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Abstract- The present paper deals with the existence and stability of libration points in restricted three-body problem with
Albedo effect when less massive primary is an oblate spheroid. Since, the spacecraft is affected by both radiations i.e
radiation pressure as well as Albedo. In this paper this is investigated how Albedo perturbed the libration points and its
stability? It is found that there exist five libration points, three collinear and two non-collinear, the non-collinear libration
points are stable for a critical value of mass parameter O< p < p.  where p. = 0.0385208965 ... - (0.00891747 +
0.222579K) a -0.0627796 o but coallinear libration points are still unstable. Also, an example of Sun-Earth system is taken
in the last as a real application.
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I. [NTRODUCTION

The restricted three-body problem is one of well known problem in the field
of celestial mechanics in which two finite bodies called primaries move around
their center of mass in circular or elliptic orbits under the influence of their
mutual gravitational attraction and a third body of infinitesimal mass is mov-
ing in the plane of the primaries which is attracted by the primaries and
influenced by their motion but not influencing them. In classical case there
exist five libration points out of which three are collinear and two are non-
collinear. The collinear libration points Lq, Ls and L3 are unstable for
0<pu< % and the non collinear libration points L4 s are stable for a crit-
ical value of mass parameter p < p. = 0.03852..., Szehebely (1967). Some
studies related to the equilibrium points in R3BP or ER3BP, taken into ac-
count the oblateness and triaxiality of the primaries, Coriolis and Centrifugal
forces, Yarkovsky effect, variation of the masses of the primaries and the in-
finitesimal mass etc. are discussed by Danby (1964); Vidyakin (1974); Sharma
(1975); Choudhary R. K. (1977); Subbarao and Sharma (1975); Cid R. et. al.
(1985); El-Shaboury (1991); Bhatnagar et al. (1994); Selaru D. et.al. (1995);
Markellos et al. (1996); Subbarao and Sharma (1997); Khanna and Bhatnagar
(1998, 1999); Roberts G.E. (2002); Oberti and Vienne (2003); Perdiou et. al.
(2005); Sosnytskyi (2005); Ershkov (2012); Arredondo et.al. (2012); Idrisi and
Taqvi (2013); Idrisi (2014); Idrisi and Amjad (2015). The photo-gravitational
restricted three-body problem arises from the classical problem if one or both
primaries is an intense emitter of radiation, formulated by Radzievskii (1950).
He has considered only the central forces of gravitation and radiation pres-
sure on the particle of infinitesimal mass without considering the other two
components of light pressure field and studied this problem for three specific
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bodies; the Sun, a planet and a dust particle. The radiation repulsive force Fj,
exerted on a particle can be represented in terms of gravitational attraction
F, (Radzievskii, 1950) as F, = F;(1 —¢q) , where ¢=1— %, a constant for
a given particle, is a reduction factor expressed in terms of the particle radius
a, density ¢ and radiation-pressure efficiency factor z (in c.g.s. system) as:

5.6x103
ad z

q=1-
The assumption that ¢ is a constant implies that the fluctuations in the beam
of solar radiation and the effect of planets shadow are neglected. Typical val-
ues for diameter of IDP (Interplanetary Dust Particles) are in the range of 50
- 500 ym and their densities range is 1 — 3g/cm?® with an average density of
2g/cm3. As the size of the particles increases, their density decreases (Griin
et.al. 2001). Some of the notable research in PRTBP are carried by Chernikov
(1970); Bhatnagar and Chawla (1979); Schuerman D.W (1980); Simmons et.
al. (1985); Kunitsyn and Tureshbaev (1985); Lukyanov (1988), Sharma (1987);
Xuetang et.al. (1993); Ammar (2008); Singh and Leke (2010); Douskos (2010);
Katour et.al. (2014) etc. In 2012, S. V. Ershkov studied the Yarkovsky effect
in generalized photogravitational 3-body problem and proved the existence of
maximally 256 different non-planar equilibrium points when second primary
is non-oblate spheroid. The main contribution of the natural radiation pres-
sure on the satellite is due to the direct solar radiation and the second main
contribution of radiation forces is due to the Earth reflected radiation known
as the Albedo studied by Anselmo et.al. (1983); Nuss (1998); McInnes (2000);
Bhanderi (2005); Pontus (2005); MacDonald (2011) etc. Albedo effect is one
of the most interesting non-gravitational force having significant effects on the
motion of infinitesimal mass. Albedo is the fraction of solar energy reflected
diffusely from the planet back into space (Harris and Lyle, 1969). It is the
measure of the reflectivity of the planets surface. Therefore, the Albedo can
be defined as the fraction of incident solar radiation returned to the space from
the surface of the planet (Rocco, 2009) as

