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Strict Proof of the Perfection of the
First 98 Masks (Solution to the
“X-Problem of the Number 37)

A. Kornyushkin

Abstract- The proof of the Perfection for the first 91 normal
Masks in one dimension and for the seven normal Masks in
two dimensions is completed (all the centrally symmetric
masks are not differentiated and are counted as one). A
method is indicated for proving the Perfection of (presumably)
any appropriate Mask (which is Perfect).

l. [NTRODUCTION

his study is a continuation of the studies [1] - [3]
and includes the complete proof of the Perfection

of Masks (Neighborhoods) shown in Fig. 1. Let us
briefly discuss the proof.
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Fig. 1. The set of the first Perfect Masks in one (left panel) and two (right panel) dimensions (taken from [1]). On the
top of the left panel, a few examples of 1D Perfect Masks are shown; on its bottom — the colored diagram indicating

properties if the first 1D Perfect Masks (see explanations in [1]).

Two numbers in the colored squares in the left

panel stand for n ( n is the number of cells in a particular Mask) and ¢,, =(c-1)/2 (c is the number of rows in a

Transition Table build for that Mask)

First, one small but important Lemma will be
proven: the Lemma for all normal Masks. Then the proof
of Perfection will be carried out separately for each
Mask. The Perfection proof will be aided by the
computer and completed in three stages. The first two
stages have been described in detail in [1]. We will
briefly revise these stages and then talk about the “third”
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stage. Also, we will talk about the important “problem of
the number 3.

[I. DEFINITION OF AN ORDINARY CELLULAR
AUTOMATON (CA) AND A TRANSITION
TABLE

We define an ordinary (traditional) CA as a
Cellular Autornaton (CA) which is single-plane in time. In
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general, it operates on the N-dimensional Lattice. The
Lattice space can be closed (for instance, it can form a
torus) or continue ad infinitum. The state of a cell in this
Lattice at the time point t+7 depends on states of the

cells in its neighborhood at time point t. A majority of
Cellular Automata are ordinary.

To operate ordinary Cellular Automaton, one
needs to specify (define) five things (see Fig. 2).
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Fig. 2: Things to be defined for a correct operation of an ordinary cellular automaton

In this Figure, there 5 panels (I-V). Below we
specify the content of each panel.

» N- dimensionality of the Lattice and the dimensions
of the boundaries of Cellular Automaton.

= k- the number of possible cell states.

= n-the number of cells (cells are numbered from 0 to
n) forming the Neighborhood including “central”
cell. Example is shown of a particular cell
numbering for some 2D Mask.

= The Transition Tables R with the corresponding
index. The Transition Tables determine the state of
CA at the next time point (t+1). Both the index of the
Table and its content (elements) belong to the set
from Il. For each cell and at each time point, we
write out (in accordance with the numbering Ill) a
string and compare it to the content of the Transition
Tables. When we find the matching row in TT we
choose this row index as the next state of the
Automaton.

= The Initial Conditions.

After establishing the above definitions, we can
start the operation of our CA and monitor its changes.
Also it is important to mention properties of a

Transition Table (TT) [1]:

1) The row position in TT does not matter.

2) The number of columns in TT is equal to n+17,
where n is the number of points in the “numbered”
neighborhood (see Ill).

3) Each TT has a “rightmost selected” column (which
represents the central point). In the figures below, it
is highlighted in grey.

4) All the rows, both in one TT and in the other ones,
differ among themselves.
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5) The maximum number of all rows of TTs must be
less or equal to k™' (22"'=4+4 is true for the
Automaton  called “Rule 30" (Fig. 3A);
28t1=372+140 is true for the Automaton called
“Life” (Fig. 3B)). If some row(s) is (are) missing, then
one should explain why this row(s) cannot appear
during the operation of the CA.



In Fig. 3 one can see some examples of ordinary CAs:
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Fig. 3: Examples (with the Transition Tables) of ordinary CAs; Panel A is Wolfram’s CA named “Rule 30”; Panel B is
a Conway’'s CA: “Game of Life”; Panel C is a reversible Fredkin's CA with three states; Panel D explains how

Fredkin’s Automaton operates on a closed Lattice

Let us consider Fig. 3. Panel C describes
Fredkin’s Automaton (we call this type of Automaton by
the name of its inventor it [4]). Fredkin’s Automaton has
THREE states: A, B, and C. In it, we calculate a certain
Boolean function, that depends only on cells C, which
fall into neighborhood “f(C)” and then we make the
corresponding transformations depending on function f
(see Fig. 3C).

