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Abstract-

 

The proof of the Perfection for the first 91 normal 
Masks in one dimension and for the seven normal Masks in 
two dimensions is completed (all the centrally symmetric 
masks are not differentiated and are counted as one). A 
method is indicated for proving the Perfection

 

of (presumably) 
any appropriate Mask (which is Perfect).

 

I. Introduction 
his study is a continuation of the studies [1] -

 
[3] 

and includes the complete proof of the Perfection
 of Masks (Neighborhoods) shown in Fig. 1. Let us 

briefly discuss the proof.
 

Fig. 1:
 
The set of the first Perfect

 
Masks in one (left panel) and two (right panel) dimensions (taken from [1]). On the 

top of the left panel, a few examples of 1D Perfect
 
Masks are shown; on its bottom –

 
the colored diagram indicating 

properties if the first 1D Perfect
 
Masks (see explanations in [1]).  Two numbers in the colored squares in the left 

panel stand for n  ( n is the number of cells in a particular Mask) and с1/2 
=(c-1)/2

 
(c

 
is the number of rows in a 

Transition Table build for that Mask)
 

First, one small but important Lemma will be 
proven: the Lemma for all normal Masks. Then the proof 
of Perfection will be carried out separately for each 
Mask. The Perfection proof will be aided by the 
computer and completed in three stages. The first two 
stages have been described in detail in [1]. We will 
briefly revise these stages and then talk about the “third” 

stage. Also, we will talk about the important “problem of 
the number 3”. 

II. Definition of an Ordinary Cellular 
Automaton (CA) and a Transition 

Table 

We define an ordinary (traditional) CA as a 
Cellular Automaton (CA) which is single-plane in time. In 
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general, it operates on the N-dimensional Lattice.  The 
Lattice space can be closed (for instance, it can form a 
torus) or continue ad infinitum.  The state of a cell in this 
Lattice at the time point t+1 depends on states of the 

cells in its neighborhood at time point t. A majority of 
Cellular Automata are ordinary.  

To operate ordinary Cellular Automaton, one 
needs to specify (define) five things (see Fig. 2). 

Fig. 2:
 
Things to be defined for a correct operation of an ordinary

 
cellular automaton

 

In this Figure, there 5 panels (I-V). Below we 
specify the content of each panel.

 


 

N- dimensionality of the Lattice and the dimensions 
of the boundaries of Cellular Automaton.

 


 

k- the number of possible cell states.
 


 

n- the number of cells (cells are numbered from 0 to 
n) forming the Neighborhood including “central” 
cell. Example is shown of a particular cell 
numbering for some 2D Mask. 

 


 

The Transition Tables R
 

with the corresponding 
index. The Transition Tables determine the state of 
CA at the next time point (t+1). Both the index of the 
Table and its content (elements) belong to the set 
from  II. For each cell and at each time point, we 
write out (in accordance with the numbering III) a 
string and compare it to the content of the Transition 
Tables. When we find the matching row in TT we 
choose this row index as the next state of the 
Automaton.

 


 

The Initial Conditions.
 

After establishing the above definitions, we can
 

start the operation of our CA and monitor its changes.
 

Also it is important to mention properties of a 
Transition Table (TT) [1]:

 

1)
 

The row position in TT does not matter.
 

2)
 

The number of columns in TT is equal to n+1, 
where n

 
is the number of points in the “numbered” 

neighborhood (see III).
 

3)
 

Each TT has a “rightmost selected” column (which 
represents the central point). In the figures below, it 
is highlighted in grey.

 

4)
 

All the rows, both in one TT and in the other ones, 
differ among themselves.

 

5)
 

The maximum number of all rows of TTs must be 
less or equal to kn+1. (22+1=4+4 is true for the 
Automaton called “Rule 30” (Fig. 3A); 
28+1=372+140 is true for the Automaton called 
“Life” (Fig. 3B)). If some row(s) is (are) missing, then 
one

 
should explain why this row(s) cannot appear 

during the operation of the CA.
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In Fig. 3 one can see some examples of ordinary CAs: 

Fig. 3: Examples (with the Transition Tables) of ordinary CAs; Panel A  is Wolfram’s CA named “Rule 30”; Panel  B  is 
a  Conway’s CA: “Game of Life”; Panel C  is a reversible  Fredkin’s CA with three states; Panel D  explains how 
Fredkin’s Automaton operates on a closed Lattice 

Let us consider Fig. 3. Panel C describes 
Fredkin’s Automaton (we call this type of Automaton by 
the name of its inventor it [4]). Fredkin’s Automaton has 
THREE states: A, B, and C. In it, we calculate a certain 
Boolean function, that depends only on cells C, which 
fall into neighborhood “f(C)” and then we make the 
corresponding transformations depending on function f 
(see Fig. 3C). 