__ _radiation reflected back to space
Albedo = incident radiation

In this paper the Albedo effect on the existence and stability of the libration
points when smaller primary is a homogeneous ellipsoid has been studied. This
paper is divided into five sections. In section-2, the equations of motion are
derived. The existence of non-collinear and collinear libration points is shown
in section-3. In section-4, the stability of non-collinear and collinear libration
points is discussed. In section-5, a real application to Sun-Earth system has
shown. In the last section, all the results are discussed.

[I. EQUATIONS OF MOTION

Let ms2 be an oblate spheroid with axes a, band ¢ (a =b > ¢)and my
a point mass and a source of radiation such that m; > msy, are moving in
the circular orbits around their center of mass O. An infinitesimal mass mg
<< 1, is moving in the plane of motion of m; and msy. The distances of mg
from my, mo and O are ry, ro and 7 respectively. F; and F, are the
gravitational forces acting on ms due to m; and mg respectively, Fj, is the
solar radiation pressure on mg due to mj and Fja is the Albedo force (solar
radiation reflected by mq in space) on mgz due to mg (Fig. 1). Also, let us
consider that the principal axes of spheroid remains parallel to the synodic
axes Ozyz throughout the motion and the equatorial plane of ms is coincide
with the plane of motion of m; and ms. Let the line joining m, and msy be
taken as X — axis and O their center of mass as origin. Let the line passing
through O and perpendicular to OX and lying in the plane of motion m;
and mo be the Y — axis. Let us consider a synodic system of co-ordinates
Ozxyz initially coincide with the inertial system OXY Z, rotating with angular
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velocity w about Z — axis (the z — awxis is coincide with Z — azis). We
wish to find the equations of motion of mg using the terminology of Szebehely
(1967) in the synodic co-ordinate system and dimensionless variables i.e. the
distance between the primaries is unity, the unit of time ¢ is such that the
gravitational constant G = 1 and the sum of the masses of the primaries is
unity i.e. myp + me = 1.

The force acting on mg due to mq and mo is Fy (1- F,/Fi)=Fi(1 —«)
and Fy (1- Fa/F3) = F» (1— ) respectively, where a = F,/F; <<1
and B = Fu/Fy << 1. Also, @ and f can be expressed as:

o = Ll B: L2

2rG mlca; 271G moco

where L is the luminosity of the large primary m;y, Lo is the luminosity of
small primary mo, G is the gravitational constant, c is the speed of velocity

m,(H -1,0)

Fig. I1: Configuration of the R3BP under Albedo effect when mg is an oblate spheroid

and o is mass per unit area. Now,

L 1-— L
fézﬁ%:ﬂza(f) k;k:L—?:constant. (1)

The equations of motion of the infinitesimal mass m3 in the synodic coordinate
system and dimensionless variables are given by

i — 209 = Qu; i + 2ni = 0, (2)

where

R e (S

0, = p2p_ L= ;%u)(l —a)  prtl —Tgu)(l ) (1+ %)

Qy:y{nz_(l—ﬂ)gl—a) _M(lgﬁ) <1+ 30’)}

2
2r3
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3
n?=1+ 70 is the mean motion of the primaries, (3)

a2 — 2
o= 5 is the oblateness factor,
= (z—p)? + 9% (4)
3= (z+1—p)°+y% (5) N
- 1 otes
O<p= <-—= mp=1—p; mo=p.

mi+ omy 2

1. LIBRATION POINTS

At the libration points all the derivatives are zero i.e.
t=0,y=0,£=0,9=0,, =0,0, =0.