Let us define transliteration as a replacement of
all C's by B's and B's by C’s. Then it is easy to prove the
following statement: (i) we make a transliteration in the
Fredkin’s Automaton, then (i) we make one time step
forward and after that (iii) another transliteration, we will
be in the previous state [5]. That means that this
Automaton is reversible.

Let us consider the situation when the initial
state of Fredkin’s CA comprises cells A and/or B. That
is, there are no C cells at all. (Let us assume that f(C) is
equal to 0 in this case. This is another condition we
impose on the Automaton). That is, the Automaton (with
no C cells) will be transformed as follows: A=>A and
B=>C, that is, to its transliteration. Then we should

watch two movements synchronously: the first is
directed forward in time, the second is directed
backward. At each new step, the “forward and

backward” states will be transliterations of each other. If
the number of states is finite, there will necessarily be a
moment when with the next move forward, we will get its
transliteration, that is, the “backward” move. We can say
that we have reached the Mirror Point, or the Half-Period
Point (point of return). Then the motion is repeated.
(Fig. 3D).
[1I. A SimpririED FREDKIN'S AUTOMATON
(SFA) AND THE “X-PROBLEM OF
NUMBER 3" IN A NON-FORMAL FORM
Let us “facilitate” the Fredkin’s Automaton, that
is, we will remove the word “any” from definition of the
f(C) function and will consider f(C)=0, if there are NO C

cells in the given neighborhood, and f(C)=1, if they ARE
C cells in the given neighborhood.

© 2017 Global Journals Inc. (US)
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Fig. 4: Panel A is Simplified Fredkin’s CA (SFA), Panel B is Axial Automaton for the same Mask

This kind of Fredkin’s Automaton will be a
subject of following discussions because exactly this
kind of Fredkin Automaton demonstrates, rather than any
other Fredkin’s Automata, a completely surprising and
paradoxical behavior. All other FA (and that can be
shown) “deteriorate” over time. Most of the “random” FA
are “broken” at the moment the FA are created, see for
instance Supplementary reference [i].

Only SFA can, roughly speaking, run
indefinitely. It does not “die in the Hypercycle” (the cycle
where an ordinary FA goes on has an unimaginably
large number of steps), but it appears again in the initial
state (see Supplementary reference [ii]).

In an informal way, we will call this circumstance
the “problem of the number 3”. This problem is related
to a profound strangeness of the behavior of large
enough number of SFAs. We refer to number three
because we choose only three states for CA. This
number will appear more than once in our text. To
explain a remarkable behavior of SFA (for example, it
can produce puzzling objects resembling ‘“rivers”
flowing in two dimensions) is a separate task, we will not
deal with it now. Yet, we will prove a very interesting
theorem related to these SFAs.

IV.  NORMAL MASKS. TWO-DIMENSIONAL

AUTOMATON PLOT (2D-AP). THE MAIN
LEMMA. A STRICT FORMULATION OF THE
“X-PROBLEM OF NUMBER 3’

Let us give a mathematically strict definition of
the “X-problem of number 3", but let us first talk about
what kind of SFAs and their corresponding Masks
(neighborhoods) we will consider.

Further on, we will consider only the Masks
containing the Neumann Mask (see Supplementary
reference [iii]) in N dimensions. Let us call these Masks
normal.

At this point, we are going to limit our
Automaton from all sides. Let us imagine a chess figure.

© 2017 Global Journals Inc. (US)

This figure can (i) walk on the N-dimensional Lattice one
step forward or backward along any of the axes (that is,
just along the Neumann neighborhood) and (i) step into
positions (fields) where it has been before. It is obvious
that such a figure can visit all the cells in any finite
Lattice (ZV) and, eventually, return to the starting point.



