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Theoretical Analysis of Reactivity and
Regioselectivity in [1+2] Cycloaddtion Reaction
of Some Monoterpenes with Dichlorocarbene
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Abstract- A theoretical study of the molecular mechanism and
regioselectivity of the [1+2] cycloaddition reaction between
alkenes: limonene, terpinolene, v-terpinene and
dichlorocarbene has been carried out at the B3LYP/6-31G
(d,p) level of theory. The calculation of activation and reaction
free energies indicates that these reactions are regio-specific
in good agreement with experimental result.
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l. [INTRODUCTION

he monoterpenes are essential ingredients in fine
Tohemical industry and flavor and perfume industry.

It is used to flavour many kinds of baked goods,
confections, pudding, meats, sausages, sauces,
vegetables and beverages [1]. The pharmacological
activities of nutmeg mainly exist in its essential oil
fraction [2]. Nutmeg oil possesses a wide array of
pharmacological actions including analgesic [3],
antifungal [4-7], antimicrobial [8-12], anti-inflammatory
[13], antibacterial [14-16], antioxidant [17-18],
antidepressant [19], as well as hepatoprotective activity
[20]. The most important constituents of monoterpenes
are a- and B- pinene. We were interested in a classical
reactivity of carbenes. The dichlorocarbene reacts with
alkenes such as limonene R, (4-Isopropenyl-1-methyl-
cyclohexene), terpinolene R, (4-Isopropylidene-1-
methyl-cyclohexene) and y-terpinene R; (1-Isopropyl-4-
methyl-cyclohexa-1,4-diene) in dichloromethane, to form
the cyclopropane derivative (Scheme 1). The structures
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of these products have been determined by
spectroscopy ('H, *C and mass spectroscopy). [21]
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Scheme 1: [1+2] cycloaddition reaction of limonene 1,
terpinolene 2 and y-terpinene 3 with dichlorocarbene.

Herein, a DFT study of the [1+2] cycloaddition
reaction of limonene 1, terpinolene 2 and y-terpinene 3
with dichlorocarbene yielding: 4-(2-propene)-1-Methyl-
7,7-dichloro-bicyclo[4.1.0]heptane,  1,1-Dichloro-2,2,6-
trimethyl-spiro[2.5]oct-5-ene and 7,7-Dichloro-4-
isopropyl-1-methyl-bicyclo[4.1.0]hept-3-ene,experiment-
tally studied by Hossni Ziyat et al. [21] are presented
(see Scheme 1). Our aim is to perform a theoretical
study of the reaction mechanism of these cycloaddition
reactions yielding the final products: 1a, 2a and 3a, as
well as to explain the regioselectivity experimentally
observed.

[1. COMPUTATIONAL DETAILS

All calculations reported in this work were
performed in the GAUSSIAN 09, B3LYP/6-31G(d,p) as
well as theoretical levels were performed. Optimizations
of the stable structures were performed with the Berny
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algorithm, whereas the transition states were calculated
using the QST2 procedure followed by the TS method.
Stationary points were characterized by frequency
calculations. All transition states showed only one
negative eigen value in their Hessian matrices. For all
reactions, IRC [22] calculations were performed to
connect previously computed transition structures with
suitable minima. Solvent effects of dichloromethane
were taken into account through single point energy
calculations using the polarisable continuum model
(PCM). [23]

The global electrophilicity index [24] o, was
given by the following expression, o = (u°/2n), in terms
of the electronic chemical potential 4 and the chemical
hardness m. Both quantities may be approached in
terms of the one-electron energies of the frontier
molecular orbital HOMO and LUMO, eH and e, as u =
(eH - el)/2 and n = (eL - eH), respectively. [25] The
empirical nucleophilicity index N, [26] based on the
HOMO energies obtained within the Kohn-Sham

scheme, [27] and defined as N Eromo(NU) -
Evomo(TCE).  The nucleophilicity was referred to
tetracyanoethylene  (TCE). Electrophylic P/ and

nucleophilic P, Parr functions, [28-34] were obtained
through the analysis of the Mulliken atomic spin density

(ASD) of the radical anion and radial cation of the
reagents. The local electrophilicity and nucleophilicity
indices, were evaluated using the following expressions:
o, =o.Pf, N=N.P,/

[11. RESULTS AND DISCUSSION

The present theoretical study is divided into
three parts: (i) first, an analysis of DFT reactivity indices
at the ground state of the reagents involved in the [1+2]
cycloaddition reaction between dichlorocarbene and
limonene 1, terpinolene 2 and vy-terpinene 3 s
performed in order to explain the reactivity in these
reactions; (i) in the second part, potential energy
surfaces (PESs) are analyzed (iii) in the third part, we
proposed new method to calculate the percentages of
the products.

a) DFT analysis based on the global and local reactivity
indexes

These [1+2] CA reactions were first analyzed
using the reactivity indices. The global indices, named
electronic chemical potential u, chemical hardness n,
global electrophilicity w and global nucleophilicity N, for
the reagents involved in these [1+2] CA reactions are
gathered in Table 1.