Let us define transliteration as a replacement of 
all C’s by B’s and B’s by C’s. Then it is easy to prove the 
following statement: (i) we make a transliteration in the 
Fredkin’s Automaton, then (ii) we make one time step 
forward and after that (iii) another transliteration, we will 
be in the previous state [5]. That means that this 
Automaton is reversible. 

Let us consider the situation when the initial 
state of Fredkin’s CA comprises cells A and/or B. That 
is, there are no C cells at all. (Let us assume that f(C) is 
equal to 0 in this case. This is another condition we 
impose on the Automaton). That is, the Automaton (with 
no C cells) will be transformed as follows:  A=>A and 
B=>C, that is, to its transliteration. Then we should 
watch two movements synchronously: the first is 
directed forward in time, the second is directed 
backward. At each new step, the “forward and 

backward” states will be transliterations of each other. If 
the number of states is finite, there will necessarily be a 
moment when with the next move forward, we will get its 
transliteration, that is, the “backward” move. We can say 
that we have reached the Mirror Point, or the Half-Period 
Point  (point  of  return). Then  the motion  is  repeated. 
(Fig. 3D). 

III.  A Simplified Fredkin’s Automaton 
(SFA) and the “X-Problem of                

Number 3” in a Non-Formal Form 

Let us “facilitate” the Fredkin’s Automaton, that 
is, we will remove the word “any” from definition of the 
f(C) function and will consider f(C)=0, if there are NO C 
cells in the given neighborhood, and f(C)=1, if they ARE 
C cells in the given neighborhood.  
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Fig. 4: Panel A is Simplified Fredkin’s CA (SFA), Panel B is Axial Automaton for the same Mask 

This kind of Fredkin’s Automaton will be a 
subject of following discussions because exactly this 
kind of Fredkin Automaton

 
demonstrates, rather than any 

other Fredkin’s Automata, a completely surprising and 
paradoxical behavior. All other FA (and that can be 
shown) “deteriorate” over time. Most of the “random” FA 
are “broken” at the moment the FA are created, see for 
instance Supplementary reference [i]. 

 

Only SFA can, roughly speaking, run 
indefinitely. It does not “die in the Hypercycle” (the cycle 
where an ordinary FA goes on has an unimaginably 
large number of steps), but it appears again in the initial 
state (see Supplementary reference [ii

IV.
 Normal

 Masks. Two-Dimensional 
Automaton Plot (2D-AP). The Main

 

Lemma. A Strict Formulation of the 
“X-Problem of Number 3”

 

]).
 

In an informal way, we will call this circumstance 
the “problem of the number 3”. This problem is related 
to a profound strangeness of the behavior of large 
enough number of SFAs. We refer to number three

 

because we choose only three states for CA. This 
number will appear more than once in our text. To 
explain a remarkable behavior of SFA (for example, it 
can produce puzzling objects resembling “rivers” 
flowing in two dimensions) is a separate task, we will not 
deal with it now. Yet, we will prove a very interesting 
theorem related to these SFAs.

 

Let us give a mathematically strict definition of 
the “X-problem of number 3”, but let us first talk about 
what kind of SFAs and their corresponding Masks 
(neighborhoods) we will consider. 

 

Further on, we will consider only the Masks 
containing the Neumann Mask

 
(see Supplementary 

reference [iii

At this point, we are going to limit our 
Automaton from all sides.

 
Let us imagine a chess figure. 

This figure can (i) walk on the N-dimensional Lattice one 
step forward or backward along any of the axes (that is, 
just along the Neumann neighborhood) and (ii) step into 
positions (fields) where it has been before. It is obvious 
that such a figure can visit all the cells in any finite 
Lattice (ZN) and, eventually, return to the starting point.

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

]) in N dimensions. Let us call these Masks 
normal. 
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Fig. 5:
 
Panel A presents the Neumann Mask (Neighborhood) for two dimensions (2D). Panel B presents the moves 

of a “chess figure” unfolding the 2D lattice into 1D “string”. Panel C presents Two Dimensional Automaton Plot (or 
Test Plot) illustrating the effect of non-intersection of the CB bands. The picture refers to a one-dimensional Mask

 

Ignoring (or not permitting) any meaningless 
moves (e.g., forward and immediately backward) of this 
figure, we unfold (or transform) an N-dimensional 
bounded (e.g., closed as in torus) area into one 
dimension. After that, we place every next position of the 
CA under the previous one and by doing so we build in 
the end a so-called “Two-dimensional Automaton Plot” 
(2D-AP) using two variables. On the x-axis, the

 
sweep of 

the CA into one dimension made with our chess figure. 
We name this sweep as r.

