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Let G be a simple graph. The order of a graph is ∣V (G)∣, its number of vertices denoted

by n. The size of a graph is ∣E(G)∣, its number of edges denoted by m. The degree of

a vertex v, denoted by dG(v). The complement of a graph G, denoted by G, is a simple

graph on the same set of vertices V (G) in which two vertices u and v are connected by

an edge uv, if and only if they are not adjacent in G. Obviously, E(G) ∪E(G) = E(Kn)

where Kn is complete graph of order n, and ∣E(G)∣ = n(n−1)
2
−m. The subdivision graph

S(G) is the graph attained from G by replacing each of its edges by a path of length 2.

The line graph L(G) of a graph is the graph derived from G in such a way that the edges

in G are replaced by vertices in L(G) and two vertices in L(G) are connected whenever

the corresponding edges in G are adjacent [19].

The Zagreb indices were first introduced by Gutman [17], they are important molec-

ular descriptors and have been closely correlated with many chemical properties [29] and

defined as:

M1(G) =
∑

u∈V (G)

dG(u)2 and (1)

M2(G) =
∑

uv∈E(G)

dG(u) dG(v), (2)17
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In fact, one can rewrite the first Zagreb index as

M1(G) =
∑

uv∈E(G)

[
dG(u) + dG(v)

]
.

Noticing that contribution of nonadjacent vertex pairs should be taken into account

when computing the weighted Wiener polynomials of certain composite graphs (see [6])

defined first Zagreb coindex and second Zagreb coindex as

M1(G) =
∑

uv/∈E(G)

[
dG(u) + dG(v)

]
and�

M2(G) =
∑

uv/∈E(G)

dG(u) dG(v), (4)

respectively.

The third Zagreb index was first introduced by Fath-Tabar [13]. This index is defined
as follows:

M3(G) =
∑

uv∈E(G)

∣dG(u)− dG(v)∣ (5)

The hyper-Zagreb index was first introduced in [28]. This index is defined as follows:

HM(G) =
∑

uv∈E(G)

(dG(u) + dG(v))2 (6)

In fact the idea of topological index appears from work done by Wiener [31] in 1947

although he was working on boiling point of paraffin. He called this index as Wiener

index then theory of topological index started. The Wiener index of graph G is defined
as

W (G) =
1

2

∑
(u,v)

d(u, v ) (7)

where (u, v) is any ordered pair of vertices in G and d(u, v) is u− v geodesic.

The degree distance index for graphs developed by Dobrynin and Kochetova [12] and

Gutman [14] as a weighted version of the Wiener index. The degree distance of G, denoted

by DD(G), is defined as follows

DD(G) =
∑

{u,v}⊆V (G)

d(u, v)[dG(u) + dG(v)]. (8)

For more details on the topological indices we refer to the articles [2–5,17,20,21,24,30,32].

© 2017  Global Journals Inc.  (US)
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In a series of papers, Diudea and co-authors studied the structure and topological indices

of some chemical graphs related to some nanostructures [1,7–11,23]. Rajani et. al derived

the expressions for the Shultz indices of the subdivision graphs of the tadpole graph,

wheel, helm and ladder graphs [27]. The expressions for the line graphs of subdivision

graphs of the tadpole, wheel and ladder graphs can be seen in [26] and [14]. Recently

Nadeem et. al [25] obtained expressions for certain topological indices for the line graph

of subdivision graphs 2D-lattice, nanotube and nanotorus of TUC4C8[p, q], where p and

q denote the number of squares in a row and the number of rows of squares, respectively
in 2D-lattice, nanotube and nanotorus.

In Fig. 1, 2D-lattice, nanotube and nanotorus of TUC4C8[p, q] are depicted. The order

(a) (b) (c)

−

and size of 2D-lattice, nanotube and nanotorus of TUC4C8[p, q] are given in the Table 1.

Graph Order Size
2D − lattice of TUC4C8[p, q] 4pq 6pq − p− q
TUC4C8[p, q] nanotube 4pq 6pq − p
TUC4C8[p, q] nanotorus 4pq 6pq

The goal of this paper is to continue this program to compute the first (second)

Zagreb coindex, second Zagreb index (coindex), third Zagreb index and first hyper-Zagreb

index of the line graphs of subdivision graphs of 2D-lattice, nanotube and nanotorus of

TUC4C8[p, q] and to obtain upper bounds for Wiener index and degree-distance index of

these graphs.

We begin with the following straightforward, previously known, auxiliary results.

[18] For any graph G of order n and size m, the subdivision graph S(G) of

G is a graph of order n+m and size 2m.

[18] Let G be a graph of order n and size m, then the line graph L(G) of G

is a graph of order m and size 1
2
M1(G)−m.
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II. Nanostructures

Figure 1: (a) 2D lattice of TUC4C8[4, 3]; (b) TUC4C8[4, 3] nanotube; (c) TUC4C8[4, 3]
 

nanotorus 

Table 1: Order and size

III. Main Results

Lemma 1.  