Therefore, the libration points are the solutions of the equations

0 = no— (l—u)(w;%u)(l—a) _u(w+1;Su)(1—ﬁ) <1+23;f§> _0
Qyzy{nQ— (luiéla) _u(lrgﬂ) <1+§%>}:0

a) Non-collinear Libration Points

The non-collinear libration points are the solution of the Equations 2, =0
and 2, =0, y#0 i.e.

o (A=pl-—pl-a)

W2 - u(w+1;§u)(1—6) (1+§’%>=0 (6)
9 1-— l1—« 1-— 30
a2 ul% )_u(rgﬂ)<l+2r§>:0 %

On substituting ¢ =0, « =0 and S = 0, the solution of Equns. (6) and
(7)is r1 =1, r =1 and from Eqn. (3), n = 1. Now we assume that the
solution of Eqns. (6) and (7) for 0 #0, o« #0and S #0as r =1+ &,
ro = 14&, &1,& << 1. Substituting these values of r; and r9 in the Eqns.
(4) and (5), we get

1 2
xzu—+§2—§1;y=i\/§{1+(§2+€1)} (8)
2 2 3
Table 1: Non-collinear Libration Points L4 5(x £ y) for u=0.1and o =10"3
k=0 k=0 k =0.01 k=0.01 k=0.1 k=0.1
«@ T +y T +y T +y
0.0 —0.399512 0.865737 —0.399512 0.865737 —0.399512 0.865737
0.1 —0.366167 0.846492 —0.369167 0.844761 —0.396167 0.829171
0.2 —0.332833 0.827247 —0.338833 0.823783 —0.392833 0.792606
0.3 —0.299512 0.808002 —0.308513 0.800806 —0.389512 0.756041
0.4 —0.266167 0.788757 —0.278167 0.781828 —0.386167 0.719475
0.5 —0.232833 0.769512 —0.247833 0.760851 —0.382833 0.682909
0.6 —0.199511 0.750267 —0.217502 0.739874 —0.379510 0.646344
0.7 —00.166167 0.731022 —0.187167 0.718897 —0.376167 0.609778
0.8 —0.132833 0.711777 —0.156833 0.697921 —0.372833 0.573213
0.9 —0.099512 0.692532 —0.126502 0.676943 —0.369514 0.536647
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Now, substituting the values of x, y from Eqns. (8), r1 = 14+& and o = 1+&;
in the Equs. (6) and (7) and neglecting higher order terms, we obtain

_ e vom N B
51—_34'2(1 1—/1,)0-,52_ 3

Thus, the coordinates of the non-collinear libration points L4 5 are

Using the relation (1) i.e. 8= a(l — u)k/p, we have

N A=k a
T=p 2+3{1 . }a+2, (9)

y:i?{l—?{?(lﬂ-(l_uu)k)a'f';}] (10)

Thus, we conclude that there exist two non-collinear libration points Ly
and these points are affected by oblateness as well as Albedo effect (Fig. 2),
also these points form scalene triangle with the primaries as r; # 9. The
numerical location of L, 5 is also calculated in Table 1 for = 0.1, o = 0.001
and different values of « and k and it is found that the abscissa and ordinate
of non-collinear libration points are the decreasing functions of « and k i.e.
as « and k increases, x and y decreases. For « = 0, the results are in
conformity with those of Bhatnagar and Hallan (1979). If o =0 and o =0,
the classical case of the restricted three body problem is verified (Szebehely,
1967).

Fig. 2: La verses a; p=0.1, o= 103
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b) Collinear Libration Points

The collinear libration points are the solution of the Equations (2, = 0 and
y=01.e.

f@) = ns— (1—p)(= ;%u)(l —a) pz+l —Tgu)(l ) <1+ 23:%> —0

(11)

where r; = | — x;],4 = 1,2 is a seventh degree equation in z.

Since f(x) > 0 in each of the open interval (—oo,u — 1), (u— 1,p)
and (p,00), the function f(z) is strictly increasing in each of them. Also,
f(x) > —0as z — —o0, (u—1)+0o0r (u+0)and f(x) = oco0as z — oo,
(u—1)—=0or (u—0). Therefore, there exists only one value of z in each of
the open intervals (—oo,p — 1), (u—1,u) and ( g, 00) such that f(z) = 0.
Further, f(ux —2) <0, f(0) > 0 and f(p + 1) > 0. Therefore, there are only
three real roots lying in each of the intervals (u — 2, — 1), (u—1,0) and
(it + 1). Thus there are only three collinear libration points.

From the Fig. 3, this is observed that the first collinear libration point L;
always lie at the right of the primary mes, the second libration point Lo lies

1ol~— T ]
L | | | | ]
L | | | | |
05— -~~~ -~ moommmoo mommmmee- e -

[ | | | |

| | | |

r | | | |

00 | | | |
| | | L o
L I I I /
05 - DR S ——— ]

| | | |

| | | |
[ | | | | |
“10 R R R ~La ]
’ l ‘ f l ]
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Fig. 3: o verses L, i=1,2,3; p=0.1, o =10"3

between the center of mass of the primaries O and m; and the third libration
point L3 lies at the right of the primary my. This is also observed that the
libration points L; move away from the center of mass as « increases while
the second and third libration points Ly and L3 move toward the center of
mass as « increases.

