

GLOBAL JOURNAL OF SCIENCE FRONTIER RESEARCH: F MATHEMATICS AND DECISION SCIENCES

Volume 17 Issue 8 Version 1.0 Year 2017

Type : Double Blind Peer Reviewed International Research Journal

Publisher: Global Journals Inc. (USA)

Online ISSN: 2249-4626 & Print ISSN: 0975-5896

On Some Geometric Methods in Mathematics and Mechanics

By Alexander D. Bruno

Keldysh Institute of Applied Mathematics of RAS

Abstract- We give a survey of geometric methods used in papers and books of V.I. Arnold and V.V. Kozlov. They are methods of different normal forms, of some polyhedra, of small denominators and asymptotic expansions.

Keywords: geometric methods, normal form, asymptotic expansion, Painlevé equations, Hamiltonian system.

GJSFR-F Classification: MSC 2010: 05B35

ON SOME GEOMETRIC METHODS IN MATHEMATICS AND MECHANICS

Strictly as per the compliance and regulations of:

RESEARCH | DIVERSITY | ETHICS

On Some Geometric Methods in Mathematics and Mechanics

Alexander D. Bruno

Abstract- We give a survey of geometric methods used in papers and books of V.I. Arnold and V.V. Kozlov. They are methods of different normal forms, of some polyhedra, of small denominators and of asymptotic expansions.

Keywords: geometric methods, normal form, asymptotic expansion, Painlevé equations, Hamiltonian system.

I. INTRODUCTION

In the paper Khesin et al. (2012) there was given a short description of main achievements of V.I. Arnold. Below in Sections 2-4, we give some additions to several Sections of this paper. Here in Sections 5, 6, 8, 9 we discuss two kinds of normal forms in publications by V.I. Arnold and by V.V. Kozlov.

Logarithmic branching of solutions to Painlevé equations is discussed here in Section 7.

In this article all the formulas denoted as (n*) refer to the formulas in the the cited papers.

II. ON THE LAST PARAGRAPH OF PAGE 381 IN KHESIN ET AL. (2012) DEVOTED TO SMALL DIVISORS

Arnold's Theorem on the stability of the stationary point in the Hamiltonian system with two degrees of freedom in Arnold (1963) had the wrong formulation (see Bruno (1972, § 12, Section IVd)). Then V.I. Arnold Arnold (1968) added one more condition in his Theorem, but its proof was wrong because it used the wrong statement (see Bruno (1985, 1986)). All mathematical world was agreed with my critics except V.I. Arnold. On the other hand, in the first proof of the same Theorem by J. Moser Moser (1968) there was a similar mistake (see Bruno (1972, § 12, Section IVe)). But in Siegel et al. (1971) J. Moser corrected his proof after my critics, published in Bruno (1972, § 12, Section IVe).

Concerning the KAM theory. In 1974 I developed its generalization via normal forms Bruno (1974, 1980, 1989, Part II). But up-to-day almost nobody understands my generalization.

Author: Keldysh Institute of Applied Mathematics, Miusskaya sq. 4, Moscow, 125047, Russia. e-mail: abruno@keldysh.ru

III. ON THE LAST PARAGRAPH OF PAGE 384 IN KHESIN ET AL. (2012) CONCERNING HIGHER-DIMENSIONAL ANALOG OF THE CONTINUED FRACTION

The paper Lauchand (1993) “Polyèdre d’Arnol’d et . . .” by G. Lachaud (1993) was presented to C.R. Acad. Sci. Paris by V.I. Arnold. When I saw the article, I published the article Bruno et al. (1994) “Klein polyhedra . . .” (1994), because so-called “Arnold polyhedra” were proposed by F. Klein one hundred years early. Moreover, they were introduced by B.F. Scubenko (1991) as well. In 1994–2000 me and V.I. Parusnikov studied Klein polyhedra from algorithmic point of view and found that they do not give a basis for algorithm generalizing the continued fraction. So in 2003, I proposed another approach and another unique polyhedron, which give a basis for the generalization in 3 and any dimension (see Bruno (2005a,b); Bruno et al. (2009); Bruno (2010a,b, 2015c)). Now there are a lot of publications on the Klein polyhedra and their authors following after V.I. Arnold wrongly think that the publications are on the generalization of the continued fraction.

