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Stability Analysis of a Ratio-Dependent
Predator-Prey Model with Disease in the Prey

Ahmed Buseri Ashine

Absiract- Ahmed [1], considered study of prey-predator model with predator in disease and harvesting. In this article, a
ratio-dependent predator-prey model with disease in the prey population is formulated and analyzed. Assuming that
prey populations suffered from epidemics and the predator population will prefer only infected population for their diet
as those are more vulnerable. Dynamical behaviours such as boundedness, local and global stabilities are discussed.
Keywords. eco-epidemiological model, global stability.

[.  INTRODUCTION

The dynamic relationship between predator and their prey has long been and
will continue to be one of the dominant topics in both applied mathematics and
theoretical ecology due to its universal existence and importance. These problems may
appear to be simple mathematically at first sight, they are, in fact, often very
challenging and complicated.

Since the pioneering work of Kermack-Mckendrick on SIRS [2], epidemiological
models have received much attention from scientists. Mathematical models have become
important tools in analyzing the spread and control of infectious disease. It is of more
biological significance to consider the effect of interacting species when we study the
dynamical behaviors of epidemiological models. Eco epidemiology which is a relatively
new branch of study in theoretical biology, tackles such situations by dealing with both
ecological and epidemiological issues. It can be viewed as the coupling of an ecological
predator-preymodel and an epidemiological SI, SIS, or SIRS model. Following Anderso
and May [3] who were the first to propose an eco-epidemiological model by merging the
ecological predator-prey model introduced by Lotka and Volterra, the effect of disease
in ecological system is an important issue from mathematical and ecological point of
view. Many works have been devoted to the study of the effects of a disease on a
predator-prey system [2—7]. In this paper, the dynamical behaviourof a ratio-dependent
predator-prey systems with infection in prey populationis investigated. Here we have
studied the boundedness, permanence, local and global stabilities of the non-equilibrium
points of this system.
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[I. THE MATHEMATICAL MODEL

Consider the following mathematical model:

ds S+l

—=r(1- S-

o ¢ " )S-43

d_I: S _dl - blY

dt ay + 1

d_Y:_ Y 4 pblY

dt ay +1 (1)

With initial data S(0)>0,1(0)>0,Y(0)>0
We make the following assumptions in formulating the mathematical model of
apredator-prey system with disease in the prey population:

1) In the absence of disease, the prey population grows logistically with carrying
capacity K € R, and intrinsic birth rate r e R, .

2) In the presence of virus, the prey population is divided into two groups, namely
susceptible prey denoted by S(T) and infected prey denoted by I(T). Therefore at
time T, the total population is N(T) = S(T) + I(T).

3) The disease is not genetically inherited. The infected populations do not recover or
become immune. We assume that the disease transmission follows the simple law of
mass action B S(T)I(T) with B as the transmission rate.

4) The infected prey I(T) is removed by death (say, its death rate is positive constant
c) or by predation before having the possibility of reproducing. However, the infected
prey population I(T) still contribute with S(T) towards the carrying capacity of the
system.

5) The infected prey is more vulnerable than susceptible prey. We assume that
thepredator population consumes only infected prey with ratio-dependent Michaelis—
Menten functional response function

Y

,U(LY):W . @>0

It is assumed that the predator has the death rate constant d (c>0), and the
predation coefficient b (b> 0). The coefficient in conversing prey into predator is p
O<p<).

To reduce the number of parameters and to determine which combinations of

parameters control the behaviour of the system, we nondimensionalize system (2). We
choose

S o aYy
S=—, i=—, =—, t=pKT
K K a K x
Then, after some simplification, the system (1) takes the form
ds : .
—=r(1-(s+1))s—s
p A-(s+1))
LU0 2
dt y+i
d i
_y = — Vvy_|_ M (2)

dt y+i
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With initial datas(0) >0, i(0) >0, y(0) >0

Wherer = 1 , W= d ,g= b ,e= c
pK BK apK apK
I11. BOUNDEDNESS

Theorem 3.1. Any solution of system (2) is uniformly bounded inR°.

Proof. Let (s(t),i(t), y(t)) be any solution of the system (2). Since, % =rs(l-s)

We have, limsups(t) <r

t—>o0

\% =i+i+l. Then,

1+r p
d_V=L5(1_3)_\Ni —EySLS—Wi _Ey
dt  1+r p° 1+r p
dav _ 2r
—<———nV; wheren = min{1,w,
dat  1+r 7 7 (L w.&
Therefore, ?TV V< % . Applying theorem on differential inequalities [8], we

t +r
obtain g<v(si,y)< 2r  V(s(0),i(0).¥(9) and ast— o, o<y < 2

@+r)n e’ T T @+

Thus, all the solution of (2) enter into the region

D:{(s,i,y):OSVS +¢ for any g>0}

@+r)y
Hence the theorem.