 
In dimensions with large N, 

the Neighborhood itself will somehow spread itself along 
the x-axis, but it does not matter which manner it 
spreads. The y-axis in 2D-AP is directed downwards and 
shows the time evolution. Now, let us prove the 
preliminary Lemma.

 

The Lemma.
 

If SFA contains Neumann Mask, then the 
following is true:

 

1)
 

The Mirror Point (for any non-trivial SFA with a return 
period > 2) is not equal to the Start Point.

 

2)
 

Like the Start Point, the Mirror Point contains 
exclusively A

 
and B

 
cells.

 

3)
 

Each C cell on the Test Plot (2D-AP) necessarily 
touches another C

 
cell on each side and only once.

 

That is, the CB
 
rows run across the Test Plot as 

non-intersecting strips (Fig. 5C)
 

This not very complicated lemma has been 
proved in [2]. At this point, we will give a strict definition 
of the “X-problem of number 3”.

 

We take some Masks
 
(later on, we will call them 

Perfect), any size of CA and any initial conditions.
 
Then 

we consider the following: (i) take any arbitrary initial 
conditions consisting only of A and B

 
cells and remove 

all the B cells from it on the 2D-AP (it is very convenient 

to remove B cells (thus making cell space “vacant”) 
layer by layer from top to bottom: “first”, “second”, 
“third”, etc…), (ii) “lift” all the cells (they can be either A 
or C

 
cells) from the lower layers  up into the vacant 

spaces (the exact  procedures and formulas are given in 
[1]).

 

 
 

 
   

 
  

 

  

 

“X- problem of number 3”
 

means exactly this 
statement.

 

V.

 

The

 

First

 

Two

 

Stages. Theorem 1

 

Proving

 

that

 

There

 

Exist

 

an

 

Axial

 

Automaton for

 

Automaton

 

with

 

a 
Perfect

 

Mask

 

First, let us note that in the previous study [1] 
this Axial Automaton has been called Table.

 

We decided 
to change its name in order to emphasize its central 
position

 

between “the Ordinary World” and “the 
Complementary (Parallel) World” and rename is as Axial. 
In the study [1] the following has been proven:
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By doing so, we will build a matrix (from the 
Start Point to the Mirror Point) having Θ rows along the 
y-axis and filled with cells A and C. Now, let us take an 
“additional” initial coloring. That is, we change all the A
cells to B cells, and B cells to A cells. Now, we will do 
the same procedure. We will build a matrix having Θ∗

rows along the y-axis also filled with cells A and C as 
well.

We need to prove the following statement: for 
any Perfect Mask (Fig. 1) Θ will always be equal to Θ∗, 
and the obtained matrices will coincide with each other 
when all the A cells are replaced by C cells and the C 
cells are replaced by A cells.



Theorem 1. (The Correctness Theorem).  
This theorem states that for all the Masks in Fig. 

1, which are not shaded in black color and for which n < 
9, there is a Axial Automaton with k=6 (Fig. 4 panel B) 

and with corresponding Transition Tables (TTs) R-x, R-y, 
R-z, R+x, R+y, R+z which are obtained from R-x by 
corresponding substitutions: 

Such Transition Tables have surprising properties.  

First stage. TTs from the above are calculated under the 
assumption that the corresponding Mask is Perfect as 
follows. Tests are carried out with a random (finite) 
Lattice size and random initial conditions. After the 
Automaton reaches its Mirror Point (its Half-Period 
Point), a “selection” is carried out as described in 
Chapter 3  (see [1]), with the parameter F retained (F 
represents the  number of the step at which the MP has 
been reached) and  F has index A or C (i.e., FA or FC) 
depending on what was written on this “dice”. After that, 
the following substitutions are made: FA (mod 3)=0  ”-
x”, FA (mod 3)=1  ”-y”, FA (mod 3)=2  ”-z”, FC (mod 
3)=0  ”+x”, FC (mod 3)=1 ”+y”, FC (mod 3)=2  
”+z”. 

The results serve to construct the 
corresponding Transition Tables: R-x, R-y, R-z, R+x, R+y, 
R+z. (Details and examples are given in [1]). 