Table 1. DFT/B3LYP/6-31G (d,p) Electronic chemical potential 4, chemical hardness n, electrophilicity o, and
nucleophilicity N values, in eV

M n N w
limonene 1 -3.17 5.85 3.42 0.85
terpinolene 2 -2.46 6.60 3.76 0.45
y-terpinene 3 -2.55 6.66 3.63 0.49
Dichlorocarbene 4 -5.45 3.80 217 3.90

The  electronic  chemical  potential  of
dichlorocarbene, u= -5.45 eV, is lower than that of
limonene 1, u= -3.17 eV, terpinolene 2 u= -2.46 eV and
y-terpinene 3, u= -2.55eV, indicating that the global
electron  density transfer (GEDT) along the
corresponding reactions will flux from these the alkenes
toward the dichlorocarbene. It also is clear from the
table 1 that the dichlorocarbene presents a high
electrophilicity w index, w= 3.90 eV, being classified as
a strong electrophile and a very low nucleophilicity N
index, N= 2.17 eV. On the other hand, limonene 1,
terpinolene 2 and vy-terpinene 3 present very low
electrophilicity, w= 0.85 eV, w= 0.45 eV and w= 0.49
eV respectively, and nucleophilicity indices, N= 3.42 eV,
N= 3.76eV and N = 3.63 eV. In spite of the high
nucleophilic character of these alkenes (limonene 1,
terpinolene 2 and vy-terpinene), the high electrophilic
character of dichlorocarbene allows the participation of
these alkynes (limonene 1, terpinolene 2 and y-
terpinene) in cycloaddition reactions [1+2] as
nucleophiles.

The most favourable reactive channel is that
involving the initial two-centre interaction between the

© 2017 Global Journals Inc. (US)

most electrophilic P} and nucleophilic P, Parr functions
centre of both reagents.

Recently, electrophilic P and nucleophilic
P, Parr functions have been proposed to analyse the
local reactivity in polar processes involving reactions
between a nucleophile— electrophile pair.

The analysis of the nucleophilic P, Parr
functions of limonene 1, terpinolene 2 and y-terpinene 3
(figure 2) shows that the C1 and C2 carbon of limonene
1, the C1 and C2’ carbon of the terpinolene 2 and C1
and C2 carbon of y-terpinene 3 present the maximum
values of P, : 0.22, 0.29, 0.25, 0.27, 0.26 and 0.29
respectively, indicating that these sites are the most
nucleophilic centers of these species (see Scheme 1 for
atom numbering). Consequently, the regioselectivity
observed is predicted correctly by the Parr function.



Figure 1. Nucleophilic P, Parr functions of limonene 1, terpinolene 2 and y-terpinene 3

b) Kinetic study

In order to show that the dichlorocarbene
preferentially attacks the one double, we calculated the
thermodynamic parameters of the reactants, the
products and transition states energies, table 2 contains

the total and relative enthalpies, entropies, and free
energies for the CA [1+2] reaction of the monoterpenes
(limonene 1, terpinolene 2 and vy-terpinene 3) and
dichlorocarbene.

Table 2: B3LYP/6-31G(d,p) enthalpies H (in a.u.) and relative enthalpies (AH, in kcal/mol), entropies S (in cal mol™!
K) and relative entropies (AS, in cal mol™' K), free energies G (in a.u.) and relative free energy (AG, in kcal/mol) in
dichloromethane

System H AH G AG S AS
limonene 14 CCl, -1448.831198  ----—-—-- -1448.908944 - 163.632  -----ee-
TS1a -1348.849017 -11,181 -1348.908121 5.165 124.394 -39,238
TS1b -1348.833066 -1,172 -1348.892982 10.016 126.105 -37,627
1a -1348.925478 -59,161 -1348.980834 -45.111 116.508 -47,124
1b -1348.905222 -46,450 -1348.957245 -30.309 109.492 -54,14
terpinolene 2+ CCl, -1448.834525 - -1448.913443 —-——mm- 166.097  -—---m--
TS2a -1348.848528 -8,787 -1348.905490 4.990 119.885 -46,212
TS2b -1348.833066 0,915 -1348.892982 12.839 126.105 -39,992
2a -1348.918920 -52,95 -1348.974718 -38.450 117.437 -48,66
2b -1348.914813 -50,381 -1348.967514 -33.930 110.919 -55,178
y-terpinene 3+ CCl, -1448.837111  —----—- -1448.913249 - 160.247  --eeee-
TS3a -1348.843054 -3,729 -1348.900732 7.854 121.393 -38,854
TS3b -1348.834701 1,512 -1348.891202 13.834 118.915 -41,332
3a -1348.913711 -48,0675 -1348.964080 -31.896 106.011 -54,236
3b -1348.906103 -43,293 -1348.959633 -29.106 112.663 -47,584

Relative to limonene 1+CCl,, terpinolene 2+CCl,and y-terpinene 3+CCl,

As can be observed, while activation free
energies are 5.165 (TS1a), 10.016 (TS1b), 4.990 (TS2a),
12.839 (TS2b), 7.854 (TS3a), and 13.834 (TS3b) kcal
mol™, reaction free energies imply that formation of the
corresponding formal [1+2] cycloaddition is highly
exothermic; -45.111 (1a), -30.309 (1b), -38.450 (2a), -
33.930 (2b), -31.896 (3a) and -29.106 (3b) kcal mol™.
These values clearly indicate that the products 1a, 2a
and 3a are preferred.