IV. E(&)ILIBRIUM POINTS AND STABILITY ANALYSIS

The equilibrium points are obtained by solving %z%:%: 0.1t is found that
the system (2) has two boundary equilibrium E;(0,0,0), the axial equilibrium E,(1,0,0),
rd-w)

1+r

the predator-free equilibrium point E2(§,i_,0), where S=w and | , and the

interior equilibrium E"(s’,i’,y")

where s’ :W’ i = p(1r+r)(p(1—w)—(pq—e)),

«_T(PA=€) [ q (e
and y _—ep(lH)(p(l w) — (pg—w))

The system (2) cannot be linearized at E(0,0,0) and E,(1,0,0) and therefore
local stability of E, and E,cannot be studied[9].

Lemma 4.1. The predator-free equilibrium point E, (5,i,0)exists if and only if w<1
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Note: In terms of the original parameters of the system, the conditionw < 1becomes
d< pK.

This implies that if the ratio of the death rate of the infected prey to the carrying
capacity (d/K) is less than the transmission rate B, then the predator become extinct
and conversely.

The Jacobean Matrix at the equilibrium point E, is given by

—-rs —(1+r)s 0 Notes
J(Ez): ] 0 —-q
0 0 —e+ pq

The characteristics equation of J(E,)is (4* +BA+C)(A - pq+e€) =0,
WhereB=r5>0 and C=(1+r)si >0.

_RB++4R?_
The eigenvalues are A4,, = Bt I23 4c and A, =pg-e

Since, B >0andC > 0, therefore, the signs of the real parts A,and A,are negative.

This implies that E, is locally asymptotically stable in the si-plane. Now E, is
asymptotically stable in the y-direction if and only if pg-e<O0.

Lemma 4.2. The interior equilibrium E (s',i",y") of the system (2) existsif and only if
the following conditions hold:
(a) pa>e
(b) pd-w)—-(pq—€)>0

In terms of the original parameters of the system, the conditions (a) and (b)
respectively become pb>c and ap(fK —d)> pb—c, which are the necessary and

sufficient conditions for the co-existence of the susceptible prey, infected prey and the
predator.

Local Stability of E'
jll j12 O
J(E)=|in in s |where

o j32 j33

. . P g’y

ju=-1s, jp=—-A+ns ,ju =1, I Sy )

%2 %2 x %

a pay : Ppay

T ay) BTy

Jas = m: Ja
The characteristics is 2°* +a,A* +a,A+a, =0

Ch :_tr‘](E*)z_jll_ j22_ 133 =rs _w
(y +i)
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a :W; I =rgp*w+ pe(pq - €)(pq—€)rpq —€)

Q= Julentinlestinle—lxele = lola

- i*s*{(1+ - fad-ply. E){}
(y +i)

a; = _det[J(E*)] = j11j23j32 + j12j21j33 - j11j22j33

pa(1+ r)s*y*i*2
(y +i")?

Now,

A=a,a, —a,
= _(j11)2 j22 _(j11)2 j33 + j11j12j21 _(j22)2 j33 _(j22)2 j11

_2j11j22j33 + j22j12j21+ j23j32j22 - j22(j33)2 - j11(j33)2 + j23j32j33

(y +i')? (y +i")* (y +i")*

Theorem 4.3. E is locally asymptotically stable if and only if ' >0and A>0
Proof. Note that

i) I'>0if and only if a, >0.

Ao e {(1+ s _AA-pSy | ra’A-p)’i'y”  a@s r)i*y*}

ii) a; >0 for all value of the parameters., and
iii) A=a,a,—a, >0.
Hence, from Routh Hurwitz criterion the theorem holds.

Theorem 4.4. Existence of positive equilibrium of the system (2) implies its global
stability around the positive interior equilibrium.

V. CONCLUSION

In this paper, an eco-epidemiological model with disease in the prey population
which is governed by modified logistic equation is studied. It is shown(in Theorem 3.1)
that the non-dimensionalized system (2) is uniformly bounded, which in turn, implies
that the system is biologically well behaved. In deterministic situation, theoretical
epidemiologists are usually guided by an implicit assumption that most epidemic
models we observe in nature correspond to stable equilibria of the models. From this
viewpoint, we have presented the most important equilibrium point E (s',i",y ). The
stability criteria given in Lemma 4.2 and Theorem 4.3 are the conditions for stable
coexistence of the susceptible prey population, infected prey population and predator
population.
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