Second stage. Thus, a new CA is defined. It starts on 
the same Lattice as the SFA, but with the corresponding 
replacement of the initials A and B by “-x” and “+ x”. 
This CA has a very small “density”, the latter refers to the 
ratio of “the number of rows in all the matrices R” to “the 
maximum number of possible rows” (6n+1). This ratio is 
rather small for most of Perfect Masks (Fig. 1) Yet, it is 
proven by the method of induction that no other rows 
can appear during the operation of the CA. (It is also 
proven by the induction that the Axial Automaton is 
reversible, and the matrices for the inverse R-1

 -x, R-1
-y … 

transformation are also obtained from R-x by the 
corresponding substitutions (see [1]). We call Correct a 
Masks for which there exists an Axial Automaton. 

What is the only interesting point in this proof – 
it always comes to an end. There are no exceptional 
ideas in it. This is a traditional proof made by an 
“exhaustive search” and “by induction”. 

Axial Automata have their own value. These 
Automata manifest some new symmetries and there are, 
in fact, a lot of those symmetries. 
In a spirit of study [3], let us take a certain neighborhood  
 

 

Fig. 6: A certain symmetrical Mask (Neighborhood) in 
two dimensions with n=52 

Let us ask a mathematician what kind of 
symmetry it has? The answer will be – the symmetry of a 
square: symmetry along the axes “x” and “y” and along 
the diagonals. Yet, it turns out not to be a complete 
answer. 

There exist also some other (!) symmetry. In 
fact, this new symmetry is represented by R-x Transition 
Table which is very interesting by itself. We are 100% 
convinced that there is such a symmetry – the R-x Table, 
an Axial Automaton – exists for a huge number of Masks 
that are not symmetric. It surely exists for all centrally-
symmetric Masks (it is clear from indirect data), and of 
course the same is true for Masks that have the 
symmetry of a square. One needs just a very good 
computer to determine the R-x Table. In order to prove 
the Correctness of this R-x Table, by using a brute force 
search by exhaustion, one needs to exploit an extremely 
powerful computer (the author has a doubt that such a 
computer can be built, in principle). “A nested cycle of 
several thousand values with a depth equal to 53…” – it 
is indeed very challenging! Yet,  when n is small enough 
(n<9), the personal computer copes without difficulty 
with all the three tasks: (i) finding the TT, (ii) finding the 
proof of the Correctness, (iii) and finding  the proof of 
the Perfection (it will be shown in the next chapters). 

Let us move on to the third stage: the proof of 
the Perfection from the Correctness. 

VI. The United Two-Dimensional 
Automaton Plot (U2D-AP) and the 

Axial Automaton Plot (AAP). Reduced 
Lines of the U2D-AP (Pf, Vf) and of the 

AAP (P, V) 

Note that we have replaced terminology in 
comparison with [1]. What we have called “half-strings” 
in [1], we now call “Reduced Lines”. 
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We will call a United Two-dimensional 
Automaton Plot (U2D-AP) the combination of two 
passes on one Automaton Plot (2D-AP): the first pass 
with some initial conditions (fABC(t, r)) and the second 
one with condition (f *ABC(t, r)))) which are additional or 
complimentary to the (fABC(t, r)) conditions.  In Figures 7 
and 8, one can see examples of several U2D-APs. One 
can see U2D-APs in the form of an animation in 
Supplementary reference [iv

Let us introduce the concept of a Reduced Line 
with the index f: (Pf, Pf*) and the Value function on the 
Reduced Lines (Vf, Vf*). Here, index “f” shows that the 

Reduced Lines will be determined from the U2D-AP. In 
principle, it can be introduced for any Fredkin’s 
Automaton, but we will consider it only for SFAs with 
normal Perfect or normal Imperfect Masks. 

Definition  

].  

Reduced Line Pf(τ, r, “In.”) is an integer function 
(Pf  Z) from three variables τ, r ,“In.”, where τ, r  Z 
and “In.” are some (any) initial conditions. The definition 
is given by the induction 
Pf (0, r, “In.”)=0;   with an induction step: 

In fact, this is the “lift up” (see Chapter 3 and [1]) mentioned before. A similar definition is valid for function 
Pf* (τ, r, ”In.*”). 

Fig. 7:
 
On the left, there is U2D-AP for a normal

 
but Imperfect

 
Mask. Black and white lines show the

 
Reduced Lines

 

for the first few τ
 
values. One can see that Pf  and Pf*

 
are not symmetrical with respect to the “centerline”, which is an 

abscissa with the coordinate t = 3τ/2. The “errors” of the symmetry are shown with a thick line.
 

