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In the present work we consider a generalized version of a family of bivariate distributions

specified by an absolutely continuous distribution function of the form

F (x, y) = FX(x)FY (y)[1 + α1A(FX(x)) + α2B(FY (y)) + α3A(FX(x))B(FY (y))], (1.1)

of a random vector (X,Y ). The kernels A(.) and B(.) in the model are differentiable over

[0,1], satisfies the conditions

A(1) = 0 = B(1) and A(0) = 1 = B(0)

and are chosen in such a way that (1.1) is a distribution function with absolutely continuous

marginal distributions. The family subsumes several distributions of potential interest in

distribution theory as well as in modelling problems associated with other disciplines. These

include the extended Farlie-Gumbel-Morgenstern (FGM) system

F1(x, y) = FX(x)FY (y)[1 + α3A(FX(x))B(FY (y))] (1.2)

considered in Bairamov and Kotz (2002) and several particular cases obtained by giving

different forms for A(.) and B(.) like the classical FGM when A(F )=1-FX(x) and B(F )=1-

FY (y) and others discussed in Huang and Kotz (1984, 1999), Bairamov et al. (2001), Amblard

and Girard (2009) and Carles et al. (2012) and the references therein.

A somewhat different special case of (1.1) is the Cambanis (1977) model specified by

F2(x, y) = FX(x)FY (y)[1 + α1(1− FX(x)) + α2(1− FY (y))

+ α3(1− FX(x))(1− FY (y))], (1.3)

Notes
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−∞ < x, y <∞, (1 +α1 +α2 +α3) ≥ 0, (1 +α1−α2−α3) ≥ 0, (1−α1 +α2−α3) ≥ 0 and

(1− α1 − α2 + α3) ≥ 0.

The major difference here is that unlike the FGM, the marginals of (1.3) are not FX(x)
and FY (y) but they are uniquely determined by FX(x) and FY (y). The distributional aspects,
dependence structure and applications of (1.3) are discussed in Nair et al. (2016). Various
forms of A(.) and B(.) used to extend the FGM can also be applied in (1.1) to generate
new families of bivariate models. In view of the wide variety of distributions generated from
(1.1), it is important to study its properties.

The objective of the present work is to attempt characterizations of F(x,y) through
properties of P (X < Y ) , E(X|X > Y ) and the regressions functions of (X,Y ). The former
is well known in stress-strength modelling. When X represents the stress and Y, the strength,
P (X < Y ) indicates the reliability of the material, while the latter is the average stress at
which it exceeds the strength. More details about these aspects are discussed in the next
section where the characterizations are considered.

First we consider P (X < Y ) when (X,Y ) follows the distribution (1.1). Apart from the
stress-strength interpretation P (X < Y ) is suited to other variables in different fields of
study such as quality control, genetics, psychology, economics and clinical trial. For details

we refer to Kotz et al. (2003).

When bivariate distributions are used to model stress-strength data some sort of depen-

dence is assumed between X and Y. Among various bivariate cases considered in literature

in this context, one of particular interest to the present work is Domma and Giordano (2013)

in which the FGM copula is considered.

Let f (x,y), fX(x) and fY (y) denote the probability density functions of (X,Y ), X and Y

respectively. Then

α = P (X < Y ) =

∫ ∞
−∞

P (X < y|Y = y)fY (y)dy

=

∫ ∞
−∞

∫ y

0

f(ν, y)dνdy. (2.1)

Since P (X < Y )=P (FX(x) < FY (y)), for calculation purposes it is enough to consider the

uniform distribution in (1.1),

F4(x, y) = xy[1 + α1A(x) + α2B(y) + α3A(x)B(y)],

and the corresponding probability density function

f4(x, y) = 1 + α1
d

dx
xA(x) + α2

d

dy
yB(y) + α3

d

dx
xA(x)

d

dy
yB(y). (2.2)

In that case

α =

∫ 1

0

∫ y

0

f4(ν, y)dνdy. (2.3)

II. Characterizations

Notes



 
 

 
 

 
 
 
 
 
 
 
 
 
 

Following Bairamov and Kotz (2002), we have the first theorem concerning the nature of

P (X < Y ) in the model (1.1).

