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E. Borel and E.T. Whittaker introduced the notion of a truncated cardinal
function, whose restriction on the segment [0, π] reads as follows:

CΩ(f, x) =
n∑
k=0

sin (Ωx− kπ)

Ωx− kπ
f
(kπ

Ω

)
=

n∑
k=0

(−1)k sin Ωx

Ωx− kπ
f
(kπ

Ω

)
, (1.1)

here Ω > 0 and n = [Ω] is integer part Ω ∈ R. The function sin (Ωx)
Ωx

called sinc-
function. Up to now, a fairly well-studied problem is the one concerning sinc
approximations of an analytic function on the real axis decreasing exponentially
at infinity. The most complete survey of the results obtained in this direction by
1993 be found in [1].

Sinc approximations have wide applications in mathematical physics, in con-
structing various numerical methods and the approximation theory for the func-
tions of both one and several variables [2], [3] [4], [5], [6] [1], [7], in theory of
quadrature formulae [8], [1], in theory of wavelets or wavelet-transforms in [9,
Ch. 2], [10], [11].

One test for the uniform convergence on the axis for Whitteker cardinal func-
tions were provided in [12], [13]. Another important sufficient condition for con-
vergence of sinc approximations was obtained in [14]. It was established that for
some subclasses of functions absolutely continuous together with their derivatives
on the interval (0, π) and having a bounded variation on the whole axis R Ko-
tel’nikov series (or cardinal Whitteker functions) converge uniformly inside the
interval (0, π). In [15] was obtained by an upper bound for the best possible
approximations of sincs. In book [16] designated perspective directions of devel-
opment of sinc approximations. In papers [17] there were obtained estimates for

1.
S
te

n
ge

r 
F
. 

N
u
m

er
ic

al
 

M
et

od
s 

B
as

ed
 

on
 

S
in

c 
an

d
 

A
n
al

yt
ic

 
F
u
n
ct

io
n
s,

(N
.Y

.,
 

S
p
ri

n
g
er

 S
er

.
C

om
p
u
t.
 M

at
h
.,
 2

0 
S
p
ri

n
g
er

-V
er

la
g,

 1
99

3)
.

Ref



 
 

 
 

 
 
 
 
 
 
 
 
 
 

  

© 2017  Global Journals Inc.  (US)

1

G
lo
ba

l
Jo

ur
na

l
of

Sc
ie
nc

e
Fr

on
tie

r
R
es
ea

rc
h 

  
  
  
 V

ol
um

e
X
V
II  

 I
s s
ue

  
  
  
er

sio
n 

I
V

V
II

Y
ea

r
20

17

12

  
 

( F
)

A Sufficient Condition for the Uniform Convergence of Truncated Cardinal Functions Whittaker Inside 
the Interval

the error of approximations of uniformly continuous and bounded on R functions
by the values of various operators being combinations of sincs. Unfortunately,
while approximating continuous functions on a segment by means of (1.1) and
many other operators, Gibbs phenomenon arises in the vicinity of the segment
end-points, see, for instance [18]. In [19] and [18] various estimates for the error
of approximation of analytic in a circle functions by sinc-approximations (1.1)
(when Ω = n) were obtained.

In paper [19] sharp estimates were established for the functions and Lebesgue
constants of operator (1.1) (when Ω = n). Works [20], [21] were devoted to obtain-
ing necessary and sufficient conditions of pointwise and uniform in interval (0, π)
convergence of values operators (1.1) (when Ω = n) for functions f ∈ C[0, π]. In
[22] there was constructed an example of continuous function vanishing at the
end-points of the segment [0, π] for which the sequence of the values of opera-
tors (1.1) (when Ω = n) diverges unboundedly everywhere on the interval (0, π).
Work [23] was denoted to studying approximative properties of interpolation op-
erators constructed by means of solutions to the Cauchy problems with second
order differential expressions. Papers [24] and [25] were devoted to applications
of considered in [23] Lagrange-Sturm-Liouville interpolation processes. In [26]
the results of work [23] were applied for studying approximative properties of
classical Lagrange interpolation processes with the matrix of interpolation nodes,
whose each row consists of zeroes of Jacobi polynomials Pαn,βn

n with the parame-
ters depending on n. In the works [27], [28], [29] of construction of new operators
sinc approximations. They allow you to uniformly approximate any continuous
function on the segment.

