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Abstract-

 

In this work, the concepts of functional product of graphs and equitable total coloring were used to propose a 
model of connection among the multiagent systems. We show how to generate a family of regular graphs that admits a 
range vertex coloringof order

 

∆

 

with ∆ + 1 colors, denominated harmonic graphs. We prove that the harmonic graphs 
do not have cut vertices. We also show that the concept of equitable total coloring can be used to elaborate parallel 
algorithms that are independent of the network topology. Finally, we show a model of connection among multiagent 
systems (MAS) based on the use of harmonic graphs as a support for the construction of P2P overlay network 
topologies used for the communication among these systems. 
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I.

 

Introduction

 

Historically, product graphs, more specifically the cartesian product graphs,

 

have been 
widely used as the topology of interconnection networks. Classical topologies such as mesh, hyper-
star, star-cube, hypercube, and torus are obtained through the cartesian product of graphs. 
Currently, the concept of interconnection networks (physical structures) does not have the same 
relevance as before, However, the concept of multi

 

agent systems (MAS), in which two or more 
agents work together to perform certain tasks, has been increasingly

 

gaining space and 
applicability [9, 16]. It is on this tripod (functional product of graphs, harmonic graphs, and 
multiagent systems) that this work is supported. 

 

In this article, we prove that the functional product of graphs allows building harmonic 
graphs from any regular graph and that the harmonic graphs do not have cut vertices. We show 
that a family of harmonic graphs disposes of a scalable and recursive structure since, from an 
initial basic instance, it can expand dynamically its form

 

maintaining properties, such as 
connectedness and regularity.

 

We also show that the concept of equitable total coloring can be 
used to elaborate parallel algorithms

 

that are independent of the network topology. Finally, we 
present a model of connection among MAS through the use of harmonic graphs as a support for 
the construction of these topologies. Therefore, the main contributions of this work are the 
theorems 3.3, 3.4,

 

3.5, and the application of harmonic graphs as P2P overlay network topologies 
for the communication among multi

 

agent systems.
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This text is organized as follows:  in section 2, we present the concept of the functional product of 
graphs, idea that generalizes the cartesian product of graphs. Section 3 approaches the  
construction of harmonic graphs. In section 4, we enter in the computational aspect, and we 
present the concepts of the agents and multi  agent systems.  We also highlight the advantages of 
implementing a peer-to-peer communication system in the communication of the agents of a 
MAS, and we present a model of connection among MAS using harmonic graphs. In section 6, we 
make the final considerations.  

II.  Functional  Product  of  Graphs  

 

a)
 

Definitions
 

and primary
 

notations
 

•
 

{u,
 

v} or
 

uv
 

denotes an edge of graph
 

G,
 

in which
 

u
 

and
 

v
 

are
 

adjacent;
 

•
 ∆(G) or

 ∆,
 

if there is no
 

ambiguity, denotes the maximum degree of
 

graph
 

G;
 

•
 

F(X) denotes the set of all bijections
 

of
 

X
 

in
 

X;
 

•
 

D(G) denotes the digraph obtained by replacing each edge
 

uv
 

of graph
 

G
 

by arcs
(u,

 
v) and (v, u)while maintaining the same set of vertices;

 

•
 

D
 

denotes the set of the digraphs that satisfy the following conditions:
 

1.
 

(u,
 

v) is an arc of the digraph if and only if (v,
 

u) is also an arc of the digraph;
 

2.
 

No two arcs are alike.
 

•
 

If 𝐺⃗𝐺∈D,
 

G(𝐺⃗𝐺)  
denotes the graph obtained by replacing each pair of arcs (u, v) and (v, u)

 
of

 𝐺⃗𝐺  

by edge
 

uv
 

while maintaining the same set of vertices;
 

•
 

If
 

A
 

is a set, denotes the cardinality of
 

A;
 

•
 

Cn
 denotes the cycle of

 
n

 
vertices;

 

•
 

Kn
 denotes the complete graph of

 
n vertices.

 

 
The digraphs

 G��⃗ 1(V1, E1) and
 G��⃗ 2(V2, E2)are said to be

 
functionally

 
connected

 
by

 

the applications
 

f1:
 

E1→F
 

(V2)
 

and
 

f2: E2→F
 

(V1) if
 

f1
 and

 
f2

 are such that:
 

1.
 