Two-dimensional Automaton

Plot (2D-AP)

B

trans-

literation

trans-
literation

C

Fig. 5: Panel A presents the Neumann Mask (Neighborhood) for two dimensions (2D). Panel B presents the moves
of a “chess figure” unfolding the 2D lattice into 1D “string”. Panel C presents Two Dimensional Automaton Plot (or
Test Plot) illustrating the effect of non-intersection of the CB bands. The picture refers to a one-dimensional Mask

Ignoring (or not permitting) any meaningless
moves (e.g., forward and immediately backward) of this
figure, we unfold (or transform) an N-dimensional
bounded (e.g., closed as in torus) area into one
dimension. After that, we place every next position of the
CA under the previous one and by doing so we build in
the end a so-called “Two-dimensional Automaton Plot”
(2D-AP) using two variables. On the x-axis, the sweep of
the CA into one dimension made with our chess figure.
We name this sweep as r. In dimensions with large N,
the Neighborhood itself will somehow spread itself along
the x-axis, but it does not matter which manner it
spreads. The y-axis in 2D-AP is directed downwards and
shows the time evolution. Now, let us prove the
preliminary Lemma.

The Lemma.

If SFA contains Neumann Mask,
following is true:

1) The Mirror Point (for any non-trivial SFA with a return
period > 2) is not equal to the Start Point.

2) Like the Start Point, the Mirror Point contains
exclusively A and B cells.

3) Each C cell on the Test Plot (2D-AP) necessarily
touches another C cell on each side and only once.
That is, the CB rows run across the Test Plot as
non-intersecting strips (Fig. 5C)

This not very complicated lemma has been
proved in [2]. At this point, we will give a strict definition
of the “X-problem of number 3”.

We take some Masks (later on, we will call them
Perfect), any size of CA and any initial conditions. Then
we consider the following: (i) take any arbitrary initial
conditions consisting only of A and B cells and remove
all the B cells from it on the 2D-AP (it is very convenient

then the

to remove B cells (thus making cell space “vacant”)
layer by layer from top to bottom: “first”, “second”,
“third”, etc...), (i) “lift” all the cells (they can be either A
or C cells) from the lower layers up into the vacant
spaces (the exact procedures and formulas are given in
[1]).

By doing so, we will build a matrix (from the
Start Point to the Mirror Point) having ® rows along the
y-axis and filled with cells A and C. Now, let us take an
“additional” initial coloring. That is, we change all the A
cells to B cells, and B cells to A cells. Now, we will do
the same procedure. We will build a matrix having @
rows along the y-axis also filled with cells A and C as
well.

We need to prove the following statement: for
any Perfect Mask (Fig. 1) © will always be equal to @,
and the obtained matrices will coincide with each other
when all the A cells are replaced by C cells and the C
cells are replaced by A cells.

“X- problem of number 3” means exactly this
statement.

V. THE FIRST TwO STAGES. THEOREM 1
PROVING THAT THERE EXIST AN Axz4L
AUTOMATON FOR AUTOMATON WITH A

PERFECT MASK

First, let us note that in the previous study [1]
this Axial Automaton has been called Table. We decided
to change its name in order to emphasize its central
position between “the Ordinary World” and ‘“the
Complementary (Parallel) World” and rename is as Axial.
In the study [1] the following has been proven:

© 2017 Global Journals Inc. (US)
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Theorem 1. (The Correctness Theorem).

This theorem states that for all the Masks in Fig.
1, which are not shaded in black color and for which n <
9, there is a Axial Automaton with k=6 (Fig. 4 panel B)

R e={-x,—y,—z,+x,+y,+z}; R

R, .e={+x+z,+y,—x,—z,-y}; R, e ={+y,+x,+z,-y,—x,-z}; R

Such Transition Tables have surprising properties.

First stage. TTs from the above are calculated under the
assumption that the corresponding Mask is Perfect as
follows. Tests are carried out with a random (finite)
Lattice size and random initial conditions. After the
Automaton reaches its Mirror Point (its Half-Period
Point), a “selection” is carried out as described in
Chapter 3 (see [1]), with the parameter F retained (F
represents the number of the step at which the MP has
been reached) and F has index A or C (i.e., F, or Fy)
depending on what was written on this “dice”. After that,
the following substitutions are made: F, (mod 3)=0 & -
X", F5 (mod 3)=1 & "-y”, F, (mod 3)=2 & ”-z”, F¢ (mod
3)=0 & "+x”, Fc (mod 3)=1 &"+y”, Fe (mod 3)=2 &
"+7”,

The results serve to construct the
corresponding Transition Tables: R,, R, R, R., R,
R,,. (Details and examples are given in [1]).