The Equation (11) determines the location of the collinear libration points
Li(x1,0) Lo(x2,0) and Ls(xs,0) lie in the intervals (—oo,pu— 1), (n— 1, 1)
and (u,00) respectively, where

r1=p—1-E,
x2::u_1+£2,
x3 = p+&3. (12)

Since the libration point L; lies in the interval (—oo,pu — 1) i.e. left to the
smaller primary, we have r = u — x; and 79 = g — 1 — x; which when
substituted in Equation (11), gives

© 2017 Global Journals Inc. (US)
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g Lm0yt 1009 (1, 30) g
1 2 2

Similarly, for Lg(22,0) and Ls(z3,0) the Equation (11) becomes

o U=pl-—pl-—a) prt+tl-pd-7H) <1+30) —0 (14)

et 273

2
2r;

o (U—pl-—pl-a prt+l-pd-7H) <1+ 30) —0 (15)

Table 2: Collinear Libration Points L;(z;,0)(i = 1,2,3) for k=0

u=.1,0=103k=0] p=.1,0=103k=0] pu=.1,0=103k=0
a L1 Lo L3
0.0 —1.26086 —0.607519 1.04112
0.1 —1.25296 —0.594138 1.00813
0.2 —1.24529 —0.578763 0.972618
0.3 —1.23783 —0.560863 0.934029
0.4 —1.23061 —0.539686 0.891595
0.5 —1.22361 —0.514114 0.844181
0.6 —1.21684 —0.482382 0.789997
0.7 —1.21029 —0.441432 0.725923
0.8 —1.20396 —0.385085 0.645599
0.9 —1.19786 —0.296465 0.531473

Table 3: Collinear Libration Points L;(z;0)(i =1,2,3) for k=0.01

n=.10=103k=.01] pu=.1,0=103k=.01] p=.1,0=10"3k=.01
a L Lo L3
0.0 —1.26086 —0.607519 1.04112
0.1 —1.25182 —0.594889 1.00806
0.2 —1.24295 —0.580271 0.972458
0.3 —1.23431 —0.563125 0.933778
0.4 —1.22588 —0.542681 0.891246
0.5 —1.21768 —0.517794 0.843722
0.6 —1.20971 —0.486666 0.789412
0.7 —1.20197 —0.446175 0.725189
0.8 —1.19446 —0.390047 0.644678
0.9 —1.18717 —0.301225 0.530279

The solution of Equations (13), (14) and (15) is given in Table 2.

For k = 0, the solutions obtained for the Equations (13), (14) and (15)
are the libration points L;, (i = 1,2,3) in the photogravitational restricted
three-body problem when smaller primary is an oblate body but if k # 0
the libration points L;, (i = 1,2) are affected by the Albedo and this effect
displaced the libration points from its actual position as shown in Fig. 4 and
5 but L3 not much affected by albedo, see Fig. 6.

IV.  STABILITY OF LIBRATION POINTS

The variational equations are obtained by substituting = = 2o+ £ and y =
Yo + n in the equations of motion (2), where (z¢,zp) are the coordinates of
Lyor Lsand &n<<1 ie.

€ — 2mi) = €00, + 12

xy?
i+ 2né = €020, + 16l (16)

Here we have taken only linear terms in £ and 7. The subscript in {2 indi-
cates the second partial derivative of 2 and superscript o indicates that the
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derivative is to be evaluated at the libration point (zo,yo). The characteristic
equation corresponding to Eqn. (16) is

M (4n® — 020, — Q) ) N+ 20,00 — (29)> =0 (17)

Notes

33 1351  33u 452
1-3 > -
=3+ (54 T8 s+ )

1 1354 33u 452
—S(2- - .
5 3“)5+( 6 T’1-p 81-m)7

a) Stability of Non-collinear Libration points
Let A\? = II, therefore Equation (17) becomess

I+l +¢=0 (18)

which is a quadratic equation in II and its roots are given by

1
I 5 = 5(*(]1 + \/5) (19)
where g =4n? — 0, — 029 :qp = 29,00 — (29,)% D = ¢} — 4.
The motion near the Libration point (zg, o) is said to be bounded if D >0

i.e.

