S is called I- left(right) commutative if it satisfies the 
identity xyz = yxz (zxy = zyx), where x, y are idempotent elements.

1.7. Definition:  A semigroup S is called I-commutative if it satisfies the identity xy = 

yx, where x,y ∈S and x, y are idempotent elements.

Example: The semigroup S is given in the table is I-commutative.

                                   

* a        b         c
a
b
c

b       b         b
b        b         b
c        c          c

* a       b         c
a 
b
c

 

b       b         a
b       b         b
c       b         c

Notes
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1.8. Definition:  A semigroup S is called I-left(right) distributive if it satisfies the 

identity xyz = xyxz (zyx  = zxyx),  where x,y,z ∈ S and x, y are idempotent elements.

1.9. Definition:  A semigroup S is called I-distributive if it is both left and right 
distributive

1.10. Definition: A semigroup S is said to be  cancellative for any a, b, ∈S, then ac = bc 

⇒ a = b and ca = cb ⇒ a = b   

1.11. Definition:  A semigroup S is called diagonal if it satisfies the identities x2 = x and
         xyz = xz.

1.12. Definition: [3] A semiring S is called simple if a + 1 = 1 + a = 1 for any a∈S.

1.13. Definition: A semiring (S, +, .) with additive identity zero is said to be zero sum 
free semiring if x + x = 0 for all x in S. 

1.14. Definition: . A semiring (S, +, . ) is said to be zero square semiring if x2 = 0 for all 
x in S, where 0 is multiplicative zero. 

1.15. Theorem: A simple semiring is additive idempotent semiring.

Proof: Let (S, +, .) be a simple semiring. Since (S, +, .) is  simple, for any a∈S, a + 1 

= 1. (Where 1 is the multiplicative identity element of S. S1 = SU {1}.)

Now a = a.1 = a(1 + 1) = a + a ⇒ a = a + a ⇒ S is additive idempotent semiring.

1.16. Theorem: Let (S, +, .) be a simple semiring. Then the following statements are 
holds: 
(i)   a+b+1 = 1 (ii)   ab +1 = 1 (iii)  an + 1 = 1  (iv) (ab)n + 1 = 1 (v) (ab)n + (ba)n

= a + b For all a,b ∈S.

Proof: Proof  for (i) and (ii) are trivial. Proof for (iii), (iv) and (v) are by mathematical 
induction.

1.17. Theorem: Let (S, +, .) be a simple semiring in which (S, .) is singular then (S, .) is 
rectangular band.

Proof: Let (S,+,.) be a simple semiring and (S, .) be a singular i.e, for any a,b∈S  ab = 

a. ⇒ aba = aa ⇒ aba = a ( since (S, .) is singular) ⇒ (S, .) is rectangular band.

1.18. Theorem: Let (S, +, .) be a simple semiring in which  (S, .) is singular then (S, +) 
is one of the following:

(i)  I-medial (ii) I-semimedial (iii) I-distributive (iv)  L-commutative
(v) R-commutative (vi)  I-commutative (vii) external commutative
(viii)  conditional commutative. (ix) digonal 

Proof: Let (S, + ,.) be a semiring in which (S, .) is a singular. Assume that S satisfies 

the identity 1+a = 1  for any a ∈S. Now for any a, b, c, d ∈S. 

(i) Consider a + b + c + d = a + (b + c) + b  = a + c + b + d ⇒ (S, +) is I- medial.

(ii) Consider a + a + b + c = a +(a + b) + c = a + (b + a) + c = a + b + a + c ⇒
a + a + b + c = a + b + a + c ⇒ (S, +) is I- left semi medial.  

Again b + c + a + a = b + (c + a) + a = b + (a + c) + a = b + a + c + a ⇒
b + c + a + a = b + a + c + a ⇒ (S, +) is I-right semi medial.
Therefore, (S, +) is I-semi-medial.
(iii) consider a + b + c = (a) + b + c = a + a + b + c = a + (a + b) + c = a + (b + 

a) + c = a + b + a + c ⇒ (S, +) is I-left distributive.

Notes
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Consider b + c + a = b + c + (a) = b + c + a + a = b + (c + a) + a = b + (a 
+ c) + a = b + a + c + a ⇒ b + c + a = b + a + c + a ⇒ (S, +) is I right-
distributive. Hence (S, +) is I-distributive.

Similarly we can prove the remaining.

1.19. Theorem: Let (S, +, .) be a simple semiring and (S, .) is singular then (S, +) is (i) 
quasi-seprative (ii) weakly-seperative (iii) seperative.

Proof:  Let (S,+, .) be a simple semiring and (S, .) is a singular i.e, for any a,b∈S, ab = 

a. Since  S is simple,  1+a = a+1 = 1, for all a∈S. Let a + a = a + b ⇒ a + a +1 = a 

+ b + 1 ⇒ a + 1 = b + 1 ⇒ a = b. Again, a + b = b + b ⇒ a + b + 1 = b + b + 1 

⇒ a + 1 = b + 1 ⇒  a = b. Hence a + a = a + b = b + b ⇒ a = b ⇒ (S, +) is quasi-
seperative.

(ii)  Let a + b = (a) + b = ba + b = b + ab = b + a ⇒ a + b = b + a→ (1)

From (i) and (ii) a + a = a + b = b + a = b + b ⇒ a = b ⇒ (S, +) is weakly 
seperative

(iii) Let   a + a = a + b
             b + b = b + a
From (1) a + b = b + a and from theorem 1.15  (S, +) is a band

Therefore, a = a + a = a + b = b + b = b ⇒ a = b.
Hence (S, +) is seperative. 