Let us introduce the sgn

 

(sign) function for the 
quantities {-x, -y ...} (sgn

 

(-x)=-1, sgn (+ x)=1, sgn (-
y)=-1…) and the SGN

 

function for cells A and C : 
SGN(A)=- 1; SGN (C) = 1, (SGN (B) - not determined). 
Let us use these indications to write the Value function

 

on the Reduced Line

 

for “arbitrary” initial conditions: Vf

 

(t, r, “In.”) = SGN (fABC

 

(Pf

 

(t, r, “In.”), r))

 

and the 
analogous function Vf* (t, r, “In.”) = SGN (fABC

 

(Pf

 

* (t, r, 
“In. *”), r)))

 

for the “additional” initials. These are the 
values that we would obtain from the “lifting up” 
procedure described in Chapter 3 of reference [1]. 

  
   

Theorem 1 (see [1]) says that for those Masks 
for which there exists an Axial

 

Automaton (that is, for 
Correct

 

Masks), we can determine what we now call the 
Axial

 

Automaton Plot (AAP). It is obtained by entering the 
result of the Axial

 

Automaton operation each time into a 
new row with the number τ. The Reduced Lines

 

on the 
Test Plot

 

(U2D-AP) with their values (P, P*, V, V*)

 

without 
index “f” are obtained from the known formulas (see [1], 
Fig.8D)
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 (2)

There is no connection found between values Vf and Vf*
for Imperfect Masks (Fig. 7).



Fig. 8:
 
Panel A – United

 
Two-dimensional Automaton Plot (U2D-AP) for the Correct

 
Mask (3,1) with three examples of 

the Reduced Lines (P
 
and V, without “f”) constructed according to the formulas from Panel D of the same figure for τ

 

= 2, τ
 
= 4 and τ  = 5. One can see that they are symmetrical with respect to the straight line (t = 3τ/2) and coincide 

with Pf

 
and Vf.  Panel B – table R-x

 
for the Mask (3,1). Panel C is a result of Axial

 
Automaton operation (AAP as well). 

Panel D shows formulas from [1] describing the operation of Axial
 
Automaton

 
(we will illustrate the formulas and 

operation by using a concrete example, for τ
 
= 5 and r = 1 in Fig.9)

 

The arrows show
 
the relationship between Panels A, B, and C by the example of one point (t = 6, τ

 
= 2, r = 

1; initial conditions are “arbitrary”). The ovals show those areas that are taken out into the other figures.
 

Fig. 9:
 
A detailed calculation of the quantities

 
P (5.1) and V (5.1) from Fig. 8. Panel A of two colored images shows 

2D-AP (Test Plot) for “arbitrary” initial conditions and for the Reduced Line
 
with τ

 
= 5.  Panel B shows the formulas 

and performed calculations.
 
Panel C shows AAP of the Axial

 
Automaton in our case. 
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VII. Completion of the Proof of the 
Perfection of the First Normal 

Correct Masks. The Proof of the 
Identity of the Reduced Lines (Pf, Vf) 

and (P, V)  

We want to prove that for any Correct Mask                
Pf (τ, r) = P (τ, r) and Vf (τ, r) = V (τ, r). Let us see what 
other tests for the Transition Tables need to be done in 
order to assert the above equalities. 

Theorem 2. (The Perfection Theorem). 
Let us prove using the method of induction that 

for any Correct Mask from Fig.1 with n<9 and for any τ, 
the Reduced Lines with index “f” (Pf, Vf, Pf*, Vf*; i.e., the 
Reduced Lines of U2D-AP) will coincide with the 
Reduced Lines without index “f” (P, V, P*, V*; the 

Reduced Lines of AAP). (We talk only about the 
Reduced Lines Pf, Vf, P, V; because the theorem can be 
proven similarly for the Reduced Lines Pf*, Vf*, P*, V*). 

Test 1. 
We will call those pairs of cells (columns) of TT 

which have no pairs (-x, y), (+x, - z), (-y, +z) as Good, 
and we will construct not directed Graph on all the cells 
of the Mask using these pairs. If one can pass using the 
edges of the Graph from the central cell to all other cells 
of the Mask, then Test 1 for the Mask is declared  valid. 
All Correct Masks, with n<9, from the Figure 1 will pass 
this test. In all one-dimensional Masks with "natural" 
numbering of cells (that is the one made in a row) there 
are two simple passages from the central cells to the left 
and to the right. 

Fig. 10: Panel A – an example of the Graph for a hypothetical Mask with n = 9. Panel B shows a passage through 
the cells of the Perfect Mask (25, 23). The vectors of the passage are drawn by yellow on both panels (and also in 
other Figures) 

The induction is related to τ;  it will be proven 
simultaneously that condition 3 continues to be valid. 
The condition is as follows: for all vectors and for all the 
passages where ra

 is vector’s  origin and rb
 is vector’s 

end the following comes true:  

 

See Fig. 11: 

 

Fig. 11: Illustration of Formula 3 for real Reduced Line 

P*(τ, r) from Fig. 8A 

Formula 3 bears two functions for our proof. 