In the present work we follow the lines of publications [33], [34], [35], [36], [30],
[37], [38], [39], [31], [32], [40] and we obtain sufficient conditions approximations
of continuous on the segment [0, π] functions inside interval (0, π) by means of
truncated cardinal function (1.1) (in case Ω > 0).

Fix ρλ = o
(√

λ
lnλ

)
as λ → +∞, let h(λ) ∈ R, and for each nonnegative λ let qλ

be arbitrary function in the ball Vρλ [0, π] of radius ρλ in the space of functions
with bounded variation vanishing at the origin, so that

V π
0 [qλ] ≤ ρλ, ρλ = o

(√
λ

lnλ

)
, as λ→∞, qλ(0) = 0. (2.1)

For a potential qλ ∈ Vρλ [0, π], where λ→ +∞, the zeros of solution of the Cauchy
problem {

y′′ +
(
λ− qλ(x)

)
y = 0,

y(0, λ) = 1, y′(0, λ) = h(λ),
(2.2)

or, provided that h(λ) 6= 0

V π
0 [qλ] ≤ ρλ, ρλ = o

(√
λ

lnλ

)
, as λ→∞, qλ(0) = 0, h(λ) 6= 0, (2.3)

II. Results and Discussion
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the zeros of Cauchy problem{
y′′ +

(
λ− qλ(x)

)
y = 0,

y(0, λ) = 0, y′(0, λ) = h(λ),
(2.4)

which lie in [0, π] and are numbered in ascending order, will be denoted by

0 ≤ x0,λ < x1,λ < . . . < xn(λ),λ ≤ π (x−1,λ < 0, xn(λ)+1,λ > π). (2.5)

(Here x−1,λ < 0, and xn(λ)+1,λ > π are the zeros of the extension of solution of
the Cauchy problem (2.2) or (2.4) corresponding to some extension of function
qλ outside [0, π] having similar bounds for the variation).

In [23] the properties of the Lagrange type approximation investigated. The
operators which include the solution of the Cauchy problem of the form (2.4) or
(2.5) and the continuous function which bind

Sλ(f, x) =
n∑
k=0

y(x, λ)

y′(xk,λ, λ)(x− xk,λ)
f(xk,λ) =

n∑
k=0

sk,λ(x)f(xk,λ); (2.6)

it interpolates f at the nodes {xk,λ}nk=0.

Let C0[0, π] = {f : f ∈ C[0, π], f(0) = f(π) = 0}. When approximation using
sinc approximations (1.1) function f ∈ C[0, π] \ C0[0, π] near the endpoints of
the Gibbs phenomenon occurs. This problem can be solved with the help of the
reception that was used in the construction of the operator [23, formula (1.9)]

Tλ(f, x) =
n∑
k=0

y(x, λ)

y′(xk,λ)(x− xk,λ)

{
f(xk,λ)−

f(π)− f(0)

π
xk,λ − f(0)

}
+

f(π)− f(0)

π
x+ f(0), (2.7)

where y(x, λ) – solution problem Cauchy (2.2) or (2.4) and xk,λ – the zeros of the
solutions.

Let Ω set of real continuous non decreasing convex up on [0, b−a], vanishing at
zero functions ω. Let C(ωl, [a, b]) and C(ωr, [a, b]) is the set of elements of C[a, b]
such that for any x and x+ h (a ≤ x < x+ h ≤ b) we have the equalities

f(x+ h)− f(x) ≥ −Kfω(h) or f(x+ h)− f(x) ≤ Kfω(h), (3.1)

III. Sufficient Conditions of Sinc Approximations within the

 Interval of Uniform Convergence (0, π) 

accordingly. Where ω ∈ Ω. Selecting positive constants Kf may depend only on
the function f . In this case the function ω(h) is sometimes referred to, accord-
ingly, the left-hand or right-hand continuity module. In principle, the definition
of a unilateral module of continuity could be considered any functions ω̂(h) van-
ishing at zero, continuous on [0, b− a] or [0,∞). The wording of all the results of
this work in this case, would remain in force. Without loss of generality, in the
definition of unilateral modulus of continuity (3.1) can be considered ω ∈ Ω.