For every arc (u,v)∈E1, if (v, u) ∈E1, then f1((u,v))=(f1((v,u)))−1; 
 

2.
 

For every (x,y)∈E2,
 if

 
(y,x)∈E2, then

 
f2((x,y))=(f2((y,x)))−1;

 

3.
 

For every pair of arcs (u,v)∈E1 and (x,y)∈E2, it has that f2((x,y))(u) ≠v  

or
 

f1((u,v))(x)≠y.
 

The applications
 

f1

 

and
 

f2

 

are called
 

linking applications.
 

Definition 2.2.
 

Let

 

G1(V1, E1)

 

and

 

G2(V2, E2) be graphs, if

 

D(G1)

 

and

 

D(G2)are functionally 

connected by applications

 

f1: E(D(G1))→F (V2)

 

and

 

f2: E(D(G2))→
 

F(V1), then the graphs

 

G1(V1, E1)

 

and

 

G2(V2, E2)

 

are said to be functionally connected

 

by the same applications.

 

Definition 2.3.
 

Let

 
G��⃗ 1(V1,E1)

 

and

 
G��⃗ 2(V2, E2)be  digraphs

 

functionally connected

 

by applications

 

f1: 

E1

 

→
 

F (V2) and f2

 

: E2

 

→
 

F (V1), the  functional product
 

of digraph

 

G��⃗ 1

 

by digraph

 
G��⃗ 2

 

according 

to

 

f1

 

and

 

f2, denoted by (G��⃗ 1, f1)

 

x(G��⃗ 2, f2), is digraph

 
G��⃗ * (V*,E*) defined by:
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We can find introductory concepts about graphs and coloring in [3] and [20]. More specific
concepts about coloring , such as equitable total coloring and range coloring of order k, can be

viewed in [6] and [5] respectively . After that, we present the concept of the functional product of

graphs , which also appears in [10] and [12]. To provide a better understanding of this section ,
some definitions and primary notations are necessary.

|A|



• V ∗ = V1×V2. 

• ((u,x),(v,y))∈E ∗
 if and only if one of following conditions is true: 

1. (u, v)∈E1
 
and f1((u, v))(x) = y; 

2. (x, y)∈E2
 
and f2((x, y))(u) = v. 

Definition 2.4. Let G1(V1, E1)and G2(V2, E2) be graphs functionally connected by applications f1: 

E(D(G1))→F(V2) and f2 :E(D(G2))→F(V1), the functional product of graph G1 by graph G2, 

denoted by (G1, f1) x(G2 , f2), is graph G (𝐺⃗𝐺 * (V *, E *)), such that 𝐺⃗𝐺* (V *, E *)= (D (G1), f1) 
x(D

 
(G2), f2). 

Figures 1, 2 and 3 present the functional product between two paths P3. The linking 
applications f1 and f2 are defined by f1(x)=r2 for every edge x∈E1 and f2(y)=r1 for every edge 

y∈E2, in which
 
r1(vi) =

 
v i+1(mod3)

 

and
 
r2(vi) = vi+2(mod3), with

 
i∈{1, 2, 3}. Figure 1 makes 

reference to the definitions 2.1 and 2.2 while figures 2 and 3 illustrate the definitions 2.3 and 2.4 
respectively. 

 

 

Figure 1: Graphs G1 and G2, the respective digraphs, and associated bijections r1 and r2  
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Functional Product of Graphs and Multiagent Systems

Notes



 
Figure 2:

 
Functional product among digraphs

 
D(G1) and D(G2) according to

 
f1

 

and f2  

 

Figure 3:  Functional product among graphs  G1  
and  G2  

according to  f1  
and  f2  

III.  Harmonic  Graphs  
 

 

  

  

Definition 3.5.  Let  G(V,  E) be a graph,  C= {c1, c2, c3...cp}be a set of colors,  with  p∈N and a 

natural number  k, such that  k ≤  ∆(G), an application  f  : V
 

→  C  is a range vertices coloring  of  
order k

 
of G

 
if for every

 
v∈V, it has

 
that d(v) <

 
k, then

 
|c(N (v))|

 
= d(v), otherwise

 
|c(N (v))|

 
≥

 
k, such that

 
|c(N (v))|

 
is the

 
cardinality of the set of colors used in the 

neighborhood
 

of  v [5].  
Definition 3.6.  A regular graph  G (V,  E)  is said to be harmonic  if it admits a range vertices 

coloring of order  ∆  with  ∆  + 1 colors [11].  