On one hand, fulfillment of a Formula 3 will 
allow us to place correctly initial letters of A and С for an 
induction step; see Fig. 12: 

 

Fig. 12: Placement of letters in the rows of TT along one 
of the passages of a hypothetical Mask 

On the other hand, if we prove that for all rows 
of TT, the letter lying under the central cell is correctly 
restored only from the content of the row under 
consideration, then this will prove the entire Theorem 

( , ) ( , ) 2ab f a f bP r P rδ τ τ= − <

 

Strict Proof of the Perfection of the First 98 Masks (Solution to the “X-Problem of the Number 3”)

  

1

G
lo
ba

l
Jo

ur
na

l
of

Sc
ie
nc

e
Fr

on
tie

r
R
es
ea

rc
h 

  
  
  
 V

ol
um

e
X
V
II  

 I
ss
ue

  
  
 e

rs
io
n 

I
V

IV
Y
ea

r
20

17

39

  
 

( A
)

© 2017   Global Journals Inc.  (US)

(2)



and, further on, validity of formula 3! We will explain it in 
more detail below.  

Let us assume that Test 1 and Test 2 (the 
restoration of the subsequent letter from our row; see 

further on) are passed. Then let us assume that the 
formula 3 ceased to be met. We will take the first step of 
τ on which δab is equal to two. Let us look at Fig. 13 … 

Fig. 13: Explains that δ can never be equal to 2 (or greater number) using the example of Transition Table R-x
 for the 

Mask (3.1)  

In one move (i.e., when τ increases by 1), if the 
letter has a “+” sign, then the Reduced Automaton Line 

is shifted down by two cells (on a 2D-AP), and if the 
letter’s sign is “-“, then it is shifted down by one cell. 
Therefore, it is clear that δ cannot immediately become 
equal to, say, three. It must necessarily pass through 
δ=2. 

It turns out that δ can become equal to 2 only 
for a few pairs. These are pairs: (-x, + y), (+ x, -z), (-y, + 
z) where one of the values is the beginning of a vector of 
the bypass passage, and the second is its end. Yet, 
these pairs do not appear in our TT in a process of the 
bypass passage. It turns out that they cannot appear 
there in principle (see Theorem 1). So we have 
encountered a contradiction. Therefore, the absolute 
value of δ is and will remain less than two. 

It was necessary to make the last decisive check. 

Test 2. 

Let us perform the test for generally complex 
Mask in N dimensions. Let us consider the way it is 
carried out? In this test, the rows from TT are taken one 
by one (note that the test is carried out for all the rows of 
the TT). First, we build four empty N-dimensional 
Lattices (we choose four as a start point; and if it turns 
out that four is not enough, we will add one more 
Lattice, and will start checking from the beginning), 
which in all directions are several-fold larger than the 
Mask under consideration (to start with, say, 3-fold 
larger Lattices; if it happens that we go beyond the 
limits, we can increase the Lattice size and repeat the 

test again from the beginning). Let us number these four 
Lattices according to time t’: … t’ = - 2, t’ = - 1, t’ = 0, t’ 
= 1, t’ = 2 … . Then, we begin to “restore” our 
truncated “Automaton Plot” from what we have at the 
moment.

 

The letters A or C are placed into the center of 
Lattice 0 (t’ = 0) dependently on a sign of the state (x,  
y, or z ) existing in the central (zero) point of the row of 
the Transition Table under the test (Fig. 12A): if sign = -
1, then we fill the center of Lattice 0 with letter A, and if 
sgn =+1, we fill the center of Lattice 0 with letter C. 

 

The corresponding letters for Hypercubes with 
numbers …  -2,-1, +1, +2 … are written in the manner 
shown in Fig 11. All letters (see Fig. 12) of our rows 
proceeding from the shifts are brought to the cells of the 
Hypercube, as we perform the bypass passage. In all 
other cells of Hypercube are filled with "-1". It represents 
the fact that the value is not known yet (see Fig. 14).
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Fig. 14: The beginning of testing of two rows from TT R+z and R-x for the Mask (5,3). Rows can happen to be either 
simple or difficult for the analysis. The majority of rows in any TT (678 of 702 for a mask (5,3)) are simple. This means 
that the value we expect to obtain is calculated directly from the row. But there are also a few difficult cases (24 of 
702 for a mask (5,3)). Then it is necessary to address to the proof of Theorem 1 and study how could such a row 
appear, in general. 