Notes
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Classic modulus of continuity f ∈ C[a, b] denoted as usual ω(f, δ) =
|h|<δ;x,x+h∈[a,b]

|f(x+

h) − f(x)|. The module of continuity of f ∈ C[0, π], if a = 0, b = π will denote
ω1(f, δ) = sup

|h|<δ;x,x+h∈[0,π]

|f(x+ h)− f(x)|. Module of change of f on the interval

sup

[a, b] is called function defined by the equation

v(n, f) = sup
Tn

n−1∑
k=0

|f(tk+1)− f(tk)|,

where Tn = {a ≤ t0 < t1 < t2 < · · · < tn−1 < tn ≤ b}, n ∈ N. Take a non-
negative, non-decreasing convex up function of a natural argument to v(n). If a
module of changes of function f on the interval [a, b], such that v(n, f) = O(v(n))
with n→∞, then we say that f belongs to the class V (v). Here, also, the choice
of uniformity of the constants o-symbolism can only depend on f .

By analogy with the positive (negative) change of function will be called posi-
tive (negative) module of change of function f on the interval [a, b], accordingly,
the function of a natural argument type

v+(n, f) = sup
Tn

n−1∑
k=0

(
f(tk+1)− f(tk)

)
+

and v−(n, f) = inf
Tn

n−1∑
k=0

(
f(tk+1)− f(tk)

)
−,

where z+ = z+|z|
2

and z− = z−|z|
2

and Tn = {a ≤ t0 < t1 < t2 < · · · < tn−1 < tn ≤
b}, n ∈ N. We say that f belongs to the class of V +(v) or V −(v), if there exists
a constant Mf , that for any natural n true inequality

v+(n, f) ≤Mfv(n) or v−(n, f) ≥ −Mfv(n)

accordingly.

Unless otherwise stated, suppose that for each λ > 1, n := [
√
λ], Ω :=

√
λ and

xk,λ := kπ/
√
λ and lk,λ(x) := (−1)k sin Ωx

Ωx−kπ .

Let f ∈ C[0, π], 0 ≤ a < b ≤ π, 0 < ε < (b − a)/2. If a non-
decreasing concave function of a natural argument v(n) and the function ω ∈ Ω
such that

lim
n→∞

min
1≤m≤k2−k1−1

{
ω
( π√

λ

) m∑
k=1

1

k
+

k2−k1−1∑
k=m+1

v(k)

k2

}
= 0, (3.2)

where k1 k2 + 1 — the smallest and largest number of nodes xk,λ = kπ/Ω,
falling in the interval [a, b], then for any continuous on [0, π], the function f ∈
C(ωl[a, b]) ∩ V −(v) (f ∈ C(ωr[a, b]) ∩ V +(v)) is performed

lim
Ω→∞

‖f − CΩ(f, ·)‖C[a+ε,b−ε] = 0. (3.3)

Here operator CΩ(f, ·) defined in (1.1).

On the set [0, π] \ [a, b] ratio (1.1) can be not performed (See [22]).

We present auxiliary results, which will be used in the future.

  

© 2017  Global Journals Inc.  (US)

1

G
lo
ba

l
Jo

ur
na

l
of

Sc
ie
nc

e
Fr

on
tie

r
R
es
ea

rc
h 

  
  
  
 V

ol
um

e
X
V
II  

 I
s s
ue

  
  
  
er

sio
n 

I
V

V
II

Y
ea

r
20

17

14

  
 

( F
)

Theorem 3.1. 

Remark 3.2 

22.T
ry

n
in

 A
.Y

u
. O

n
 d

ivergen
ce of sin

c-ap
p
roxim

ation
s everyw

h
ere on

(0, π
), A

lg
eb

ra
 i 

A
n
a
liz,

22:4 (2010), 232-256 E
n
glish

 tran
sl. S

t. P
etersb

u
rg M

ath
. J. 22 (2011), 683-

701.

Ref
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the Interval

([23, Proposition 9]). Let y(x, λ) be the solution of Cauchy
problem (2.4) or (2.5) and assume that in case of the Cachy problem (2.4) rela-
tions (2.1) hold, while in the case of (2.5) relations (2.3) hold. If f ∈ C0[0, π],

then

lim
λ→∞

(
f(x)− Sλ(f, x)− 1

2

n−1∑
k=0

(
f(xk+1,λ)− f(xk,λ)

)
sk,λ(x)

)
= 0, (3.4)

From the Proposition 3.3 follows that values operators

Aλ(f, x) =
1

2

n−1∑
k=0

(
f(xk+1,λ) + f(xk,λ)

)
sk,λ(x),

Bλ(f, x) =
1

2

n∑
k=1

(
f(xk−1,λ) + f(xk,λ)

)
sk,λ(x)

or

Cλ(f, x) =
1

4

n−1∑
k=1

(
f(xk−1,λ) + 2f(xk,λ) + f(xk+1,λ)

)
sk,λ(x)

give an opportunity approximations every function f ∈ C0[0, π].