Second stage. Thus, a new CA is defined. It starts on
the same Lattice as the SFA, but with the corresponding
replacement of the initials A and B by “-x” and “+ x".
This CA has a very small “density”, the latter refers to the
ratio of “the number of rows in all the matrices R” to “the
maximum number of possible rows” (6"""). This ratio is
rather small for most of Perfect Masks (Fig. 1) Yet, it is
proven by the method of induction that no other rows
can appear during the operation of the CA. (It is also
proven by the induction that the Axial Automaton is
reversible, and the matrices for the inverse R" ,, R7,, ...
transformation are also obtained from R, by the
corresponding substitutions (see [1]). We call Correct a
Masks for which there exists an Axial Autormaton.

What is the only interesting point in this proof —
it always comes to an end. There are no exceptional
ideas in it. This is a traditional proof made by an
“exhaustive search” and “by induction”.

Axial Automata have their own value. These
Automata manifest some new symmetries and there are,
in fact, a lot of those symmetries.

In a spirit of study [3], let us take a certain neighborhood

© 2017 Global Journals Inc. (US)

re, ={—z,—x,—y,+z,+x,+y}; R,

and with corresponding Transition Tables (TTs) R,, R,,
R, R.. R., R., which are obtained from R, by
corresponding substitutions:

18, ={-y,—z,—x,+y,+z,+x};

(e ={+z,+y,+x,—z,—y,—x}.

Fig. 6: A certain symmetrical Mask (Neighborhood) in
two dimensions with n=52

Let us ask a mathematician what kind of
symmetry it has? The answer will be — the symmetry of a
square: symmetry along the axes “x” and “y” and along
the diagonals. Yet, it turns out not to be a complete
answer.

There exist also some other (!) symmetry. In
fact, this new symmetry is represented by R, Transition
Table which is very interesting by itself. We are 100%
convinced that there is such a symmetry — the R, Table,
an Axial Automaton — exists for a huge number of Masks
that are not symmetric. It surely exists for all centrally-
symmetric Masks (it is clear from indirect data), and of
course the same is true for Masks that have the
symmetry of a square. One needs just a very good
computer to determine the R, Table. In order to prove
the Correctness of this R,, Table, by using a brute force
search by exhaustion, one needs to exploit an extremely
powerful computer (the author has a doubt that such a
computer can be built, in principle). “A nested cycle of
several thousand values with a depth equal to 53..." — it
is indeed very challenging! Yet, when n is small enough
(n<9), the personal computer copes without difficulty
with all the three tasks: (i) finding the TT, (ii) finding the
proof of the Correctness, (i) and finding the proof of
the Perfection (it will be shown in the next chapters).

Let us move on to the third stage: the proof of
the Perfection from the Correctness.

THE UNITED TWO-DIMENSIONAL
AUTOMATON PLoT (U2D-AP) AND THE
Axiar AUTOMATON PLOT (AAP). REDUCED
LINES OF THE U2D-AP (P, V) AND OF THE
AAP (P, V)

Note that we have replaced terminology in
comparison with [1]. What we have called “half-strings”
in [1], we now call “Reduced Lines”.

VI.



We will call a United Two-dimensional
Automaton Plot (U2D-AP) the combination of two
passes on one Automaton Plot (2D-AP): the first pass
with some initial conditions (f.c(t, 1)) and the second
one with condition (f *ssc(t, r)))) which are additional or
complimentary to the (f,c(t, r)) conditions. In Figures 7
and 8, one can see examples of several U2D-APs. One
can see U2D-APs in the form of an animation in
Supplementary reference [iv].

Let us introduce the concept of a Reduced Line
with the index f: (P;, P;*) and the Value function on the
Reduced Lines (V;, V{*). Here, index “f” shows that the

P(z+1r."In") = l

Reduced Lines will be determined from the U2D-AP. In
principle, it can be introduced for any Fredkin's
Automaton, but we will consider it only for SFAs with
normal Perfect or normal Imperfect Masks.