Using the data given in Table 2, we can sketch
the energy profile of these reactions (Fig. 2).
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Figure 2: Gibbs free energy profile of [1+2] cycloaddition reaction between dichlorocarbene and alkenes.

We can observed from figure 2 that the
deference between activation free energies are 4.851
(Ts1b-Ts1a), 7.849 (Ts2b-Ts2a) and 5.98 (Ts3b-Ts3a),
showing that the formation of P1a, P2a and P3a isomers
are Kkinetically preferred. The deference between
reaction free energies are 14.802 (1b-1a), 4.520 (2b-2a)

and 2.79 (3b-3a), showing that the formation of P1a,
P2a and P3a regioisomers are thermodynamically
preferred in clears agreement with experimental results.

The optimized geometries of the TSs involved in
the studied cycloaddition reaction and the distances of
the forming bonds are presented in Figure 3.

© 2017 Global Journals Inc. (US)
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Figure 3: Optimized TS involved in the CA [142] reaction of dichlorocarbene—alkene (limonene 1, terpinolene 2 and
y-terpinene 3) the lengths of the newly forming bonds are given in R)

c) Calculation of the percentage of the products Where kg, h, C,, and R denote Boltzmann’s
According to transition state theory (TST), the  constant, Planck’s constant, standard concentration (1
second order rate constant (krg;) at a given temperature  mol L), and the universal gas constant R = 1,987 cal-K’

(T) can be determined using the following equation [35]:  mol™, respectively.
KaT —aG* To calculate the theoretical percentage of the
Kpsp = %e RT- (1) products we use the following equation:
0

kgT —AG*(P1)

Krs(P1)  hC, © o
- —AG#(P2)
Krst(P2)  KkgT Rl

hC,
~ %_%P1_50+n ith:0 <n < 50
— e — P2 — S0 wi t0sn
a6* (P2)-a6¥(P1)
_ 50(e RT -
= T A e aden ?
e RT +1
AG*(P2) — AG* (P1) = RTLn (332) .

The difference of relative free energy and percentage of the products are reported in table 3.

Table 3: AG¥(P2) — AG*(P1) Difference of relative free energy (in Kcal/mol) and percentage of the products

n AG*(P2) — AG*(P1) % P1 % P2
0 0 50 50
1 0,0236882 51 49
2 0,04739537 52 48
3 0,07114057 53 47
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Figure 4. AG*(P2) — AG* (P1) Difference of relative free energy (in Kcal/mol) and percentage of the products

We can deduce from figure 4 that:

When AG*(P2) — AG#*(P1) = 0, n=0, consequently
the percentages of the products are equal
(%P, =%P,= 50%).

When AG#(P2) — AG*(P1) varies between 0 and
0.240 (eV), n varies between 0 and 10, therefore the
reaction will be selective (regio, sterio, diasterio and

© 2017 Global Journals Inc. (US)

chemio) and the percentages of P, varies between ]
50 - 60] and the percentages of P, varies between ]
40 - 50[.

When AG*(P2) — AG*(P1) takes values between
1.301-2.720 (eV), n varies between 40-50, the
percentages of the product P1 varies between ] 90 -
100[ and the percentages of the product P2 varies



between ]0-10[, consequently the reaction will be
very selective.

e When AG*(P2) — AG¥#(P1) is greater than 2.720 (eV)
the reaction will be specific (%P1= 100%)

e In this work we observed that the difference of
relative free energy are superior than 2.720 (eV),
indicated that these reactions are regio-specific in
good agreement with experimental result.

IV. CONCLUSION

In this paper, we have discussed the molecular
mechanism and the regioselectivity of the [1+2]
cycloaddition reactions of limonene 1, terpinolene 2 and
v-terpinene 3. with dichlorocarbene yielding 1a, 2a and
3a, respectively, experimentally studied by by Hossni
Ziyat et al, has been investigated using DFT methods at
the DFT/6-31G(d,p) computational level. Analysis of the
nucleophilic P, Parr functions allows characterising the
carbons atoms of the double multi-substitute as the
most nucleophilic centre of the monoterpenes (limonene
1, terpinolene 2 and y-terpinene 3) used in this work, in
clear agreement with the regioselectivity found in result.
An exploration of the PESs associated with these
cycloaddition  reactions  indicates that  these
cycloaddition reactions are strongly exothermic, and
from the activation free energies we can conclude that
these reactions are completely regiospecific.
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