For any 0 ≤ a < b ≤ π, 0 < ε < (b− a)/2 denoted

Qλ(f, [a, b], ε) := max
p1≤p≤p2

∣∣∣∣ m2∑
m=m1

′f(x2m+1,λ)− f(x2m,λ)

p− 2m

∣∣∣∣. (3.5)

Here the dashes on the summation signs in (3.5) mean that are no terms with zero
denominator. Where p1, p2, m1 and m2 are the indices of the zeros determined
by the inequalities

xp1,λ ≤ a+ ε < xp1+1,λ, xp2,λ ≤ b− ε < xp2+1,λ,

xk1−1,λ < a ≤ xk1,λ, xk2+1,λ ≤ b < xk2+2,λ,

m1 =

[
k1

2

]
+ 1, m2 =

[
k2

2

]
.

Here [z] denote the integer part z.

If function f ∈ C[0, π], then from a ratio

lim
λ→∞

Qλ(f, [a, b], ε) = 0 (3.6)

follows (3.3).

We denote

k,λ = f(xk+1,λ)− f(xk,λ) k1 ≤ k ≤ k2;λ > 0. (3.7)

Proposition 3.3 

Remark 3.4. 

Proposition 3.5. 

Proof of Proposition 3.5. 

ψ

Notes
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We take into account that we have the estimate

| k,λ| = |f(xk+1,λ)− f(xk,λ)| ≤ ω
(
f,

π√
λ

)
for all k1 ≤ k ≤ k2;λ > 0. (3.8)

We fix an arbitrary x ∈ [a + ε, b − ε]. Choose index p = p(x, λ), so that
x ∈ [xp,λ, xp+1,λ). Then x = xp,λ + απ√

λ
, where α = α(x, λ) ∈ [0, 1)

x− xk,λ =
p− k + α√

λ
π.

From (3.8) for all x ∈ [a+ ε, b− ε] we have the estimate∣∣∣ ∑
k:k1≤k≤k2;
|p−k|≥3;

(−1)k k,λ

p− k + α
−

∑
k:k1≤k≤k2;
|p−k|≥3;

(−1)k k,λ

p− k

∣∣∣ ≤
ω

(
f,

π√
λ

) ∑
k:k1≤k≤k2;
|p−k|≥3;

α

|p− k|(|p− k| − 1)
≤ ω

(
f,

π√
λ

)
. (3.9)

Notice, that if h(λ) =
√
λ, qλ ≡ 0 solution of the Cauchy problem (2.4) is

y(x, λ) = sin
√
λx.

We take into account (3.7). We decompose the sum in (3.4) as follows:

1

2

k2∑
k=k1

(
f(xk+1,λ)− f(xk,λ)

)
lk,λ(x) +

1

2

∑
k∈[0,λ−1]\[k1,k2]

(
f(xk+1,λ)− f(xk,λ)

)
lk,λ(x) =

1

2

∑
k:k1≤k≤k2;
|p−k|≥3;

k,λlk,λ(x)+
1

2

∑
k:k1≤k≤k2;
|p−k|<3

k,λlk,λ(x)+
1

2

∑
k∈[0,λ−1]\[k1,k2]

k,λlk,λ(x). (3.10)

Now, using the triangle inequality, of (3.7), (3.9) uniformly for all x ∈ [a+ε, b−ε]
the estimate∣∣∣1

2

k2∑
k=k1

(
f(xk+1,λ)− f(xk,λ)

)
lk,λ(x)− sin

√
λx

2π

k2∑
k=k1

′ (−1)k k,λ

p− k

∣∣∣ ≤
1

2π

∣∣∣ ∑
k:|p−k|≥3

(−1)k k,λ

p− k + α
−

∑
k:|p−k|≥3

(−1)k k,λ

p− k

∣∣∣+
1

2π

∑
k:|p−k|<3

∣∣∣ k,λlk,λ(x)
∣∣∣+

1

2π

∑
k:|p−k|<3

′ | k,λ|
|p− k|

≤ 5

π
ω
(
f,

π√
λ

)
. (3.11)

There are a constant C and number n0 ∈ N independent of function f ∈ C[0, π],
0 ≤ a < b ≤ π and 0 < ε < (b − a)/2, such that for all x ∈ [a + ε, b − ε] and
n > n0 the inequality is fair
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A Sufficient Condition for the Uniform Convergence of Truncated Cardinal Functions Whittaker Inside 
the Interval∣∣∣∣∣∣12

∑
k∈[0,n−1]\[k1,k2]

k,λlk,λ(x)

∣∣∣∣∣∣ ≤
ω1

(
f, π√

λ

)
2

∑
k∈[0,n−1]\[k1,k2]

|lk,λ(x)| ≤

Cω1

(
f,

π√
λ

)
ln

2π

ε
.