Definition

Reduced Line P{(z, r, “In.”) is an integer function
(P; € Z2) from three variables 7 r,“In.”, where 7, r € Z
and “In.” are some (any) initial conditions. The definition
is given by the induction
P (0, “In.”)=0; with an induction step:

]P,(r.r."[n."_)+l if fapeP(zor In")y+1Lr)="4"v"C"
Pr.rIn"+2 if [ (Pi(z.r"In")+Lr)=

"R (2)

In fact, this is the “lift up” (see Chapter 3 and [1]) mentioned before. A similar definition is valid for function

P& (71, In.*”).

fABC(f!r)J fA*BC(fsr)
t 012345678

Reduced Lines (P,, P;*) for a normal but Imperfect

Mask: I el

X 0
v 1 U=0)
z 2
0 <, B Po(, 1 “In")= Pir, 1) E=P,r “n?) = P, r)
< ¥ o for some, any initial conditions for additional initial conditions
2 T(=1)
D y 2 Definition of functions “F;”, “V;”  Definition of functions “P}" , “V;"
g < o P0,1)=0 induction: P¥0,1) =0 induction:
y 1 *
y 2 formula (2) B+,
X 3 _ *
Pf (2’ 3) =4 ¥ 4 ‘E(=2) Vf(T’ r) - SGN(fASC (Pf(T: .f'), .f')) Vf (T,
Vit2. +31) ren § ¥ 8 - Some, any initial  [E—
0 @ f..  condtions
N X i A “‘B” ‘c”
R 1)=5 e A (filny L] 8" [¥] "C lal
Vi3, 1) = 2 Additional =
=-1 ("4 2 i £ initial
y 4 . e conditions  «p» gy e
z (=3) (contour) A D B E c E

X

Fig. 7: On the left,

there is U2D-AP for a normal but Imperfect Mask. Black and white lines show the Reduced Lines

for the first few 1 values. One can see that P, and P,* are not symmetrical with respect to the “centerline”, which is an
abscissa with the coordinate t = 3t/2. The “errors” of the symmetry are shown with a thick line.

Let us introduce the sgn (sign) function for the
quantities {-x, -y ...} (sgn (-x)=-1, sgn (+ x)=1, sgn (-
y)=-1...) and the SGN function for cells A andC:
SGN(A)=- 1, SGN (C) = 1, (SGN (B) - not determined).
Let us use these indications to write the Value function
on the Reduced Line for “arbitrary” initial conditions: V;
t r, “In.") = SGN (fiec (P; (t, r, “In.”), 1)) and the
analogous function Vi* (t, r, “In.”) = SGN (fugc (P; * (t, 1,
‘In. *”), r))) for the “additional” initials. These are the
values that we would obtain from the “lifting up”
procedure described in Chapter 3 of reference [1].

There is no connection found between values V, and V/*
for Imperfect Masks (Fig. 7).

Theorem 1 (see [1]) says that for those Masks
for which there exists an Axial Automaton (that is, for
Correct Masks), we can determine what we now call the
Axial Automaton Plot (AAP). It is obtained by entering the
result of the Axial Automaton operation each time into a
new row with the number t. The Reduced Lines on the
Test Plot (U2D-AP) with their values (P, P*, V, V*) without
index “f” are obtained from the known formulas (see [1],
Fig.8D)
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STRICT

PROOF OF THE PERFECTION OF THE FIRST 98 MASKS (SOLUTION TO THE “X-PROBLEM OF THE NUMBER 3")
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Fig. 8: Panel A — United Two-dimensional Automaton Plot (U2D-AP) for the Correct Mask (3,1) with three examples of
the Reduced Lines (P and V, without “f”) constructed according to the formulas from Panel D of the same figure for t
=2,t=4andt =5 One can see that they are symmetrical with respect to the straight line (t = 3t/2) and coincide
with Prand V;. Panel B — table R, for the Mask (3,1). Panel C is a result of Axia/ Automaton operation (AAP as well).
Panel D shows formulas from [1] describing the operation of Axial Automaton (we will illustrate the formulas and
operation by using a concrete example, fort = 5andr = 1in Fig.9)