Let (X, Y ) be a continuous random variable with distribution function (1.1). Then

P (X < Y ) is independent of α3 if and only if A(x )=B(x ) for all x in [0,1] provided that

A(x)B
′
(x)− A′

(x)B(x) is ≥ 0 or ≤ 0 for all x. (2.4)

In this case,

P (X < Y ) =
1

2
+ (α1 − α2)

∫ 1

0

xA(x)dx. (2.5)

From (2.2) and (2.3) using A(1)=0=B(1),

α =

∫ 1

0

[y + α1yA(y) + α2y
d

dy
yB(y) + α3yA(y){B(y) + yB

′
(y)}]dy

=
1

2
+ α1

∫ 1

0

yA(y)dy − α2

∫ 1

0

yB(y)dy + α3

∫ 1

0

{yA(y)B(y) + y2A(y)B
′
(y)}dy.

(2.6)
Since

d

dy
y2A(y)B(y) = 2yA(y)B(y) + y2{A(y)B

′
(y) + A

′
(y)B(y)}

(2.6) takes the form,

α =
1

2
+ α1

∫ 1

0

yA(y)dy − α2

∫ 1

0

yB(y)dy +
α3

2

∫ 1

0

d

dy
y2A(y)B(y)dy

+
α3

2

∫ 1

0

y2{A(y)B
′
(y)− A′

(y)B(y)}dy. (2.7)

Since α is independent of α3 and
∫ 1

0
d
dy
y2A(y)B(y)dy=0, one must have∫ 1

0

y2{A(y)B
′
(y)− A′

(y)B(y)}dy = 0,

which means that A(y)B
′
(y)−A′

(y)B(y)=0 by virtue of (2.4). Hence A(y)=C B(y) in which

C=1 from A(0)=B(0)=1. Thus A(x) = B(x) and (2.5) holds. Conversely if A(x) = B(x),

(2.7) shows that α does not contain α3.

For the theorem to be true, the representation (1.1) must yield a distribution function for

some A(.) and B(.). In the case of the Cambanis family (1.3), A(x) = 1−x, B(y) = 1−y so

that we have a distribution function belonging to (1.1) satisfying (2.4). Further, A(x) = B(x)
and so

Theorem 2.1

Remark 2.1

Proof:
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Notes



 
 

 
 

 
 
 
 
 
 
 
 
 
 

P (X < Y ) =
1

2
+ (α1 − α2)

∫ 1

0

x(1− x)dx

=
1

2
+
α1 − α2

6
.

When α3=0, the conditions on the parameters α1 and α2 are satisfied by a convex set

containing |αi| ≤ 1
3
, i=2. Thus P (X < Y ) lies in the range ( 7

18
, 11
18

) which is more flexible

than that of FGM for which P (X < Y ) = 1
2
. The flexibility can be further increased with

other choices of A(x), for example A(x) = 1−x2 = B(x) as in the Huang-Kotz modification.

From Theorem 2.1, a modification of Theorem in Bairamov and Kotz (2002) is evident.

Let (X,Y) be a continuous random vector with distribution function (1.1) with α1=α2.

Then P (X < Y ) = 1
2

if and only if A(x) = B(x) for all x, provided that (2.4) is satisfied.

Our second characterization is based on the conditional expectations E(X|X > Y ) and

E(Y |Y > X). In a reliability frame work these have interpretations and applications. Sup-

pose that (X,Y) represents the lifetimes of a two-component system. Then E(X|X > Y )

and E(Y |Y > X) denotes the average lifetime of the longest living component and is an im-

portant information about the system. The probability density function of X given X > Y

is

f(x|X > Y ) =
1

P (X > Y )

∫ x

−∞
f(x, ν)dν

and hence

P (X > Y ) E(X|X > Y ) =

∫ ∞
−∞

∫ x

−∞
xf(x, ν)dνdx.