Thence, by (3.11) (3.4) we have for all x ∈ [a+ ε, b− ε] ratio

lim
n→∞

f(x)− CΩ(f, x)− sin
√
λx

2π

k2∑
k=k1

′ (−1)k k,λ

p− k

)
= 0. (3.12)

We estimate the last term in (3.12) by means of ratio (3.8) and triangle inequality

∣∣∣sin√λx
2π

k2∑
k=k1

′ (−1)k k,λ

p− k

∣∣∣ ≤ 2
∣∣∣ 1

2π

m2∑
m=m1

′ 2m,λ

p− 2m

∣∣∣+∣∣∣ 1

2π

k2∑
k=k1

′ k,λ

p− k

∣∣∣+O(ω(f, 1√
λ

))
.

(3.13)

By the continuity of f there exists a sequence of positive integers {ln}∞n=1, such
that

ln = o(n), lim
n→∞

ln =∞, lim
λ→∞

ω

(
f,

1√
λ

) ln∑
k=1

1

k
= 0, n := [λ]. (3.14)

We estimate the second sum in (3.13)

∣∣∣ 1

2π

k2∑
k=k1

′ k,λ

p− k

∣∣∣ ≤ ∣∣∣ 1

2π

∑
k:|p−k|≤ln

′ k,λ

p− k

∣∣∣+
∣∣∣ 1

2π

∑
k:|p−k|>ln

′ k,λ

p− k

∣∣∣. (3.15)

From here and inequalities (3.8) follows∣∣∣ 1

2π

∑
k:|p−k|≤ln

′ k,λ

p− k

∣∣∣ ≤ 1

2π

∑
k:|p−k|≤ln

′∣∣∣ k,λ

p− k

∣∣∣ ≤ 1

π
ω
(
f,

π√
λ

) ln∑
k=1

1

k
. (3.16)

Hence by (3.15) after taking the Abel transform in case k ∈ [k1, k2] : |p− k| > ln
we obtain the estimate∣∣∣ 1

2π

∑
k:|p−k|>ln

′ k,λ

p− k

∣∣∣ ≤ 4‖f‖C[a,b]

ln + 1
+ 4‖f‖C[a,b]

∞∑
k=ln

1

k(k + 1)
.

Hence by (3.14), (3.15) and (3.16) we obtain the uniform estimate for all x ∈
[a+ ε, b− ε] ∣∣∣ 1

2π

k2∑
k=k1

′ k,λ

p− k

∣∣∣ = o(1). (3.17)

ψ

ψ

ψ ψ ψ

ψ ψ ψ

ψ ψ

ψ

ψ
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A Sufficient Condition for the Uniform Convergence of Truncated Cardinal Functions Whittaker Inside 
the Interval

Notice, that if h(λ) =
√
λ, qλ ≡ 0 solution of the Cauchy problem (2.4) is

y(x, λ) = sin
√
λx. Then by (3.4), (3.5), (3.12), (3.13), (3.17) and triangle in-

equality we obtain the relation∣∣∣f(x)− CΩ(f, x)
∣∣∣ ≤

∣∣∣f(x)− CΩ(f, x)− sin
√
λx

2π

k2∑
k=k1

′ (−1)k k,λ

p− k

∣∣∣+
∣∣∣ 1
π

m2∑
m=m1

′ 2m,λ

p− 2m

∣∣∣+
∣∣∣ 1

2π

k2∑
k=k1

′ k,λ

p− k

∣∣∣+O

(
ω

(
f,

1√
λ

))
≤

1

π
Qλ(f, [a, b], ε) + o(1).

From which it follows the sufficiency (3.6) for uniform convergence (3.3). Propo-
sition 3.5 proved.

For all 0 ≤ a < b ≤ π, 0 < ε < (b− a)/2 denoted

Q∗λ(f, [a, b], ε) := max
p1≤p≤p2

m2∑
m=m1

′
∣∣∣∣f(x2m+1,λ)− f(x2m,λ)

p− 2m

∣∣∣∣. (3.18)

If function f ∈ C[0, π], then the ratio of

lim
n→∞

Q∗λ(f, [a, b], ε) = 0 (3.19)

implies (3.3).