Definition 3.7.  A vertex in a connected graph is an articulation point or a cut vertex if by 
removing it, the graph becomes disconnected [4].  

Theorem 3.1.  If  G(V, E)  is a 2k-regular graph, then G  is 2-factorized [20].  

© 2017  Global Journals Inc.  (US)
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In this section, we presented the main contributions of this paper, the Theorems 3.3 and 
3.4, which show how to build harmonic graphs from the functional product of graphs, and the
Theorem 3.5 that proves that harmonic graphs do not have articulation points . To provide a
better comprehension of this results, we enunciate some important concepts, the Petersen theorem,
described in [20], and the result that guarantees the extension of a range coloring of order ∆ to
an equitable total coloring, which also appears in [11].



Theorem 3.2. Let G (V, E) a regular graph and c:V → C = {1, 2, 3, . . . ∆ + 1} a range 
coloring of order ∆ of vertices of G, then the natural extension from c to G is an equitable total 
coloring [11]. 

The following theorem shows how to generate a harmonic graph from any regular 
graph and its complement. 

Theorem 3.3. For every regular graph G and its complement G*, there are linking applications f1 

and f2, such that (G, f1) x(G*, f 2) is a harmonic graph. 

Proof. Initially, note that for every regular graph G, if n = |V (G)| is odd, then ∆(G) and 

∆(G′) are even. If n = |V (G)| is even, then ∆(Kn) is odd and, as ∆(Kn) = ∆(G) + ∆(G′), 
it has that ∆(G) or ∆(G′) is even. Suppose that ∆(G′) is even, by theorem 3.1, there is a 

decomposition in 2-factors of G’. Let F1, F2, F3, ..., Ft be the 2-factors of decomposition of 

G’, each 2-factors Fi  
is replaced by anoriented cycle, and we define the application                       

b : V (F ) →
 
V (F ) such that if (u,v) ∈

 
E(F ), then

 
b(u) = v.

 
  

 

 
  

 

    

   

Theorem 3.4. Let G and G
*be a regular graph and its complement, if ∆(G*) is even, then for any 

graph
 
G′, such that ∆(G∗) =∆(G′), there are linking applications f1

 

and
 
f2, such that (G, f1) x 

(G’, f2) is a harmonic graph.
 

Proof. Just note that both G′ and H decompose themselves in the same amount of 2-factors. 

Let F1, F2, F3, ..., Ft be 2-factors of decomposition of G ’, r1, r2, ..., rt 
be the associated 

bijections, and K1, K2, ..., Kt 
be the 2-factors of decomposition of H, which will be replaced 

by oriented cycles O1, O2, ..., Ot., the application f1 makes the identity correspond to all the 
edges of G. The application f2 makes the bijection ri correspond to each oriented arc Oi, and 

the bijection r-1
 corresponds to the arc of opposite direction, for every i∈1, 2,..., t. Now, if V 

(G) = {v1, v2, ..., vp},
 
we give the color

 
p
 
to each vertex in the form (x, vp). 

Again, by 

construction, the coloring obtained in (G, f1) x (H, f2)
 
is arange coloring of order

 
∆
 
with

 ∆+ 1 colors. So, (G, f1) x (H, f2)
 
is a harmonic graph.

 
Theorem 3.5.

 
Harmonic graphs do not have cut vertices.

 
Proof.

 
Let G(V, E) be a harmonic graph and c: V→C={0,1,2,...,∆}

 
be a range coloring of 

order
 
∆
 

of the vertices of G,
 
suppose by absurdity that G

 
has a

 
cut vertex u∈V

 
and, 

without losing generality, suppose that the vertex u

 

was colored with the color 0. Let G’
 (V’, E’)

 

be one of the connected components obtained by removing u

 

of graph G, observe 

that the colors of C −

 

{0}

 

= {1, 2, ..., ∆}

 

are used the same number of times in G’

 because, in a range coloring of order

 

∆, all of the adjacent vertices are colored with distinct 
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colors, so given two arbitrary colors i∈ C − {0} and j ∈ C − {0}, every vertex of V’, with 

the color i, has one and only one neighbor with the color j. Denote by Vi’ the set of vertices 
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1.