The arrows show the relationship between Panels A, B, and C by the example of one point (t =6, t= 2,1 =
1; initial conditions are “arbitrary”). The ovals show those areas that are taken out into the other figures.
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Fig. 9: A detailed calculation of the quantities P (5.7) and V (5.1) from Fig. 8. Panel A of two colored images shows
2D-AP (Test Plot) for “arbitrary” initial conditions and for the Reduced Line with © = 5. Panel B shows the formulas
and performed calculations. Panel C shows AAP of the Axial Automaton in our case.
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COMPLETION OF THE PROOF OF THE
PERFECTION OF THE FIRST NORMAL
CORRECT MASKS. THE PROOF OF THE
[DENTITY OF THE REDUCED LINES (7, V})
AND (P, V)
We want to prove that for any Correct Mask
Pi(z 1) =P (g, r)and V; (5, r) = V (7, r). Let us see what

other tests for the Transition Tables need to be done in
order to assert the above equalities.

VII.

Theorem 2. (The Perfection Theorem).

Let us prove using the method of induction that
for any Correct Mask from Fig.1 with n<9 and for any T,
the Reduced Lines with index “f" (P, V, P V/*; i.e., the
Reduced Lines of U2D-AP) will coincide with the
Reduced Lines without index “f" (P, V, P* V* the

Mask graph:
central
cell
other
B cells
b |
F o = o — TIECANS
Ze= M thatthereis sy
a ¥ NO such pairs: |+x,z
E inTT wle

Reduced Lines of AAP). (We talk only about the
Reduced Lines P, V, P, V;, because the theorem can be
proven similarly for the Reduced Lines P/*, V/*, P*, V*).

Test 1.

We will call those pairs of cells (columns) of TT
which have no pairs (-X, y), (+x, - 2), (-y, +2) as Good,
and we will construct not directed Graph on all the cells
of the Mask using these pairs. If one can pass using the
edges of the Graph from the central cell to all other cells
of the Mask, then Test 1 for the Mask is declared valid.
All Correct Masks, with n<9, from the Figure 1 will pass
this test. In all one-dimensional Masks with "natural
numbering of cells (that is the one made in a row) there
are two simple passages from the central cells to the left
and to the right.

R® Perfect Mask:

-X, *2, -2, -2, tz2, -2, -2, -2, tz

X, =X, tX, -y, X, X, -y, X, X

+2, -X, +Z 4z, 42, X, -X, X, +2
LN B

/7 VTN
| < - < <~ ) [ |

B

Fig. 10. Panel A — an example of the Graph for a hypothetical Mask with n = 9. Panel B shows a passage through
the cells of the Perfect Mask (25, 23). The vectors of the passage are drawn by yellow on both panels (and also in

other Figures)

The induction is related to t; it will be proven
simultaneously that condition 3 continues to be valid.
The condition is as follows: for all vectors and for all the
passages where r, is vector’'s origin and r, is vector’s
end the following comes true:

8p =[P (,0) P (z.1,)| < 2 @

See Fig. 11:

from
Fig. BA

Fig. 17: ustration of Formula 3 for real Reduced Line
P*(z, r) from Fig. 8A

Formula 3 bears two functions for our proof.

On one hand, fulfillment of a Formula 3 will
allow us to place correctly initial letters of A and C for an
induction step; see Fig. 12:

Hyberlattices

putting down of initial letters  }
on the way which begins Z, 1Y, +Z, X, tY..

Fig. 12: Placement of letters in the rows of TT along one
of the passages of a hypothetical Mask

On the other hand, if we prove that for all rows
of TT, the letter lying under the central cell is correctly
restored only from the content of the row under
consideration, then this will prove the entire Theorem
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and, further on, validity of formula 3! We will explain it in
more detail below.

Let us assume that Test 1 and Test 2 (the
restoration of the subsequent letter from our row; see

further on) are passed. Then let us assume that the
formula 3 ceased to be met. We will take the first step of
T on which &, is equal to two. Let us look at Fig. 13 ...
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Fig. 13: Explains that 8 can never be equal to 2 (or greater number) using the example of Transition Table R, for the
Mask (3.1)

In one move (i.e., when t increases by 1), if the
letter has a “+4” sign, then the Reduced Automaton Line
is shifted down by two cells (on a 2D-AP), and if the
letter’s sign is “-“, then it is shifted down by one cell.
Therefore, it is clear that 8 cannot immediately become
equal to, say, three. It must necessarily pass through
5=2.