Indeed, by Proposition 3.5 satisfy the condition (3.19) implies truth of
the saying (3.6) and therefore, the ratio (3.3).

Propositions 3.5 and 3.6 are analogues of known signs of A.A. Pri-
valov uniform convergence of trigonometric polynomial and algebraic interpola-
tions polynomial Lagrange with the matrix of interpolation nodes P.L. Chebyshev
[33].

Let the function v ω satisfies the condition (3.2)
and f ∈ C(ωl[a, b]) ∩ V −(v). We show that the relation (3.19) is true. By virtue
of the uniform continuity and boundedness of f , for any positive ε̃ there exist
natural numbers ν n1 such that for all λ ≥ n1 (λ ∈ R) simultaneously take place
two inequalities

ω

(
f,

π√
λ

) ν∑
k=1

1

k
<
ε̃

6
(3.20)

and

24‖f‖C[a,b] < ε̃ν. (3.21)

Proposition 3.6. 

Proof.  

Remark 3.7. 

Proof of the Theorem 3.1

ψ

ψ ψ
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A Sufficient Condition for the Uniform Convergence of Truncated Cardinal Functions Whittaker Inside 
the Interval

Let λ ≥ n1. We find p0, depending on n, a, b, ε and f at which the maximum in
the definition (3.18)

Q∗λ(f, [a, b], ε) =

m2∑
m=m1

′
∣∣∣∣f(x2m+1,λ)− f(x2m,λ)

p0 − 2m

∣∣∣∣.
Assuming that

Q∗∗λ (f, [a, b], ε) :=

k2∑
k=k1

′
∣∣∣∣f(xk+1,λ)− f(xk,λ)

p0 − k

∣∣∣∣.
The value of Q∗∗λ (f, [a, b], ε) is obtained from Q∗λ(f, [a, b], ε) by the addition of
non-negative terms, therefore is fair the inequality

Q∗λ(f, [a, b], ε) ≤ Q∗∗λ (f, [a, b], ε). (3.22)

We divide Q∗∗λ (f, [a, b], ε) into two terms

Q∗∗λ (f, [a, b], ε) =

k2∑
k=k1

′f(xk+1,λ)− f(xk,λ)

|p0 − k|
−

2

k2∑
k=k1

′′f(xk+1,λ)− f(xk,λ)

|p0 − k|
= S1(p0) + S2(p0), (3.23)

where two strokes mean that in the sum are absent non-negative summands and
with index k = p0.

First, we estimate the first sum. Representing it in the form

S1(p0) =
∑

k : k ∈ [k1, k2],
0 < |p0 − k| < ν

f(xk+1,λ)− f(xk,λ)

|p0 − k|
+

∑
k : k ∈ [k1, k2],

0 < |p0 − k| ≥ ν

f(xk+1,λ)− f(xk,λ)

|p0 − k|
= S1,1(p0) + S1,2(p0). (3.24)

In the case {k : k ∈ [k1, k2], 0 < |p0 − k| ≥ ν} = ∅ believe that the second term
is zero.

From the inequality (3.20) have

|S1,1(p0)| ≤ 2ω

(
f,

π√
λ

) ν∑
k=1

1

k
<
ε̃

3
. (3.25)

We now estimate the amount S1,2(p0). If p0 such that inequalities are fair k1 ≤
p0− ν < p0 < p0 + ν ≤ k2, then ratios take place p0− k1 ≥ ν k2− p0 ≥ ν. Hence
by (3.21), after taking the Abel transform we obtain estimate

Notes
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A Sufficient Condition for the Uniform Convergence of Truncated Cardinal Functions Whittaker Inside 
the Interval

|S1,2(p0)| ≤
∣∣∣∣p0−ν∑
k=k1

f(xk+1,λ)− f(xk,λ)

p0 − k

∣∣∣∣+

∣∣∣∣ k2∑
k=p0+ν

f(xk+1,λ)− f(xk,λ)

k − p0

∣∣∣∣ ≤
∣∣∣∣p0−ν−1∑
k=k1

f(xk+1,λ)− f(xk1,λ)

(p0 − k)(p0 − k − 1)

∣∣∣∣+

∣∣∣∣f(xp0−ν+1,λ)− f(xk1,λ)

p0 − k1

∣∣∣∣+
∣∣∣∣ k2−1∑
k=p0+ν

f(xk+1,λ)− f(xp0+ν,λ)

(k − p0)(k + 1− p0)