Now let us begin the restoration of the 
“truncated” Test Plot under conditions of lack of 
information. First, we look through all the cells in all the 
Lattices that are filled with “-1” and for which we can 
determine value f(C) and, correspondingly, which of 
letters A, B or C are placed in the given cell of the 
Lattice(s). The ultimate goal is to fill the Lattices with 
letters (we need to find whether letter A or C goes into 
Lattice 1 or 2) and what is the letter immediately below 
the zero point of Lattice 0.

 

If we cannot determine which of letters A or C lie 
under  the zero point of Lattice 0 (we still have “-1” 
there) or (another plausible scenario)  the letter (A or C) 
with corresponding “+” or “-“signs  does not match the 
index of the Transition Table from which we took the row 
under the test, then Test 1 (for the entire Mask!) is 
considered as failed!

 
 

Fig. 15:

 

The final stage of the test from Fig. 12 for two rows from Fig. 14. Test 2 have passed for this rows

 

So, one by one we check all the 6C rows and, 
eventually, we find that all the Correct

 

Masks from Fig. 1 
have passed

 

the test! Fig. 16 shows the checking of TT 
R-x

 

of our “favorite Mask (3,1).
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Fig. 16: Panel А shows Transition Table R-x for the Mask (3,1). Panel B shows how this Table is sorted (just for clarity) 
and collected into clusters of the same type. Panel C shows that the parts of the rows that do not participate in the 
restoration are closed with white “curtains”. Panel D shows the restoration of the letter according to procedures 
described  in the above text. Actions are performed from left to right. After performing the next action, the letters are 
shown “white”; the newly appeared ones are shown in “black”. It can be seen that in all the cases, the letter “-x” is 
restored correctly 

This, taking into account earlier considerations, 
proves the Theorem! In more details, for all    and r

 
the 

following is valid:
 

(4) 

Corollary.
 

All the Correct
 
Masks with n<9

 
from Fig.1 are Perfect. 

In accordance to the formulas presented in Fig. 
9D (see [1]) for the Axial

 
Automaton, the content of rows 

(and their arrangement) in the “lifted up matrices” for the 
SFAs will repeat that for matrixes L

 
and L*

 
where all the 

“negative” letters are replaced by 
 

A and all the “positive” 
letters, by C. On the other hand, we know that L

 
and L*

 

are connected by relation L = S (L*),
 

where S
 

is a 
substitution (+x, +z, +y, -x, -y, -z). That is, the pluses 
change to minuses and vice versa. Consequently, all the 
considered Masks in Fig. 1 are Perfect. 

VIII.
 One More

 
(Additional) Property of      

the Transition Tables
 

For any correct filling of our Perfect Mask with 
Masks from TT there are two particular

 
rows:

 

1)
 

A row which turns out as a result;
 

2)
 

A row which lies in the central point.
 

We will construct – at the proof of the Theorem 
1 – the histogram by the number of use of the given line  
i in the first case (Ni

r) and in second (Ni
c). There is an 

interesting fact!  For any i
 
and for all Perfect Mask from 

Fig. 1 it is fairly:
 

 

The reference to the interactive program 
key_5M3

 
about a private research of the proof of the 

Mask (5,3) is given in Annex 2. In the Fig.17 it is 
presented the part of a screenshot of the program 
illustrating a formula (5).

 

( , ) ( , ) ( 1, ) ( 1, )
( , ) ( , ) ( 1, ) ( 1, )

f f

f f

P r P r P r P r
V r V r V r V r

τ τ τ τ

τ τ τ τ

= + = +  ⇒ = + = +   c r
i iN N=
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Иллюстрация программой key_5M3 формулы (5) 

Fig. 17: Illustration of the program key_5M3 of the 
formula (5) 

We will present one more part of a screenshot 
(Fig. 18) of the filling connected with a concrete isolated 
case from the proof of the Theorem 1. 

 

Fig. 18
 

It is visible that for this case of filling of the Mask 
(number is equal 100000 of 133758) the rows belongs to 
the first case (1) (-x, - y, - y, - y, +x); the rows belongs to 
the second (2) – a row (+y, +z, +z, - z, +z). It is clear, 
that these lines can't turn out from another by any 
substitution.

 

IX.
 

What
 
Problems

 
Still

 
Remain? 

The concept of “normality” is a bit excessive, so 
let us introduce the concept of “Generalized Normality”.

 

Definition.

 

A Mask of

 

Generalized Normality

 

is such a Mask 
in N-dimensions that has one of the corresponding 
elements in the direction of each of the axes: either 
element 1, see its depiction in Fig. 14 (it is the same as 
in normal Mask)

 

or element 2 (symmetrically placed 
“dominos”, in the direction of the corresponding axis, 

see Fig 19). It is obvious that this is enough for the 
preliminary Lemma to work. 