1.20. Theorem: Let (S, +, .) be a simple semiring in which  (S, .) is singular then (S, +) 
is cancellative in which case |S| = 1.

Proof: Let (S, +, .) be a simple semiring in which (S, .) is singular. Since S is simple 

then for any a∈S, 1 + a = a + 1 = 1.

Let a,b,c, ∈S. To prove that (S, +) is cancellative, for any a, b, c ∈S, consider a 

+ c = b + c. Then a + c.1 = b + c.1 ⇒ a + c(a + 1) 

= b + c(b + 1) ⇒ a + ca + c = b + cb + c ⇒ a + ca + cac = b + cb + cbc    ( since 

(S, .) is rectangular ) ⇒  a + ca(1 + c) = b + cb(1 + c)

⇒ a + ca.1 = b + cb.1 ⇒ a + ca = b + cb.1 ⇒  a + ca = b + cb

⇒ (1 + c)a = (1 + c)b ⇒ 1.a = 1.b ⇒ a = b ⇒ a + c = b + c 

⇒   a = b. ⇒  (S. +) is right cancellative

Again  c + a = c + b ⇒ c.1 + a = c.1 + b ⇒ c(1 + a) + a = c(1 + b) + b ⇒ c 

+ ca + a = c + cb + b ⇒ cac + c + a = cbc + cb + b ⇒ cac + ca + a = abc +cb + 

b ⇒ ca(c + 1)+ a = cb(c + 1) + b ⇒ ca.1 + a = cb.1 + b

⇒ a + a = cb + b ⇒ (c + 1)a = (c + 1)b ⇒ 1.a = 1.b ⇒ a = b ⇒  c + a = c + b ⇒
a = b ⇒ (S, +) is left cancellative. 

Therefore, (S,+) is cancellative semigroup. Since S is simple semiring we have 1 

+ a = 1 ⇒ 1 + a = 1 + 1. But (S, +) is cancellative  ⇒ a = 1 for all a∈S. Therefore   
|S| = 1.

1.21. Theorem: Let (S, +, .) be a simple semiring in which  (S, .) is singular then (S, +) 
is one of the following: i) singular ii) rectangular band iii) left(right) semi-normal iv)  
regular v) normal vi) left(right) quasi-normal vii) left(right) semi-regular.

Notes



   

  

   

      

  

  
 

 

 

   

    
 

 

  
 

 

  

 

 

 

  

   
  

  

  

 

  

 
 

© 2017  Global Journals Inc.  (US)

1

G
lo
ba

l
Jo

ur
na

l
of

Sc
ie
nc

e
Fr

on
tie

r
R
es
ea

rc
h 

  
  
  
 V

ol
um

e
X
V
II  

 I
ss
ue

  
  
 e

rs
io
n 

I
V

II
Y
ea

r
20

17

4

  
 

( F
)

Properties of Simple Semirings

Proof: Let (S, +, .) be a simple semiring in which (S, .) is singular. Since S is simple 

then for any a, b, c∈S, i) 1 + a  = 1⇒ b + ba = b ⇒ b + a = b ⇒ (S, +) is left 

singular. Again 1 + b = 1 ⇒ a + ba = a ⇒ a + b = a ⇒ (S, +) is right singular.

Therefore, (S, +) is singular. 
Since (S, +) is singular, it is easy to prove (S, +) is ii) rectangular band, iii) 

left(right) semi-normal, iv)  regular, v) normal and vi) left(right) quasi-normal.

vii) Let a + b + c + a = a + (b) + (c) + (a) = a + b + a + c + a + c + a ⇒ a + b 

+ c + a = a + b + a + c + a + (c) + a ⇒ a + b + a + c + a + b + c + a ⇒ (S, +) 
left semi-regular.
Similarly, we can prove (S, +) is right semi-regular.

1.22. Theorem: Let (S, +, .) be a simple semiring in which  (S, .) is singular then (S, .) 
is one of the following: i) left semi-normal ii) left semi-regular iii) right semi-normal iv) 
right semi-regular v)  regular vi) normal vii) left quasi-normal viii) right quasi-normal 
ix)  I-medial (x) I-semimedial (xi) I-distributive (xii)  L-commutative (xiii) R-
commutative (xiv) I-commutative (xv) external commutative (xvi)  conditional 
commutative (xvii) digonal (xviii) quasi-seprative (xix) weakly-seperative (xx) 
seperative.

Proof: Proof of the theorem is similar to 1.21.Theorem, 1.18.theorem and 1.19.theorem.

1.23. Theorem: Let (S, +, .) be a simple semiring with additive identity zero in which  
(S, .) is singular then (S, +, .) zero sum free semiring if and only if (S, +, .) is zero 
square semiring.

Proof: Let (S, +, .) be a simple semiring with additive identity zero in which (S, .) is 

singular. Since S is simple then for any a∈S, 1 = a + 1 ⇒ a = aa + a ⇒ a2  = a + a ⇒
a2 = 0 (Since (S, +, .) is zero sum free semiring) ⇒ (S, +, .) is zero square semiring.

Conversely, let (S, +, .) is zero square semiring then a2 = 0 1 = a + 1 ⇒ a = aa 

+ a ⇒ a2  = a + a ⇒ 0 = a + a (Since (S, +, .) is zero square semiring) ⇒ (S, +, .) is 
zero sum free semiring.
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