Specializing to the uniform case

P (X > Y ) E(X|X > Y ) =

∫ 1

0

∫ x

0

xf4(x, ν)dνdx. (2.8)

Similarly

P (Y > X) E(Y |Y > X) =

∫ 1

0

∫ y

0

yf4(ν, y)dνdy. (2.9)

Let (X,Y) be a random vector specified by f4(x, y) satisfying A(1) = 0 = B(1) and

A(0) = 1 = B(0). Then P (X > Y ) E(X|X > Y ) - P (Y > X) E(Y |Y > X) is independent

of α3 if and only if A(x) = B(x) for all x provided that (2.4) is satisfied.

Remark 2.2

Theorem 2.2

Theorem 2.3

On Characterizing Generalized Cambanis Family of Bivariate Distributions

From equations (2.8) and (2.2),

P (X > Y )E(X|X > Y

∫ 1

0

∫ x

0

x[1 + α1
d

dx
xA(x) +α2

d

dν
νB(ν) +α3

d

dx
xA(x)

d

dν
νB(ν)]dνdx

Proof:
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) =

Notes



 
 

 
 

 
 
 
 
 
 
 
 
 
 

=

∫ 1

0

x[x+ α1x
d

dx
xA(x) + α2xB(x) + α3(

d

dx
xA(x))(xB(x))]dx

=
1

3
− 2α1

∫ 1

0

x2A(x)dx+ α2

∫ 1

0

x2B(x)dx

− α3

∫ 1

0

[2x2A(x)B(x) + x3A(x)B
′
(x)]dx.

Similarly from (2.9),

P (Y > X)E(Y |Y > X) =
1

3
+ α1

∫ 1

0

x2A(x)dx− 2α2

∫ 1

0

x2B(x)dx

− α3

∫ 1

0

[2x2A(x)B(x) + x3A
′
(x)B(x)]dx.

Thus

P (X > Y )E(X|X > Y )−P (Y > X)E(Y |Y > X) −3α1

∫ 1

0

x2A(x)dx+ 3α2

∫ 1

0

x2B(x)dx

− α3

∫ 1

0

x3(A(x)B
′
(x)− A′

(x)B(x))dx. (2.10)

Now assume that A(x)=B(x). Then obviously (2.10) is independent of α3. Conversely (2.10)

is independent of α3, then A(x)=B(x) using the arguments in Theorem 2.1 and the proof is

complete.

Notice that in the above case,

P (X > Y )E(X|X > Y ) =
1

3
− 2α1

∫ 1

0

x2A(x)dx+ α2

∫ 1

0

x2A(x)dx

− α3

∫ 1

0

x2A(x)[xA
′
(x) + 2A(x)]dx.

The last integral is∫ 1

0

[x3A(x)A
′
(x) + 2x2A2(x)]dx =

∫ 1

0

[2x2A2(x) +
1

2
x3

d

dx
A2(x)− 3

2
x2A2(x)]dx

=
1

2

∫ 1

0

x2A2(x)dx.
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=

Thus

P (X > Y )E(X|X > Y ) =
1

3
+ (α2 − 2α1)

∫ 1

0

x2A(x)dx− α3

2

∫ 1

0

x2A2(x)dx.

Notes



 
 

 
 

 
 
 
 
 
 
 
 
 
 

and finally

E(X|X > Y ) =
1
3

+ (α2 − 2α1)
∫ 1

0
x2A(x)dx− α3

2

∫ 1

0
x2A2(x)dx

1
2
− (α1 − α2)

∫ 1

0
xA(x)dx

using (2.5). As an example, for the Cambanis family, with uniform marginals,

F (x, y) = xy[1 + α1(1− x) + α2(1− y) + α3(1− x)(1− y)], 0 ≤ x, y ≤ 1,

the conditions of the Theorem 2.3 are satisfied. Accordingly

P (X > Y ) =
1

2
+
α2 − α1

6

and

E(X|X > Y ) =
20 + 5(α2 − 2α1)− α3

30 + 10(α2 − α1)
.

Further in the light of the above discussions Theorem 2 in Bairamov and Kotz (2002) can

be modified as follows.

