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Abstract- The question is: What proportion of the total probability of a random variable X lies within a certain interval of 
the mea ? What is the probability of being hit by a meteor greater in size than five times the standard deviation above 
the mean? Because it can be applied to completely arbitrary distributions(unknown except for mean and variables), the 
inequality generally gives a poor bound compared to what might be deduced if more aspects are known about the 
distribution involved.

I. Introduction

This note introduces a useful inequality called the Chebyshev (often called 
Tchebysheff) inequality but its explanation requires a good familiarity in calculus. One 
of the most difficult and important tasks before the statistician is to discover the 
probability distribution that may be involved in any problem. If one is unsure what the 
underlying distribution is, it is comforting to know that there are more universal 
inequalities that may give us some useful information; At the very least, the Chebyshev 
inequality allows one to bound how far away from the mean the random variable could 
be.

II. Exploring the Inequality

Theorem 1
Let )X(µ be a nonnegative function of the random variable X. If   E [ ](x)µ exists,

then, for every positive constant C

                                      Pr [ (X)µ C   ≥ ]  ≤
C

](x)[µ
                                           (1)

The proof1 is given when the random variable2

Α
X of the continuous type, but, the 

proof can be adapted to the discrete case if we replace integrals by sums. Let = [x; 
(x)µ ]  C  ≥   and let f ( x)  denote the pdf. of  X   Then
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1 See any standard text, for example, Mood and Grsybill  [5]
2 Chebyshev's inequality is usually stated for random variables, but can be generalized to a statement about measure spaces.

Fix t and let tA be defined as f    X  x[    At ( x) t   ]  and AI be the indicator function of the set tA . Then it is not 

difficult to see for any t , 0 < (t)g (x)f(  g      AI IA since  g is not decreasing on the range of t and, therefore,

A
t g    )A(    )t(g O 

x
  g      df Of d . The desired monotonicity follows from dividing the above inequality by )t(g

Notes

𝝁𝝁
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                           E )] x ( =

* dx(x0f(x)    dx(x)f  (x)

dx  )(x  f    dx  x)(f  (x)    
                              (2)

Since each of the integrals in the extreme right-hand member of the preceding 
equation is nonnegative, the left-hand side member is greater than or equal to either of 
them. In particular,

                                        E  [ (X) ]  dx) x (f(x)                                        (3)

However, if x   A  then C   (x) ; accordingly, the right-hand member of the 

preceding inequality is not increased if we replace x)( by C. Thus

                                       E [ (x) ]  C dx  ) x(f   ,                                       (4)

Since 

                               
       ) x (f    dx Pr (X   ) = Pr[ C    X)(                             (5)

It follows that 

                               E )X( ]   C  Pr [  C    (X) ]                                      (6)

which is the desired result.

The theorem is a generalization of an inequality which is often called 

Chebyshev’s inequality.3 One can establish the inequality this way4

2

:

Theorem 2
Let the random variable X have a distribution of probability about which we 

assume only that there is a finite variance . This of course, implies that there is a 

mean . Then for every K> 0

                                        Pr ( X- k  )    
2k

1                                     (7)

                                                                                                                        

3 Ferentinos[1] has shown that for a vector X )..., x(  21 x µ  =  ( )..., 21 variance  2 = )    ...,( 2
2

2
1 and 

The Eucladian norm    . that  Pr   ( 
2k

1    k      - x 

4 Symmetry of the distribution decreases the inequality's bounds by a factor of 2 while unimodality sharpens the bounds by a factor of 
4/9.Because the mean and the mode in a unimodal distribution differ by at most 
unimodal distribution lies outside (2 + 3
sharper than the bounds provided by the Chebyshev inequality (approximately 4.472 standard deviations).These bounds on the mean 

ribution 
lies outside approximately 3.162 standard deviations of the mean. The known Vysochanskiï–Petunin inequality further sharpens this 

andard 
deviations of the mean. See Kotz et al [ 3]

© 2017  Global Journals Inc.  (US)
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In theorem 1 take 2)  -X(  )X( µµ =   and  C =  2k σ2    Then we have

                             Pr[ ( 222 k  )- σµ ≥X ]  
22

2
22

k
])-(X[E    k  

σ
µ

σ ≤≥                            (8)

Notes
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Since the numerator of the right-hand side member of the preceding inequality is 

2 , the inequality may be written as

                                      Pr ( X  - k  )  
2k

1                                      (9)

which is the desired result. Obviously we should take the positive number k to be 
greater than one to have the inequality of consequence. Because it can be applied to 
completely arbitrary distributions (unknown except for mean and variance), the 
inequality generally gives a poor bound compared to what might be deduced if more 
aspects are known about the distribution 

Table 1: Chebyshev Inequality

Table 2: Chebyshev Inequality Bounds and Actual Bounds

K value     Chebyshev      Gaussian      Chi-square    t

2              .45                   .05412           .05241        .05312
3               10                    .00231           .00511       .03121
3              .07                  .00001            .00313       .00613.

How tight is the broadly applicable inequality? We can calculate Chebyshev 
inequality

                                                          
5 There are many extensions to Chebyshev inequality, for example, Chebyshev inequality of exponential version. Inequalities for
bounded variables, inequalities in the multivariate case, or its use in infinite dimensional case; see [Stellato, et al. [7], Lal [4]] There may 
be integral inequality, too. An extension to higher moments is also possible.
If 

and contrast that value with the exact calculation obtained from knowing 

Rb][a,;.gf are less monotonic functions of the same monotonicity, then

b

a

b

a

b

a
dx(x)g     

ab
1   dx)x(f     

a  -b
1    dx

ab
1
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k
Min. % within k 

stan   
deviations of mean

Max. % beyond k 
stand

deviations from mean

1 0% 100%

2 50% 50%

1.5 55.56% 44.44%

2 75% 25%

3 88.8889% 11.1111%

4 93.75% 6.25%

5 96% 4%

6 97.2222% 2.7778%

7 97.9592% 2.0408%

8 98.4375% 1.5625%

9 98.7654% 1.2346%

10 99% 1%

Although Chebyshev inequality enables you to find an answer to the questions 
we raised at the very outset, it comes to the rescue in offering at least an appropriate
answer.

Notes
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the probability function as indicated as follows: The resilts are tabulated in the above 
Table 2.

                                                              Pr { k   x   =   
k

k
(x)df         (x)df                                                  (11)

The Chebyshev theorem typically provides rather loose bounds6

2

2

2

2k
1y     probabilit  with 1    

2k
1-  1y  probabilit  with 0    

2k
1y  probabilit  with   1    

    x

,. However, these 
bounds cannot in general (remaining true for arbitrary distributions) be improved upon. 

The bounds are sharp for the following example: for any k 1,

                                                              

                                                     (12)

Exercise 1
Is it possible to find an upper bound for this integral?

                                                                         

A
dxx0(P  )x-A(  

0
                                                              (13)

Hint; Lower is easy to find  by using Markow’s Inequality but how to find the Upper 
bound?

III. Concluding Remark

This note discusses the Chebyshev inequality as a very app approximate but 
universally applicable upper bound on probability. The Chebyshev inequality allows us 
to bound how far away from the mean the random variable could be. It is rather 
remarkable that one can find inequalities on probability that will hold for any 
distribution.
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