Lemma 2. 
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[15] Let G be a graph of order n and size m. Then

M1(G) = M1(G) + n(n− 1)2 − 4m(n− 1) (9)

M1(G) = 2m(n− 1)−M1(G) (10)

M1(G) = 2m(n− 1)−M1(G) (11)

[16] Let G be a graph of order n and size m. Then

M2(G) =
1

2
n(n− 1)3 − 3m(n− 1)2 + 2m2 +

2n− 3

2
M1(G)−M2(G) (12)

M2(G) = 2m2 − 1

2
M1(G)−M2(G) (13)

M2(G) = m(n− 1)2 − (n− 1)M1(G) +M2(G) (14)

[22] Let G be a graph of order n and size m. Then

M1(G) ≥ 2W (G)− 2M1(G) + 6m(n− 1)− n3 + n2 (15)

[22] Let G be a nontrivial graph of diameter d ≥ 2. Then

M1(G) ≤ DD(G)−M1(G)

2
(16)

with equality if and only if d = 2.

In Fig. 2 (b) the line graph of the subdivision graph of 2D-lattice of TUC4C8[p, q] is

depicted.

Let G be the line graph of the subdivision graph of 2D-lattice of TUC4C8[p, q].

Then

© 2017  Global Journals Inc.  (US)
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IV. Topological Indices of Line Graph of the Subdivision Graph of 2D-
Lattice of TUC4C8[p, q]

Theorem 1. 

Theorem 2. 

Theorem 3. 

Theorem 4. 

Theorem 5. 

(a)                                                (b)

Figure 2: (a) Subdivision of 2D-lattice of TUC4C8[4; 3]; (b) Line graph of the 
subdivision graph of 2D-lattice of TUC4C8[4; 3].

Notes



 
 

 
 

 
 
 
 
 
 
 
 
 
 

1. M3(G) = 4(p+ q − 2);

2. HM(G) = 648pq − 264(p+ q) + 8;

3. M1(G) = M1(G) = 2[18pq − 5p− 5q][12pq − 2p− 2q − 1] + 38(p+ q)− 108pq;

4. M1(G) = 2[6pq − p − q][4(6pq − p − q)2 − 4(6pq − p − q) + 1] − 2[36pq − 10(p +

q)][6pq − p− q − 1] + 108pq − 38(p+ q);

5. M2(G) = 162pq − 67(p+ q) + 4;

6. M2(G) = (6pq−p−q)[12pq−2p−2q−1]3−3(18pq−5p−5q)[12pq−2p−2q−1]2 +

(24pq−4p−4q−3)[8(p+q)+27(2pq−p−q)]+2[18pq−5p−5q]2−(162pq−67(p+q)+4)2;

7. M2(G) = 2[18pq − 5p− 5q]2 + 86(p+ q)− 216pq − 4;

8. M2(G) = (18pq−5p−5q)[12pq−2p−2q−1]2− (12pq−2p−2q−1)[108pq−38(p+

q)] + 162pq − 67(p+ q) + 4;

9. W (G) ≤ (18pq− 5p− 5q)(12pq− 2p− 2q− 1)− 3(18pq− 5p− 5q)(12pq− 2p− 2q−

1) + 4(12pq − 2p− 2q − 1)[6pq − p− q]2 + 54pq − 19(p+ q);

10. DD(G) ≤ 4(18pq − 5p− 5q)(12pq − 2p− 2q − 1)− 32pq + 114(p+ q).

Proof. The 2D-lattice of TUC4C8[p, q] is a graph of order 4pq and size 6pq− p− q. Then

by Lemma 1, the subdivision graph of 2D-lattice of TUC4C8[p, q] have order 10pq− p− q
and size 2[6pq − p − q] (see Fig. 2 (a)). Therefore by Lemma 2, G will have order

2[6pq−p− q] and size 18pq− 5p− 5q. Further notice that in a graph G there are 4(p+ q)

vertices are of degree 2 and remaining all the vertices of degree 3. Hence we can partition

the edge set of a graph G as shown in Table 2.

(du, dv) where uv ∈ E(G) (2, 2) (2, 3) (3, 3)
Number of edges 2p+ 2q + 4 4p+ 4q − 8 18pq − 11p− 11q + 4

We apply Formulas (1)-(8) and by employing the Equations (9)-(16) we can obtain
the required results.

In Fig. 3 (b), the line graph of the subdivision graph of TUC4C8[p, q] nanotube is

depicted.
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Table 2: The edge partition of the graph G

V. Topological Indices of Line Graph of the Subdivision Graph of

TUC4C8[p, q]  Nanotube

© 2017   Global Journals Inc.  (US)
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Let G be the line graph of the subdivision graph of TUC4C8[p, q] of nanotube.