∣∣∣∣+

∣∣∣∣f(xk2,λ)− f(xp0+ν,λ)

k2 − p0

∣∣∣∣ ≤
4‖f‖C[a,b]

∞∑
i=ν

1

i(i+ 1)
+

4‖f‖C[a,b]

ν
≤

8‖f‖C[a,b]

ν
<
ε̃

3
. (3.26)

Similarly we prove (3.26), if p0 would be so, that will be inequality p0− ν < k1 ≤
p0 < p0 + ν ≤ k2 or inequality k1 ≤ p0 − ν < p0 ≤ k2 < p0 + ν. Of the possible
variant remained only when p0 − ν < k1 ≤ p0 ≤ k2 < p0 + ν. In this situation,
we have |S1,2(p0)| = 0.

From (3.24), (3.25) end (3.26) we obtain inequality

|S1(p0)| ≤ 2ε̃

3
(3.27)

for all λ ≥ n1.

Let’s move on to the study of the properties of the sum S2(p0). Take any
integer m : 1 ≤ m ≤ k2 − k1 − 2 and represented S2(p0) in the form

0 ≤ S2(p0) = −2
∑

k : k ∈ [k1, k2],
|p0 − k| ≤ m

′′f(xk+1,λ)− f(xk,λ)

|p0 − k|
−

2
∑

k : k ∈ [k1, k2],
|p0 − k| > m

′′f(xk+1,λ)− f(xk,λ)

|p0 − k|
=

S2,1(p0) + S2,2(p0). (3.28)

Function f ∈ C(ωl[a, b]), therefore by definition (3.1) we have relation

f(xk+1,λ)− f(xk,λ) ≥ −Kfω
( π√

λ

)
.

Therefore

0 ≤ S2,1(p0) = −2
∑

k : k ∈ [k1, k2],
|p0 − k| ≤ m

′′f(xk+1,λ)− f(xk,λ)

|p0 − k|
≤

Notes
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A Sufficient Condition for the Uniform Convergence of Truncated Cardinal Functions Whittaker Inside 
the Interval

4Kfω
( π√

λ

) m∑
k=1

1

k
. (3.29)

We estimate the amount S2,2(p0).

0 ≤ S2,2(p0) = −2
∑

k : k ∈ [k1, k2],
|p0 − k| > m

′′f(xk+1,λ)− f(xk,λ)

|p0 − k|
≤

2

p0−m−1∑
k=k1

−(f(xk+1,λ)− f(xk,λ))−
p0 − k

+ 2

k2∑
k=p0+m+1

−(f(xk+1,λ)− f(xk,λ))−
k − p0

. (3.30)

Note that p0−m ≤ k1 or p0 +m ≥ k2, then in (3.30) disappears respectively, the
first or second term. In case p0 −m < k1 < k2 < p0 + m, sum S2,2(p0) in (3.28)
absent. Take into account that f ∈ V (v). We will apply Abel’s transformation
in estimate (3.30)

0 ≤ S2,2(p0) ≤

2

p0−m−1∑
k=k1

−(f(xk+1,λ)− f(xk,λ))−

p0 − k1

+

p0−m−1∑
k=k1+1

p0−m−1∑
j=k

−(f(xj+1,λ)− f(xj,λ))−

(p0 − k)(p0 − k + 1)
+

k2∑
k=p0+m+1

−(f(xk+1,λ)− f(xk,λ))−

k2 − p0

+

k2−1∑
k=p0+m+1

k∑
j=p0+m+1

−(f(xj+1,λ)− f(xj,λ))−

(p0 − k)(p0 − k − 1)

)
≤

2

(
(p0 − k1)−m− 1

)
Kfω

(
π√
λ

)
p0 − k1

+Mf

p0−m−1∑
k=k1+1

v(p0 −m− k)

(p0 − k)(p0 − k + 1)
+

(
(k2 − p0)−m− 1

)
Kfω

(
π√
λ

)
k2 − p0

+Mf

k2−1∑
k=p0+m+1

v(k − p0 −m)

(p0 − k)(p0 − k − 1)

)
≤

2Mf

p0−k1−1∑
k=m+1

v(k −m)

k(k + 1)
+

k2−p0−1∑
k=m+1

v(k −m)

k(k + 1)

)
+ 4Kfω

( π√
λ

)
≤

4Mf

k2−k1−1∑
k=m+1

v(k)

k2
+ 4Kfω

( π√
λ

)
.