N ote that b is a bijection, and each 2-factors have associated a bijection of vertices of
G. The application f1 associates the identity to every pair of arcs associated to the edges of 
G. The application f2 associates the bijection b to every arc of the cycle. In the cycle, in the
opposite direction, we associate the reverse bijection. Now, if V (G) = {v0, v1, v2, ..., vp},
we give the color p to each vertex in the form (x, vp). By construction, the coloring 
obtained in (G,f1) x(G′,f2) is a range coloring of order ∆ with ∆+ 1 colors. If ∆(G′) is odd, 
then ∆(G) is even. Therefore, just change the positions of G and G′, in the previous 

reasoning, to obtain the desired result. Then, (G,f1) x(G′,f2) is a harmonic graph.



 

         

   

of G’

 

colored with the color i ∈

 

C, let

 

q = |Vi|, i∈

 

C −

 

{0}

 

if|V0′|

 

= q, then all of the 

vertices of V’

 

colored with colors different from 0 have a neighbor in V0′, so none of them 

can be neighbor of u, which is an absurdity. If |V0′|

 

<

 

q, then it exists at least ∆

 

vertices 

of G’

 

with color other than 0 that do not have neighbors in

 

V0′. But, the number of 
neighbors of u

 

in G’

 

is less than ∆, so it exists vertices of V’

 

with color other than 0 that do 
not have neighbor with color 0, which is an absurdity.

 

From the previous Theorem, it is obtained, immediately, the following corollary.

 

Corollary 3.1

 

Let

 

u,

 

v∈V

 

be any two vertices of G(V, E), if

 

G

 

is a harmonic graph, then 
it exists a cycle in G

 

that contains u

 

and v.

 

IV.

 

Multiagent

 

Systems

 

and

 

Peer-to-Peer

 

Communication

 

System

 

According to

 

Russel

 

and

 

Norvig[16], an agent is anything that can be viewed as 
perceiving its environment through sensors and acting upon that environment through 
actuators". According to Lesser [9]" Multi

 

agent systems are computational systems in which two 
or more agents interact or work together to perform some set of tasks or to satisfy some set of 
goals". The investigation of multi

 

agent systems is focused on the development of computational 
principles and models to construct, analyze, and implement forms of interaction and coordination 
of agents in small or large-scale societies [9].

 

A peer-to-peer system implements an abstract overlay network on top of the network 

topology. The overlay network is a “virtual”

 

network and the peers are connected to each other 
through logical connections, in which all of them should cooperate among themselves providing 
part of its resources on behalf of the accomplishment of a certain service [2].The objective of a 
peer-to-peer (P2P) system is to share computational resources through direct communication 
among its components therefore any device can access directly the resources of other devices of 
the system without any centralized control [2].

 

The combination between peer-to-peer network and multi

 

agent systems has presented 
great solutions for the

 

realization of applications that expand themselves on the internet. In [7], 
these two technologies were used to create an intelligent peer-to-peer infrastructure, which allows 
a dynamic network of intelligent agents

 

while it manages several ways of discovering, cooperating, 
and executing efficiently computational resources. RETSINA [8,19] is a MAS infrastructure that 
uses the P2P Gnutella4

 

network and some protocols based on DHT to extend the discovery 
services. ZHANG [21] proposes a peer-to-peer multi

 

agent system that supports the execution of 
tasks of

 

electronic commerce facilitating a dynamic selection of partners and allowing the use of 
heterogeneous agents.

 

The structured P2P overlay networks are characterized by a well-defined topology. Peers 
are positioned in a controlled way and the resources are distributed in a deterministic way 
making their location in the overlay network more efficient. Currently, we find several topologies 
implementing overlays networks on P2P systems. For example, Pastry [15] and Tapestry [22] are 
mesh-based, Chord [18] implements ring topology, and CAN [13] the d-dimensional torus.  