Then

1. M3(G) = 4p;

2. HM(G) = 648pq − 264p;

3. M1(G) = M1(G) = 2[18pq − 5p][12pq − 2p− 1] + 38p− 108pq;

4. M1(G) = 2(6pq − p− q)[12pq − 2p]2 − 4(18pq − 5p)(12pq − 2p− 1) + 120pq − 38p;

5. M2(G) = 162pq − 67p;

6. M2(G) = (6pq − p)[12pq − 2p− 1]3 − 3(18pq − 5p)[12pq − 2p− 1]2 + (24pq − 4p−

3)[57pq − 19p] + 2[18pq − 5p]2 − 162pq + 67p;

7. M2(G) = 2[18pq − 5p]2 + 86p− 216pq;

8. M2(G) = (18pq− 5p)[12pq− 2p− 1]2− (12pq− 2p− 1)[108pq− 38p)] + 162pq− 67p;

9. W (G) ≤ (18pq−5p)(12pq−2p−1)−3(18pq−5p)(12pq−2p−1)+(12pq−2p)2(12pq−

2p− 1) + 54pq − 19p;

10. DD(G) ≤ 4(18pq − 5p)(12pq − 2p− 1)− 108pq + 6p.

Figure 3: (a) Subdivision of TUC4C8[4, 3] nanotube; (b) Line graph of subdivision of

TUC4C8[4, 3] nanotube

(a)                                                (b)

Proof. The TUC4C8[p, q] of nanotube is a graph of order 4pq and size 6pq − p. Then by

Lemma 1, the subdivision graph of TUC4C8[p, q] of nanotube of order 10pq − p and size

12pq − 2p (see Fig. 3 (a)). Therefore by Lemma 2, G will have order 12pq − 2p and size

18pq − 5p. Further notice that in a graph G there are 4p vertices are of degree 2 and

remaining all the vertices of degree 3. Hence we can partition the edge set of a graph G

as shown in Table 3.

Theorem 6.

Notes



 
 

 
 

 
 
 
 
 
 
 
 
 
 

We apply Formulas (1)-(8) and by employing the Equations (9)-(16) we can obtain

the required results.

Table 3: The edge partition of the graph G 
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(du, dv) where uv ∈ E(G) (2, 2) (2, 3) (3, 3)
Number of edges 2p 4p 18pq − 11p

In Fig. 4 (b) the line graph of the subdivision graph of TUC4C8[p, q] nanotorus is depicted.

Let G be the line graph of the subdivision graph of TUC4C8[p, q] nanotorus.

Then

1. M3(G) = 0;

2. HM(G) = 648pq;

3. M1(G) = M1(G) = 432p2q2 − 144pq;

4. M1(G) = 12pq(12pq − 1)2 − 72pq(12pq − 1) + 108pq;

5. M2(G) = 162pq;

6. M2(G) = 6pq[12pq − 1]3 − 64pq[12pq − 1]2 + 54pq(24pq − 3) + 324p2q2 − 162pq;

7. M2(G) = 648p2q2 − 216pq;

VI. Topological Indices of Line Graph of the Subdivision Graph ofTUC4C8

[p, q] Nanotorus

(a)                                                (b)

Figure 4: (a) Subdivision of TUC4C8[4, 2] nanotorus; (b) Line graph of Subdivision of
TUC4C8[4, 2] nanotorus 

Theorem 7. 

8. M2(G) = (18pq(12pq − 1)2 − (12pq − 1)108pq + 162pq;

9. W (G) ≤ 6p2q2[288pq + 12]− 54pq(12pq − 1) + 36pq;

10. DD(G) ≤ 864p2q2 − 396pq.

Notes

             

  

1

G
lo
ba

l
Jo

ur
na

l
of

Sc
ie
nc

e
Fr

on
tie

r
R
es
ea

rc
h 

  
  
  
 V

ol
um

e
X
V
II  

 I
ss
ue

  
  
  
er

sio
n 

I
V

IV
Y
ea

r
20

17

45

  
 

( F
)

© 2017   Global Journals Inc.  (US)



 
 

 
 

 
 
 
 
 
 
 
 
 
 

 

On Topological Properties of the Line Graphs of Subdivision Graphs of Certain Nanostructures - II

     
 

Proof. The TUC4C8[p, q] of nanotorus is a graph of order 4pq and size 6pq. Then by

Lemma 1, the subdivision graph of TUC4C8[p, q] of nanotorus have order 10pq and size

12pq (see Fig. 4 (a)). Therefore by Lemma 2, G will have 12pq vertices and 18pq edges.

Further note that the degree of each vertex is 3 in G. Hence we can partition the edge

set of a graph G as shown in Table 4.

We apply Formulas (1)-(8) and by employing the Equations (9)-(16) we can obtain
the required results.

In this paper, we continue the study certain degree based topological

indices for the line graph of subdivision graph of 2D-lattice, nanotube and nanotorus of

TUC4C8[p, q] and obtained upper bounds for Wiener index and degree distance index of

2D-lattice, nanotube and nanotorus of TUC4C8[p, q] respectively.

This work is supported by the Science and Engineering Research

Board, New Delhi India under the Major Research Project No. SERB/F/4168/2012-13

Dated 03.10.2013.

Table 4: The edge partition of the graph G 

(du, dv) where uv ∈ E(G) (3, 3)
Number of edges 18pq

Conclusion:  
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