It turns out that & can become equal to 2 only
for a few pairs. These are pairs: (-x, +Y), (+ X, -2), (-y, +
z) where one of the values is the beginning of a vector of
the bypass passage, and the second is its end. Yet,
these pairs do not appear in our TT in a process of the
bypass passage. It turns out that they cannot appear
there in principle (see Theorem 1). So we have
encountered a contradiction. Therefore, the absolute
value of 8 is and will remain less than two.

It was necessary to make the last decisive check.

Test 2.

Let us perform the test for generally complex
Mask in N dimensions. Let us consider the way it is
carried out? In this test, the rows from TT are taken one
by one (note that the test is carried out for all the rows of
the TT). First, we build four empty N-dimensional
Lattices (we choose four as a start point; and if it turns
out that four is not enough, we will add one more
Lattice, and will start checking from the beginning),
which in all directions are several-fold larger than the
Mask under consideration (to start with, say, 3-fold
larger Lattices; if it happens that we go beyond the
limits, we can increase the Lattice size and repeat the

(Us)

test again from the beginning). Let us number these four
Lattices according to timet: ...t =-2,t =-1,' =0, ¢
=1t =2 ... . Then, we begin to “restore” our
truncated “Automaton Plot” from what we have at the
moment.

The letters A or C are placed into the center of
Lattice O (' = 0) dependently on a sign of the state (x,
y, or z ) existing in the central (zero) point of the row of
the Transition Table under the test (Fig. 12A): if sign = -
1, then we fill the center of Lattice O with letter A, and if
sgn =-+1, we fill the center of Lattice 0 with letter C.

The corresponding letters for Hypercubes with
numbers ... -2,-1, +1, +2 ... are written in the manner
shown in Fig 11. All letters (see Fig. 12) of our rows
proceeding from the shifts are brought to the cells of the
Hypercube, as we perform the bypass passage. In all
other cells of Hypercube are filled with "-1". It represents
the fact that the value is not known yet (see Fig. 14).
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Fig. 14: The beginning of testing of two rows from TT R,, and R, for the Mask (5,3). Rows can happen to be either
simple or difficult for the analysis. The majority of rows in any TT (678 of 702 for a mask (5,3)) are simple. This means
that the value we expect to obtain is calculated directly from the row. But there are also a few difficult cases (24 of
702 for a mask (5,3)). Then it is necessary to address to the proof of Theorem 1 and study how could such a row

appear, in general.

Now let us begin the restoration of the
“truncated” Test Plot under conditions of lack of
information. First, we look through all the cells in all the
Lattices that are filled with “-1” and for which we can
determine value f(C) and, correspondingly, which of
letters A, B or C are placed in the given cell of the
Lattice(s). The ultimate goal is to fill the Lattices with
letters (we need to find whether letter A or C goes into
Lattice 1 or 2) and what is the letter immediately below
the zero point of Lattice 0.

If we cannot determine which of letters A or C lie
under the zero point of Lattice 0 (we still have “-1”
there) or (another plausible scenario) the letter (A or C)
with corresponding “+” or “-“signs does not match the
index of the Transition Table from which we took the row
under the test, then Test 1 (for the entire Mask!) is
considered as failed!

o
"
1

]
There will be C!!!

| (from proof of Theorem 1)

Simple case

A

Fig. 15: The final stage of the test from Fig. 12 for two rows from Fig. 14. Test 2 have passed for this rows

So, one by one we check all the 6C rows and,
eventually, we find that all the Correct Masks from Fig. 1

have passed the test! Fig. 16 shows the checking of TT

R, of our “favorite Mask (3,1).

Comp.'éx case

B
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All cases are simple!

Fig. 16: Panel A shows Transition Table R, for the Mask (3,1). Panel B shows how this Table is sorted (just for clarity)
and collected into clusters of the same type. Panel C shows that the parts of the rows that do not participate in the
restoration are closed with white “curtains”. Panel D shows the restoration of the letter according to procedures
described in the above text. Actions are performed from left to right. After performing the next action, the letters are
shown “white”; the newly appeared ones are shown in “black”. It can be seen that in all the cases, the letter “-x" is
restored correctly