 

Fig. 19 

There are two obvious problems arising. 

Problem 1. Is it possible to prove (or disprove) that any 
Generalized Centrally-Symmetric Normal  Mask is 
Perfect? 

Problem 2. Is it possible to determine the Perfection of 
the Mask directly from the type of the Mask? 

We propose to name the new mathematical 
discipline which we are developing the discrete N-
dimensional Geometry. We believe that it can be an 
appropriate term.  

X. Conclusion 

In mathematics, there are finite simple groups. 
As the mathematical textbooks say that all this is about 
the rotation of several polyhedra in the N-dimensional 
space. 

We acted differently: we penetrated into one cell 
of an N-dimensional lattice and looked at things “from 
there”. After that, we have suddenly discovered a 
multitude of most unexpected and surprising 
symmetries. Using the computer, we learned about 
some properties of those symmetries, yet the inner 
essence of those symmetries remains unclear.  
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Annex 1. 

Change of terminology in comparison with [1]. 
 

 

What it was called in [1] What it is called now 
Simple Automaton Simplified Fredkin’s Automaton (SFA) 
Table Automaton Axial Automaton 
Strings: 
First half 
Second half 

String (remain the same) 
The Reduced Lines of the SFA with “arbitrary” initial conditions. 
The Reduced Lines of the SFA with “additional” initial conditions. 

Annex 2. 

The reference to the program key_5M3 for interactive studying of the proof of the Perfection of the Mask 
(5,3) is presented in  (v). (We have counted six properties of the Transition Tables, and the last 4 of which are very 
paradoxical). Start the program and follow the description. 

Supplementary  references:   
 i.

 
https://www.youtube.com/edit?o=U&video_id=wFfWCMyvi7k

 ii.
 

https://www.youtube.com/watch?v=Y38RNvRHUCc
 iii.

 
https://en.wikipedia.org/wiki/Von_Neumann_neighborhood

 iv.
 

https://youtu.be/08bxuG7lm0A
 v.

 
https://yadi.sk/d/0scIbLG83NRUNF

 
 
 

Strict Proof of the Perfection of the First 98 Masks (Solution to the “X-Problem of the Number 3”)

© 2017  Global Journals Inc.  (US)

1

G
lo
ba

l
Jo

ur
na

l
of

Sc
ie
nc

e
Fr

on
tie

r
R
es
ea

rc
h 

  
  
  
 V

ol
um

e
X
V
II  

 I
ss
ue

  
  
 e

rs
io
n 

I
V

IV
Y
ea

r
20

17

44

  
 

( A
)

http://en.wikipedia.org/wiki/Stephen_Wolfram�
http://en.wikipedia.org/wiki/Andrew_Adamatzky�
http://en.wikipedia.org/wiki/Reversible_cellular_automaton#CITEREFToffoliMargolus1987�
http://www.wolframscience.com/nksonline/page-437-text�
https://www.youtube.com/watch?v=Y38RNvRHUCc�
https://en.wikipedia.org/wiki/Von_Neumann_neighborhood�
https://youtu.be/08bxuG7lm0A�


 
   

  

 
 

 
 
 
 

 
 

 

Global Journals Inc. (US)

 

Guidelines Handbook 2017

  
 

www.GlobalJournals.org

 
 

 
 
 
 
 
 
 
 

 
 
 
 
 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 


	Strict Proof of the Perfection of the First 98 Masks (Solution tothe “X-Problem of the Number 3”)
	Author
	I. Introduction
	II. Definition of an Ordinary Cellular Automaton (CA) and a Transition Table
	III. A Simplified Fredkin’s Automaton(SFA) and the “X-Problem of Number 3” in a Non-Formal Form
	IV. NormalMasks. Two-Dimensional Automaton Plot (2D-AP). The Main Lemma. A Strict Formulation of the“X-Problem of Number 3”
	V. TheFirst Two Stages. Theorem 1 Provingthat There Existan Axial Automaton for Automaton with a Perfect Mask
	VI. The United Two-Dimensional Automaton Plot (U2D-AP) and the Axial Automaton Plot (AAP). Reduced Lines of the U2D-AP (Pf, Vf) and of the AAP (P, V)
	VII. Completion of the Proof of the Perfection of the First Normal Correct Masks. The Proof of the Identity of the Reduced Lines (Pf, Vf)and (P, V)
	VIII. One More(Additional) Property of the Transition Tables
	IX. What ProblemsStillRemain?
	X. Conclusion
	Acknowledgments
	Literature