IV. ON THE LAST TWO PARAGRAPHS OF PAGE 395 IN KHESIN ET AL. (2012) DEVOTED TO NEWTON POLYGON

In that text, the term “Newton polygon” must be replaced by “Newton polyhedron”. In contemporary terms, I. Newton introduced *support* and one *extreme edge* of the *Newton open polygon* for one polynomial of two variables. The full Newton open polygon was proposed by V. Puiseux (1850) and by C. Briot and T. Bouquet (1856) for one ordinary differential equation of the first order. Firstly a polyhedron as the convex hull of the support was introduced in my paper Bruno (1962) for an autonomous system of n ODEs. During 1960–1969 V.I. Arnold wrote three reviews on my works devoted to polygons and polyhedrons for ODEs with sharp critics “of the geometry of power exponents” (see my book Bruno (2000, Ch. 8, Section 6)). Later (1974) he introduced the name “Newton polyhedron”, made the view that it is his invention and never gave references on my works. Now I have developed “Universal Nonlinear Analysis” which allows to compute asymptotic expansions of solutions to equations of any kind (algebraic, ordinary differential and partial differential) Bruno (2015a).

V. ON NON-HAMILTONIAN NORMAL FORM

In my paper Bruno (1964) and my candidate thesis “Normal form of differential equations” (1966) I introduced normal forms in the form of power series. It was a new class of them. Known before normal forms were either linear (Poincare, 1879) Poincare (1879) or polynomial (Dulac, 1912) Dulac (1912). An official opponent was A.N. Kolmogorov. He estimated very high that new class of normal forms. V.I. Arnold put my normal form into his book Arnold (1978, 1998, § 23) without reference to my publication and named it as “Poincare-Dulac normal form”. So, readers of his book attributed

my normal form to Arnold. I saw several articles where my normal form was named as Arnold's.

VI. ON CANONICAL NORMALIZING TRANSFORMATION

In Arnold et al. (1988, Ch. 7, § 3, Subsection 3.1) a proof of Theorem 7 is based on the construction of a generating function $F = \langle P, q \rangle + S_l(P, q)$ in mixed coordinates P, q . Transformation from old coordinates P, Q to new coordinates p, q is given by the formulae

$$p = \frac{\partial F}{\partial q}, \quad Q = \frac{\partial F}{\partial p}. \quad (1)$$

Here $S_l(P, q)$ is a homogeneous polynomial in P and q of order l . According to (1), the transformation from coordinates P, Q to coordinates p, q is given by infinite series, which are results of the resolution of the implicit equations (1). Thus, the next to the last sentence on page 272 (in Russian edition) “The normalizing transformation is constructed in the polynomial form of order $L - 1$ in phase variables” is wrong. Indeed that property has the normalizing transformation computed by the Zhuravlev-Petrov method Bruno et al. (2006).

VII. ON BRANCHING OF SOLUTIONS OF PAINLEVÉ EQUATIONS

In Kozlov et al. (2013, Ch. I, § 4, example 1.4.6) the Painlevé equations are successive considered. In particularly, there was find the expansion

$$x(\tau) = \tau^{-1} \sum_{k=0}^{\infty} x_k \tau^k \quad (2)$$

of a solution to the fifth Painlevé equation. The series (2) is considered near the point $\tau = 0$. After the substitution $\tau = \log t$, we obtain the series

$$x(t) = \log^{-1} t \sum_{k=0}^{\infty} x_k \log^k t, \quad (3)$$

which has a sense near the point $t = 1$, where $\log t = 0$. However, from the last expansion (3) authors concluded that $t = 0$ is the point of the logarithmic branching the solution $x(t)$. It is wrong, because the expansion (3) does not work for $t = 0$ as $\log 0 = \infty$ and the expansion (3) diverges. That mistake is in the first edition of the book Kozlov et al. (2013) (1996) and was pointed out in the paper Bruno et al. (2004a), but it was not corrected in the second “corrected” edition of the book.