This, taking into account earlier considerations, We will construct — at the proof of the Theorem
proves the Theorem! In more details, for all © and rthe 1 — the histogram by the number of use of the given line
following is valid: i in the first case (N/) and in second (Nf). There is an

interesting fact! For any i and for all Perfect Mask from
Pf (T,I')=P(Z',I') Pf (r+1.r)=P(r+1,r) Flg 1itis fairly:
V, (z,r)=V(z,r) V. (z+Lr)=V(z+Lr)

N°® = NS
Corollary. . .
The reference to the interactive program
All the Correct Masks with n<9 from Fig.1 are Perfect. key 5M3 about a private research of the proof of the
In accordance to the formulas presented in Fig.  Mask (5,3) is given in Annex 2. In the Fig.17 it is
9D (see [1]) for the Axial Automaton, the content of rows  presented the part of a screenshot of the program
(and their arrangement) in the “lifted up matrices” for the jllustrating a formula (5).
SFAs will repeat that for matrixes L and L* where all the
“negative” letters are replaced by A and all the “positive”
letters, by C. On the other hand, we know that L and L*
are connected by relation L = S (L*), where S is a
substitution (+x, +z, +y, -x, -y, -z). That is, the pluses
change to minuses and vice versa. Consequently, all the
considered Masks in Fig. 1 are Perfect.

VIII. ONE MORE (ADDITIONAL) PROPERTY OF
THE TRANSITION TABLES

For any correct filling of our Perfect Mask with
Masks from TT there are two particular rows:
1) A row which turns out as a result;
2) Arow which lies in the central point.

© 2017 Global Journals Inc. (US)
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Fig. 17: Wustration of the program key 5M3 of the
formula (5)

We will present one more part of a screenshot
(Fig. 18) of the filling connected with a concrete isolated
case from the proof of the Theorem 1.

&3
v/
s geny = 133r30 § 1= —
e <
v)
2 €R .,
= €R
=V |-VI|-Y ER +z
Al € <R
—— ER 12
+y) +zl+z] -z | +2 ER_Y
b o 1 [z 3 o (s [w =] (un
.-
Fig. 18

It is visible that for this case of filling of the Mask
(number is equal 100000 of 133758) the rows belongs to
the first case (1) (-x, -y, -y, - ¥, +x); the rows belongs to
the second (2) —arow (+y, +z, +z -z +2z). Iltis clear,
that these lines can't turn out from another by any
substitution.

IX.  WHAT PROBLEMS STILL REMAIN?

The concept of “normality” is a bit excessive, so
let us introduce the concept of “Generalized Normality”.

Definition.

A Mask of Generalized Normality is such a Mask
in N-dimensions that has one of the corresponding
elements in the direction of each of the axes: either
element 1, see its depiction in Fig. 14 (it is the same as
in normal Mask) or element 2 (symmetrically placed
‘dominos”, in the direction of the corresponding axis,

see Fig 19). It is obvious that this is enough for the

preliminary Lemma to work.

A

Axis

1{H7
1. 2.

(1) or (2) must to be
in the Mask for each axis

Fig. 19

There are two obvious problems arising.

Problem 1. Is it possible to prove (or disprove) that any
Generalized Centrally-Symmetric  Normal ~ Mask s
Perfect?

Problemn 2. Is it possible to determine the Perfection of
the Mask directly from the type of the Mask?

We propose to name the new mathematical
discipline which we are developing the discrete N-
dimensional Geometry. We believe that it can be an
appropriate term.

X.  CONCLUSION

In mathematics, there are finite simple groups.
As the mathematical textbooks say that all this is about
the rotation of several polyhedra in the N-dimensional
space.

We acted differently: we penetrated into one cell
of an N-dimensional lattice and looked at things “from
there”. After that, we have suddenly discovered a
multitude of most unexpected and surprising
symmetries. Using the computer, we leamed about
some properties of those symmetries, yet the inner
essence of those symmetries remains unclear.
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What it was called in [1]

What it is called now

Simple Automaton

Simplified Fredkin's Automaton (SFA)

Table Automaton

Axial Automaton

Strings:
First half
Second half

String (remain the same)
The Reduced Lines of the SFA with “arbitrary” initial conditions.
The Reduced Lines of the SFA with “additional” initial conditions.

Annex 2.

The reference to the program key 5M3 for interactive studying of the proof of the Perfection of the Mask
(5,3) is presented in (v). (We have counted six properties of the Transition Tables, and the last 4 of which are very
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