 
 
 
 
 

4
 It  is a network of file-sharing used mainly for the exchange of songs, movies and software [1]. 

 

© 2017  Global Journals Inc.  (US)

1

G
lo
ba

l
Jo

ur
na

l
of

Sc
ie
nc

e
Fr

on
tie

r
R
es
ea

rc
h 

  
  
  
V
ol
um

e
X
V
II  

 I
ss
ue

  
  
  
 e

rs
io
n 

I
V

V
III

Y
ea

r
20

17

20

  
 

( F
)

Functional Product of Graphs and Multiagent Systems

V. Model of Connection among Multiagent Systems
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In this paper, multiagent systems connection is a linking between two or more 
multiagent systems, in such way that agents of one MAS can communicate with agents of 
another MAS. It enables access to services, resource sharing, and guarantees the joint work. 



  

 

       

  

 

The reasons to amplify a computational structure range from opening a new sector of a 
company to the necessity of sharing servers

 

interconnected to the

 

internet to supply the demand 
of online sales during the launch of a product or on special dates, such as Christmas, for example.

 

In the proposed model, multiagent systems are overlaid by a P2P infrastructure that 
guarantees the interaction/communication among MAS agents. Therefore, each MAS agent 
corresponds to a peer of the P2P overlay network. The P2P overlay network architecture is 
represented by

 

a graph G (V, E), in which the vertices are the peers and the edges are the 
bonds(links) between the peers. Consequently, a vertex of the graph corresponds to a MAS agent, 
and graph G (V, E)

 

represents a multiagent system. Figure 4 illustrates an example in which 
three MAS are intended to be connected. 

 

 
Figure 4:

 

Structure of three MAS (left); Connection among three MAS (right). Adapted 
from Re

 

is [14]
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Notes

Initially, we are going to show how the theorem 3.4 allows making the connection among
three multiagent systems. A graph C5 will be used to represent the topology of each MAS to be 
connected, and a graph C3 will be used to describe the type of connection, in other words, the 
way of making the connection among the three multiagent systems. Note that the graphs C5 and
C3 satisfy the conditions of the theorem 3.4, so the harmonic graph illustrated in figure 5 can be 
constructed.  



  

 

 

Figure 5:
 

Process
 

of construction of a range colored harmonic
 

graph of order 4 with 5 colors
 

 

 

Figure

 

6:

 

Graph

 

G

 

and its complement

 

G ∗(topology of the MAS)

 

 

Figure 7:

 

Resulting range colored harmonic graph of order 4 with 5 colors
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Notes

Now, we are going to show how to expand the structure of a MAS from the

application of the theorem 3.3. Figures 6 and 7 illustrate this construction. Again, we used a
graph C5 as an example.



  

 

 

Figure 8: Harmonic graph total and equitably colored with 5 colors (resulting model of the 
multiagent system) 

a) Parallel Algorithm of Complete Exchange 
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Notes

In this section, we present an algorithm of complete exchange that aims to
guarantee the interaction /communication among every present agent of the P2P
overlay network. In an algorithm that involves a complete exchange of information , each
processor has information, and it is necessary that every processor knows all of the
information.  The algorithm bellow does not intend to be optimum, its objective is to show
that from the total coloring it is possible to build algorithms that are independent of the
topology.



  

 

  

  
 

 
 

 
 

  
 
 
 

 
  

 
 
 
 

 
 

   
 

 
 
 

 
 

 
 

 

 

Figures 9, 10, 11, 12, and 13 detail the functioning of the algorithm. Figure 9a shows 
a graph C6

 

(MAS topology) in which the numbering of the vertices and edges represents an 
equitable total coloring, and the letters above the vertices symbolize the information 
contained in these vertices (agents). As a way to facilitate the comprehension of the 
algorithm, in the following figures, the numbering of the vertices indicates the exchanges of 
indexes of the array

 

of color proposed in step 3.
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Figure 9: Step-by-step of the Algorithm (original position)

Algorithm1: Complete Exchange of Information

Entrance: total and equitably colored graph G
Variables: k: entire (total number of necessary colors)

x[k]: array of color
aux: color

start
Step 1: 
For i= 1 up to k make

x[i] = i
end

end
start

Step 2:
for i= 1 a k make

the direction of the vertex in which the color has the highest rate 
in the array x[k]

end
end
start

Step 3: 
aux: 
x[k]
For i= k going down to 1 make

x[i] = x[i− 1]
x[1] = aux

end
end
start

Step 4:
repeat

the steps 2 and 3
until all of the vertices receive all the information;

end

Notes

Transmit the information through whichever edge with the color i, in



  

 

 

  

 

Figure 10:

 

Step-by-step of the Algorithm (1stexchange)

 

 

Figure 11:

 

Step-by-step of the Algorithm (2ndexchange)
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Figure 12: Step-by-step of the Algorithm (3rdexchange)

Notes



 
 

 

  

 

  

b)

 

Algorithm analysis

 

Theorem 5.6.