A similar mistake is there in consideration of the sixth Painlevé equation. The expansion (2) was obtained for a solution to the sixth Painlevé equation in the same publication. After the substitution $\tau = \log(t(t - 1))$, it takes the form

$$x(t) = \log^{-1}(t(t - 1)) \sum_{k=0}^{\infty} x_k \log^k(t(t - 1)).$$

As the expansion (1) has a sense near the point $\tau = 0$, the last expansion has a sense near points $t = (1 \pm \sqrt{5})/2$, because in them $t(t-1) = 0$ and $\tau = 0$. Thus, the conclusion in the book, that point $t = 0$ and $t = 1$ are the logarithmic branching points of the solution, is noncorrect. The mistake was pointed out in the paper Bruno et al. (2004b), but it was repeated in the second edition of the book Kozlov et al. (2013). Indeed solutions of the Painlevé equations have logarithmic branching, see Bruno et al. (2011, 2010c); Bruno (2015b).

Notes

VIII. ON INTEGRABILITY OF THE EULER-POISSON EQUATIONS

In the paper Kozlov (1976) Theorem 1 on nonexistence of an additional analytic integral was applied in § 3 to the problem of motion of a rigid body around a fixed point. The problem was reduced to a Hamiltonian system with two degrees of freedom and with two parameters x, y . The system has a stationary point for all values of parameters. Condition on existence of the resonance $3 : 1$ was written as equation (6*) on parameters x, y . Then the second order form of the Hamiltonian function was reduced to the simplest form by a linear canonical transformation

$$(x_1, x_2, y_1, y_2) \rightarrow (q_1, q_2, p_1, p_2). \quad (4)$$

Condition of vanishing the resonant term of the fourth order in the obtained Hamiltonian function was written as equation (7*) on x, y . System of equations (6*) and (7*) was considered for

$$x > 0 \quad \text{and} \quad y > \frac{x}{x+1},$$

where the system has two roots

$$x = \frac{4}{3}, \quad y = 1 \quad \text{and} \quad x = 7, \quad y = 2. \quad (5)$$

They correspond to two integrable cases $y = 1$ and $y = 2$ of the initial problem. It was mentioned in Theorem 3. But in the whole real plane (x, y) the system of equations (6*) and (7*) has roots (5) and three additional roots

$$x = -\frac{16}{3}, \quad y = 1; \quad x = -\frac{17}{9}, \quad y = 2; \quad (6)$$

$$x = 0, \quad y = 9. \quad (7)$$

Roots (6) belong to integrable cases $y = 1$ and $y = 2$. But the root (7) is out of them. Indeed the transformation (4) is not defined for $x = 0$. If to make an additional analysis for $x = 0$, then for resonance $3 : 1$ one obtains two points: (7) and

$$x = 0, \quad y = \frac{1}{9}. \quad (8)$$

In both these points, the resonant term of the fourth order part of the Hamiltonian function vanishes. But points (7) and (8) are out of the integrable cases $y = 1$ and $y = 2$; they contradict to statement of Theorem 3 Kozlov (1976). The paper Kozlov (1976) was repeated in the book Kozlov (1996, Ch. VI, § 3, Section 3). A non-Hamiltonian study of the problem see in the paper Bruno (2007, Section 5). Nonintegrability at the points (7) and (8) was shown in Bruno (2014).

IX. ON NORMAL FORMS OF FAMILIES OF LINEAR HAMILTONIAN SYSTEMS

Real normal forms of families of linear Hamiltonian systems were given in Galin (1982, § 2), where formula (16*) wrongly indicated the normal form corresponding to the elementary divisor λ^{2l} : the third sum in the formula (16*) has to be omitted. The indicated mistake was reproduced in the first three editions of the book Arnold (1978, Appendix 6) by Arnold. Discussions of that see in the paper Bruno (1988) and in the book Bruno (1994, Ch. I, Section 6, Notes to Section 1.3).