Hence (3.28), (3.29) and (3.30) we have
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Conditions (3.2), due to the non-negativity of both summands, equivalent to

lim
n→∞

min
1≤m≤k2−k1−1

max
{
ω
( π√

λ

) m∑
k=1

1

k
,

k2−k1−1∑
k=m+1

v(k)

k2

}
= 0.

Therefore exists an n2 ∈ N, n2 ≥ n1, that for avery λ ≥ n2 there are m : 1 ≤
m ≤ k2 − k1 − 1 for which the inequality

0 ≤ S2(p0) ≤ ε̃

3
. (3.31)

As result of by (3.22), (3.23), (3.24), (3.27) and (3.31) we get that for any ε̃ > 0
exists an n2 ∈ N, that for every λ > n2 > n1 there exists an m : 1 ≤ m ≤
k2 − k1 − 2, that performed the inequalities

Q∗λ(f, [a, b], ε) ≤ Q∗∗λ (f, [a, b], ε) < ε̃.

Now Theorem 3.1 follows from Proposition 3.6.

To prove the theorem 3.1 if f ∈ C(ωr[a, b])∩ V +(v) is sufficient to note that if
f ∈ C(ωr[a, b]) ∩ V +(v), then −f ∈ C(ωl[a, b]) ∩ V −(v) and operator CΩ(f, ·) —
linear. Theorem 3.1 proved.

In the case when f ∈ C(ωl[a, b])∩V (v) or f ∈ C(ωr[a, b])∩V (v) (v
is the majorant classic module change v(n, f)) in [33] proved that the conditions of
the form (3.2) are sufficient for the uniform convergence of trigonometric inter-
polation processes and sequences of classical Lagrange interpolation polynomials
with the matrix of interpolation nodes P.L. Chebyshev.

The paper [34] set uniform convergence of trigonometric Fourier series for the
2π−periodic, functions of the class f ∈ C(ω[a, b]) ∩ V (v), where functions ω v
are majorants classical modulus of continuity ω(f, δ) and module changes v(n, f).

A Sufficient Condition for the Uniform Convergence of Truncated Cardinal Functions Whittaker Inside 
the Interval

0 ≤ S2(p0) ≤ 4Kfω
( π√

λ

) m∑
k=1

1

k
+ 4Mf

k2−k1−1∑
k=m+1

v(k)

k2
+ 4Kfω

( π√
λ

)
.

Remark 3.8. 

From Theorem 3.1 it follows that if f1 ∈ C(ωr1[a, b]) ∩ V +(v1), and
f2 ∈ C(ωl2[a, b]) ∩ V −(v2), and the two pairs of functions (vi, ωi), where i = 1, 2,
satisfy the relation (3.2), that, although a linear combination of f = αf1 + βf2

can non-belong to any of classes, however because of the linearity of the operator
CΩ(f, ·), will have the relate (3.3).

Each of the classes of functions: Dini-Lipschitz lim
n→∞

ω(f, 1/n) lnn =

0 (see., [20, Corollary 2]), and satisfying the condition of Krylov (continuous func-
tion of bounded variation), is a subset of functional class, described by the terms
(3.2).

Remark 3.9. 

Remark 3.10. 

If f ∈ C[0, π], there are the relations

v+(n, f) ≤ v(n, f) ≤ 2
(
v+(n, f) + ‖f‖C[0,π]

)
,

−v−(n, f) ≤ v(n, f) ≤ 2
(
−v−(n, f) + ‖f‖C[0,π]

)
.

Remark 3.11. 
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From Theorem 3.1 follow that lim
n→∞

ωl(f, 1/n) lnn = 0 or lim
n→∞

ωr

(f, 1/n) lnn = 0 ensure fairness (3.3).

If a non-decreasing, concave function of natural argument v
such that

∞∑
k=1

v(k)

k2
<∞, (3.32)

then for any function f ∈ C[0, π] ∩ V ±(v) is true ratio (3.3).

Indeed, from the continuity of f implies the existence of a sequence of
positive integers {mn}∞n=1 such that lim

n→∞
mn = ∞ and lim

n→∞
ω(f, 1/n) lnmn = 0.

Therefore, the convergence of series (3.32) ensures that the condition (3.2) for any
function f , belonging to at one the classes of C[0, π] ∩ V +(v) or C[0, π] ∩ V −(v).
The proof is complete.

A Sufficient Condition for the Uniform Convergence of Truncated Cardinal Functions Whittaker Inside 
the Interval

Corollary 3.12. 

Corollary 3.13. 

Proof.  
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