Let (X,Y) be a bivariate random vector with distribution function

F (x, y) = xy[1 + α1A(x) + α2B(y) + α3A(x)B(y)] (2.11)

satisfying A(1) = 0 = B(1), A(0) = 1 = B(0) and A(x)B
′
(x)−A′

(x)B(x) ≥ 0 or ≤ 0 for all

x in [0,1], Then

P (X > Y )E(X|X > Y ) = P (Y > X)E(Y |X > Y )

if and only if α1=α2 and A(x) = B(x) for all x.

The result follows from the fact that for (2.11)

P (X > Y )E(X|X > Y ) =
1

3
− α1

∫ 1

0

x2A(x)dx− α3

2

∫ 1

0

x2A2(x)dx

= P (Y > X)E(Y |X > Y )

Theorem 2.4

Proof:
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and Theorem 2.3.

The problem of characterizing bivariate distributions through their regression functions

have received considerable attention, see for example, Rao and Sinha (1988), Bryc (2012). A

traditional approach in statistical modelling is to select a flexible family of distributions and

then to find a member of the family that is appropriate for the given data. One characteristic
of the family amenable to easy verification is the regression function. The forms of the

regression functions b1(x) = E(Y |X = x) and b2(y) = E(X|Y = y) can be detected from

the observations and the model that conforms with it is a reasonable choice for the data.

Notes



 
 

 
 

 
 
 
 
 
 
 
 
 
 

We show that (b1(x), b2(y)) determines the model (2.2) uniquely and provide example of

members that have simple functional forms for them.

Let (X,Y) be continuous random vector with distribution specified by (2.2). Then the

regression functions b1(x) and b2(y) uniquely determine the distribution of (X,Y).

For the distribution (2.2), the conditional distribution of Y given X=x is

f(y|x) =
1 + α1

d
dx
xA(x) + α2

d
dy
yB(y) + α3(

d
dx
xA(x))( d

dy
yB(y))

1 + α1
d
dx
xA(x)

.

Some direct calculations give

b1(x) =

∫ 1

0

yf(y|x)dy

=
1

2
−

[α2 + α3
d
dx
xA(x)]

∫ 1

0
yB(y)dy

1 + α1
d
dx
xA(x)

Solving

d

dx
xA(x) =

d1(x)− α2

α3 − α1d1(x)
, d1(x) =

1
2
− b1(x)∫ 1

0
yB(y)dy

and hence

A(x) =
1

x

∫ x

0

d1(t)− α2

α3 − α1d1(t)
dt. (2.12)

Similarly

B(y) =
1

y

∫ y

0

d2(t)− α1

α3 − α2d2(t)
dt, d2(y) =

1
2
− b2(y)∫ 1

0
xA(x)dx

. (2.13)

Equations (2.12) and (2.13) determine the distribution (2.2).

Theorem 2.5

Proof:
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Let d1(x) =
α2 + α3(1− 2x)

1 + α1(1− 2x)
and d2(y) =

α1 + α3(1− 2y)

1 + α2(1− 2y)

Then from (2.12),

A(x) =
1

x

∫ x

0

(1− 2t)dt = 1− x,

and similarly A(y) = 1− y. Thus the distribution is given by

F (x, y) = xy[1 + α1(1− x) + α2(1− y) + α3(1− x)(1− y)], 0 ≤ x, y ≤ 1.

Example 2.1

Notes



 
 

 
 

 
 
 
 
 
 
 
 
 
 

Let d1(x) =
α2 + α3(1− x)(1− 3x)

1 + α1(1− x)(1− 3x)
and d2(y) =

α1 + α3(1− y)(1− 3y)

1 + α2(1− y)(1− 3y)

Then

A(x) =
1

x

∫ x

0

(1− t)(1− 3t)dt = (1− x)2,

and similarly A(y) = (1− y)2, giving

F (x, y) = xy[1 + α1(1− x)2 + α2(1− y)2 + α3(1− x)2(1− y)2], 0 ≤ x, y ≤ 1.

We conclude this work by noting that Theorems 2.1 through 2.4 extends the work of

Bairamov and Kotz (2002) to a more general family of bivariate distributions and Theorem

2.5 provides a new result that helps in identifying a distribution belonging to the general

family we have presented.

Example 2.2
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