1—27p 42702 — 6(1 — p) {p+ (1 — )k} a+ 3 (8 — 237p + 267u2) 0y
+3(—4+37p — 111p%)o5 > 0 (20)

The Equation (20) is quadratic in , on solving it we have

e LY, p3 — 4p1ps (21)

2p1

H1,2
where
p1 = 108 + 24(1 — k)a + 4680,
po = —108 — 24(1 — 2k)a — 4920,
p3 =1 — 6ka + 3o.
From the Fig. 7, p1 > 1/2 and pg < 1/2 for all values of «a. Thus the critical

value of mass parameter . for which the non-collinear libration points Ly s
are stable is

© 2017 Global Journals Inc. (US)
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— o — /D2 — 4
_ P2 b3 P1p3<1/2 (22)

2p1

Le

If a=0,0=0, p.= 0.038520896504551... which is the critical value of
mass parameter for classical case. Also, if a = 0,0 = 0 then u = pg is the
solution of the Equation (21) where po = 0.0385208965... (Szebehely, 1967).
When « # 0,0 # 0, we suppose that p. = po+ & a+E&o1 + €302 as the root
of the equation (20), where &;,&5,&3 are to be determined in a manner such
that D = 0. Therefore we have

2(k+po—2kpo—ug+kug)
&1=- 9(1—2p0) ’

€)= (8—237puo+267u2)
2= 36(1—2po)

€y = (—4+73u0—1113)
3= 36(1—2p0)

Therefore

e = 0.0385208965... — (0.00891747 4 0.222579k)cr — 0.06277960  (23)

H1

0.8+

0.6+

H2

0.02 0.04 0.06 0.08 0.10

Fig. 7 aversus p;(i=1,2); k=0.0l,0=10"3

0.01 0.02 0.03 0.04

—04}

-06+

Fig. 8 pversus IT; a=0.01, k=0.01, 01 =1073, o9 =10"*
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Thus, the non-collinear libration points L4 5 are stable for the critical mass
parameter 0 < u < p., where p. is defined in Equation (23).

As shown in the Fig. 8, II1» < 0 for p < p.. Thus the eigen-values of
characteristic Equation (17) are given by X2 = £iVII1, X34 = +iV1ls,
therefore, the non-collinear libration points L4 5 are periodic and bounded
and hence stable for the critical mass parameter p < ., where g, is defined
in Equation (23).

b) Stability of Collinear Libration points

First we consider the point lying in the interval (u — 2, 4 —1). For this point,
ro <1, r1 > 1 and

ngz — TLQ + 2(17H)3(17a) + 2/‘(1:;6) + 671175‘7 > O’ ‘Qg’t =0
2

T'l 7'2

(3 (o) £ (2o

Similarly, for the points lying in the interval (u—1,0) and (u, u+1), 29, >
0, 029, =0, £, <0 Since the discriminant of Equation (19) is positive and
the four roots of the characteristic equation (17) can be written as Aq o = £s
and A34 = *t ( s and ¢ are real). Hence the motion around the collinear
libration points is unbounded and consequently the collinear libration points
are unstable.

¢) Application to Real System

Let us consider an example of the Sun-Earth system in the restricted three-
body problem in which the smaller primary mq (ellipsoid) is taken as the Earth
and the bigger one m4 as Sun. From the astrophysical data we have: Mass of
the Sun ( my) = 1.9891 x 103%kg; Mass of the Earth ( ms) = 5.9742 x 10**kg;
Axes of the Earth: a = 6378.140km, ¢ = 6356.755km; Mean distance of Earth
from the Sun = 14U = 1.5 x 10"'m; Luminosity of Sun = 3.9 x 10%W; Flux
received on Earth by the Sun = 1379W/m?; Albedo of Earth = 0.3 i.e.
30 percentage of energy reflected back to space by the Earth, therefore the
luminosity of Earth = 5.2 x 1016W.

In dimensionless system

© = 0.00000300346, a = 0.0000426352, c¢ = 0.0000424923, k = 1.3 x
10719, Therefore B = 0.0000443931c, o = 2.43294 x 107'2, oy = 1.2793 x
1012, n = 1.0000000000018248. From the Equations (9), (10), (13), (14) and
(15), the libration points obtained in Sun-Earth system are the given in Table
3.