X. CONCLUSIONS

Sections 2–4 were sent to Notices of the AMS for publication as a letter to the editor. But Editor S.G. Krantz rejected it. I consider that as one more case of the scientific censorship in the AMS.

REFERENCES RÉFÉRENCES REFERENCIAS

1. Arnold VI (1963). Small denominators and problem of stability of motion in classical and celestial mechanics. Russian Math. Surveys. 18:6. 85–191. Available from: <http://dx.doi.org/10.1070/RM1963v018n06ABEH001143>
2. Arnold VI (1968). Letter to the Editor, Math. Review. 38: # 3021.
3. Arnold VI (1978). Mathematical Methods in Classical Mechanics. Springer-Verlag. New York.
4. Arnold VI (1998). Geometrical Methods in the Theory of Ordinary Differential Equations. Springer-Verlag.
5. Arnold VI, Kozlov VV Neishtadt AI (1988). Dynamical Systems III. Springer-Verlag. Berlin etc.
6. Bruno AD (1962). The asymptotic behavior of solutions of nonlinear systems of differential equations, Soviet Math. Dokl. 3: 464–467.
7. Bruno AD (1964). Normal form of differential equations, Soviet Math. Dokl. 5: 1105–1108.
8. Bruno AD (1972). Analytical form of differential equations (II), Trans. Moscow Math. Soc. 26: 199–239.
9. Bruno AD (1974). The sets of analyticity of a normalizing transformation, I, II. Inst. Appl. Math. Preprints No. 97, 98. Moscow. (in Russian).
10. Bruno AD (1980). Formal and analytical integral sets. in Proc. Intern. Congress of Mathem. (ed. O. Lehto) Acad. Sci. Fennica. Helsinki. v. 2. 807–810.
11. Bruno AD (1985) Stability in a Hamiltonian system. Inst. Appl. Math. Preprint No. 7. Moscow. (Russian).
12. Bruno AD (1986). Stability in a Hamiltonian system. Math. Notes. 40:3.726–730. Available from: <http://dx.doi.org/10.1007/BF01142477>