 

Let x

 

and y

 

be adjacent vertices of graph G(V, E)

 

associated to a network, 
vertex y

 

will receive the information of x

 

in a maximum of k

 

repetitions of steps 2 and 3 of 
the algorithm.

 

Proof.

 

If two vertices are adjacent, then they cannot have the same color, Consequently, they 
have distinct numbers. Step 2 guarantees that the exchange of information will always be in 
the direction of the vertex from the smallest to the biggest index in the array of color. With 
the exchange of the index of the array of color proposed by step 3, after at least k

 

exchanges, every vertex will have at least once a bigger index than its neighbor. Therefore, 
in a maximum of k

 

repetitions of steps 2 and 3, two adjacent vertices exchange information.

 

Theorem 5.7.

 

If  d

 

is the length of the longest path between any two vertices of graph G, 
then in the d .k2

 

steps all of the vertices will receive all the information.
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Figure 13: Step-by-step of the Algorithm (4thexchange)

c) Advantages of the Proposed Model
The implementation of topologies that admit equitable total coloring can make the 

processing more efficient because it allows a natural division of the network resources, in 

which at least 
𝑡𝑡

∆+2
processors or connections can be used simultaneously, let t be the 

number of elements of the graph associated to the network, i.e., number of vertices plus 

number of edges and ∆ the maximum degree of the graph.

An equitable total coloring obtained by the natural extension of the range coloring 

of order ∆ with  ∆ + 1 colors guarantees that neighbor vertices always have distinct colors. 

In the case of the graph having an even maximum degree, the equitable total coloring is 
obtained with ∆ + 1 colors [17], fact that provides to the topology a processing 
optimization because in every given moment or the processor (vertex of color i) is executing 

Ref

Proof. Note that the algorithm executes k steps in each passage through step 2 since k colors
were used in the total coloring of the graph. At each exchange in the indices of the array of
color predicted by step 3, we return to step 2 therefore, after k exchanges, we have k.k = k2
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a task or it is receiving information from one of its neighbors through one of its links (edge 
of color j), in other words, in every moment, every processor of the system is being 
activated. In this sense, the use of algorithms based on equitable total coloring does not 
allow the existence of idle processors in any step of the computation.
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Conclusions
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Moreover, it is not difficult to verify that topologies such as mesh, hypercube, and 
torus do not always admit a range vertex coloring of order ∆ with ∆ + 1 colors. In
contrast, among the topologies obtained by the cartesian product, the hypercube is the
most scalable and the only one that allows recursive increase while preserves its original
structure. Under this perspective, harmonic graphs, besides being scalable and having a
recursive structure, they also present as an advantage the fact that they admit an
equitable total coloring obtained by the natural extension of a range coloring of order ∆
with ∆+ 1 colors.

In this article, we used the concept of the functional product of graphs to build a
family of regular graphs that admits a range vertex coloring ∆ with ∆ + 1 colors,
denominated harmonic graphs. We also proved that the harmonic graphs do not have cut
vertices. We showed that the family of harmonic graphs offers advantages in its
implementation, as P2P overlay network topology for the communication among MAS
because it disposes of a scalable and recursive structure since, from an initial basic
instance, it can expand its form dynamically maintaining properties, such as connectedness
and regularity. Moreover, a topology based on harmonic graphs offers security against failures,
since it does not have cut vertices. We also showed that, from the concept of equitable total
coloring, the confection of parallel algorithms could be done generically, which guarantees a
natural division of the resources of a network of connections. Finally, we presented a model of
connection among multiagent systems based on the use of harmonic graphs as a support for
the construction of P2P overlay network topologies used for the communication among the
MAS.
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