Table 4: Libration Points in Sun-Earth System

o L1 Lo L3 Ly s(x, £y)

0.0 —1.01003 —0.990027 1.000001 (—0.499997, +0.866025)
0.1 —1.00512 —0.964684 0.965491 (—0.466665, +0.846781)
0.2 —1.00378 —0.928121 0.928319 (—0.433333, +0.827534)
0.3 —1.00312 —0.887822 0.887905 (—0.400001, +-0.808288)
0.4 —1.00272 —0.843389 0.843434 (—0.366671, +-0.789042)
0.5 —1.00244 —0.793674 0.793699 (—0.333338, +0.769796)
0.6 —1.00223 —0.736789 0.736808 (—0.300006, +0.750551)
0.7 —1.00206 —0.669421 0.669432 (—0.266674, +0.731304)
0.8 —1.00193 —0.584795 0.584805 (—0.233342, +0.712058)
0.9 —1.00182 —0.464153 0.464161 (—0.200011, +0.692813)
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Flig. 9: a versus Collinear Libration Points L;(i = 1,2,3.) in Sun-Earth system

Since all the libration points in Sun-Earth system are the functions of «,
so as « increases in the interval 0 < « < 1, the first collinear libration point
L slightly displaced while second and third libration points Ly and L3 move
toward center of mass (Fig. 9). The abscissa and ordinate of non-collinear li-
bration points also decreases as « increases and hence the shape of the scalene
triangle formed by L4 5 reduces (Fig. 10).

Since II; < 0 in the interval 0 < o < 0.00785 and Il < 0in 0 < a <1,
the roots of the characteristic equation (17) are pure imaginary in the interval

Fig. 10: « versus Non-collinear Libration Points L;(i = 1,2.) in Sun-Earth system
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0 < o £ 0.00785. Thus the non-collinear libration points L4 5 in Sun-Earth
system are stable if 0 < a < 0.00785.

For the collinear libration points L;(i = 1,2, 3) in Sun-Earth system, 29, > 0,
29,=0, 29, <0,in 0<a< 1. Since the discriminant of Equation (19) is
positive and the four roots of the characteristic equation (17) an be written as
M2 =*sand A34 = £t ( s and ¢ are real). Hence the motion around the
collinear libration points is unbounded and consequently the collinear libration
points are unstable.

V. CONCLUSION

In the present paper, the existence and stability of libration points in circu-
lar restricted three-body problem has been studied under Albedo effect when
smaller primary is an oblate spheroid. The equations of motion in case of
Albedo effect are derived, Eqn. (2). For For § = 0, the problem reduces to
photogravitational restricted three-body problem when smaller primary is an
oblate spheroid. It is found that there exist five libration points, three collinear
and two non-collinear. The first collinear libration point L; lie at the right
of the primary ms, the second libration point Lo lies between the center of
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mass of the primaries O and m; and the third libration point L3 lies at the
right of the primary m;. The libration points L; (i = 1, 2, 3) are affected by
the Albedo effect and this effect displaced the libration points from its actual
position as shown in Figs. 4, 5 and 6. Also, there exist two non-collinear
libration points L4 5 and these points are affected by triaxiality as well as
Albedo effect Figs. 3 and 4, these points form scalene triangle with the pri-
maries as 7, # rp. The numerical location of L4 5 is also calculated in
Table 1 for p = 0.1 and different values of « and k and it is found that
the abscissa and ordinate of non-collinear libration points are the decreasing
functions of a and k i.e. as « and k increases, = and y decreases. For «
= 0, the results are in conformity with those of Bhatnagar and Hallan (1979).
If aa=0and o = 0, the classical case of the restricted three body problem
is verified (Szebehely, 1967). The non-collinear libration points are stable for
a critical value of mass parameter u < py. where p. = 0.0385208965 ... -

(0.00891747 + 0.222579k) « - 0.0627796 o but collinear libration points are
still unstable. Also, an example of Sun-Earth system is taken in Section-5 as
a real application and this is found that all the libration points in Sun-Earth
system are the functions of «, so as « increases in the interval 0 < o < 1,
the first collinear libration point L slightly displaced while second and third
libration points Ls and Lz move toward center of mass (Fig. 9). The abscissa
and ordinate of non-collinear libration points also decreases as « increases
and hence the shape of the scalene triangle formed by L, 5 reduces (Fig. 10).
The non-collinear libration points L4s in Sun-Earth system are stable for
0 < a < 0.00785 but collinear libration points are unstable.
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