13. Bruno AD (1988). The normal form of a Hamiltonian system. *Russian Math. Surveys.* 43:1. 25–66. Available from: <http://dx.doi.org/10.1070/RM1988v043n01A> BEH001552
14. Bruno AD (1989). Local Methods in Nonlinear Differential Equations. Springer–Verlag. Berlin–Heidelberg–New York–London–Paris–Tokyo.
15. Bruno AD (1994). The Restricted 3-Body Problem: Plane Periodic Orbits. Walter de Gruyter. Berlin–New York.
16. Bruno AD, Parusnikov VI (1994). Klein polyhedrals for two cubic Davenport forms. *Math. Notes.* 56:3–4. 994–1007. Available from: <http://dx.doi.org/10.1007/BF02362367>
17. Bruno AD (2000). Power Geometry in Algebraic and Differential Equations. Elsevier Science (North-Holland). Amsterdam.
18. Bruno AD, Karulina ES (2004a). Expansions of solutions to the fifth Painlevé equation. *Doklady Mathematics.* 69:2. 214–220.
19. Bruno AD, Goruchkina IV (2004b). Expansions of solutions to the sixth Painlevé equation. *Doklady Mathematics.* 69:2. 268–272.
20. Bruno AD (2005a). Structure of the best Diophantine approximations. *Doklady Mathematics.* 71:3. 396–400.
21. Bruno AD (2005b). Generalized continued fraction algorithm. *Doklady Mathematics.* 71:3. 446–450.
22. Bruno AD, Petrov AG (2006). On computation of the Hamiltonian normal form. *Doklady Physics.* 51:10. 555–559.
23. Bruno AD (2007). Analysis of the Euler–Poisson equations by methods of Power Geometry and Normal Form. *J. Appl. Math. Mech.* 71:2. 168–199. Available from: <http://dx.doi.org/10.1016/j.jappmathmech.2007.06.002>
24. Bruno AD, Parusnikov VI (2009). Two-way generalization of the continued fraction. *Doklady Mathematics.* 80:3. 887–890. Available from: <http://dx.doi.org/10.1134/S1064562409060258>
25. Bruno AD (2010a). The structure of multidimensional Diophantine approximations. *Doklady Mathematics.* 82:1. <http://dx.doi.org/10.1134/S106456241004023X>
26. Bruno AD (2010b). New generalizations of continued fraction, I. *Functiones et Approximatio.* 43:1. 55–104. Available from: <http://dx.doi.org/10.7169/facm/1285679146>
27. Bruno AD, Goruchkina IV (2010). Asymptotic expansions of solutions of the sixth Painlevé equation. *Transactions of Moscow Math. Soc.* 71: 1–104. Available from: <http://dx.doi.org/10.1090/S0077-1554-2010-00186-0>
28. Bruno AD, Parusnikova AV (2011). Local expansions of solutions to the fifth Painlevé equation. *Doklady Mathematics.* 83:3. 348–352. Available from: <http://dx.doi.org/10.1134/S1064562411030276>
29. Bruno AD (2014). On an integrable Hamiltonian system. *Doklady Mathematics.* 90:1,. 499–502. Available from: <http://dx.doi.org/10.1134/S1064562414050263>
30. Bruno AD (2015a). Asymptotic Solution of Nonlinear Algebraic and Differential Equations. *International Mathematical Forum.* 10:11. 535–564. Available from: <http://dx.doi.org/10.12988/int2015.5974>
31. Bruno AD (2015b). Power geometry and elliptic expansions of solutions to the Painlevé equations. *International Journal of Differential Equations.* V.2015. Article ID 340715. 13 p. Available from: <http://dx.doi.org/10.1155/2015/340715>
32. Bruno AD (2015c). Universal generalization of the continued fraction algorithm. *Chebyshevskii Sbornik.* 16:2. 35–65 (Russian).

Notes

33. Dulac H (1912). Solutions d'une système d'équations différentielles dans le voisinage des valeurs singulières, *Bull. Soc. Math. France*. 40: 324–383 (French).
34. Galin DM (1982). Versal deformations of linear Hamiltonian systems. In *Sixteen Papers on Differential Equations*. Amer. Math. Soc. Transl. Ser. 2118: 1–12.
35. Khesin B, Tabachnikov S (2012). Tribute to Vladimir Arnold. *Notices Amer. Math. Soc.* 59:3. 378–399. Available from: <http://dx.doi.org/10.1090/noti810>.
36. Kozlov VV (1976). Non-existence of analytic integrals near equilibrium positions of Hamiltonian systems. *Vestnik Moscow University*. 1: 110–115. (Russian).
37. Kozlov VV, Furta SD (2013). *Asymptotics of Solutions of Strongly Nonlinear Systems of Differential Equations*. Springer. 262 p.
38. Kozlov VV (1996). *Symmetries, Topology and Resonances in Hamiltonian Mechanics*. Springer-Verlag. Berlin Heidelberg.
39. Lauchand G (1993). Polyèdre d'Arnol'd et voile d'in cone simplicial: analogues du théoreme de Lagrange. *C. R. Acad. Sci. Ser. I*. 317: 711–716.
40. Moser J (1968). *Lectures on Hamiltonian Systems*. Memoires of AMS. 81.
41. Poincaré H (1879). *Sur les propriétés des fonctions définies par les équations aux différences partielles*. Thèse, Paris. (French).
42. Siegel CL, Moser JK (1971). *Lectures on Celestial Mechanics*. Springer-Verlag. Berlin Heidelberg N. Y.

This page is intentionally left blank