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[. [NTRODUCTION

Let Bi, By be Banach spaces and ) be an open and convex subset of B;. The
problem of finding a solution x* of equation

F(z) = 0. (1.1)

where F : Q0 — By is differentiable in the sense of Fréchet is an important
problem in applied mathematics due its wide applications. Higher order meth-
ods like [2-17] are considered for approximating the solution z* of (1.1). The
convergence analysis of higher order methods, requires assumptions on higher
order derivatives.

A typical example of (1.1), in which the Lipschitz-type condition on deriva-
tives of order greater than two does not hold is the mixed Hammerstein type
equation defined on X =Y = C|0,1] by

:L‘(s):/o K(s,t)(%x(t) +‘"‘7(;) \t, (1.2)

M

where the kernel K is the Green’s function defined on the interval [0, 1] x [0, 1]
by

k= { G 15 w
Define F : C[0,1] — C[0,1] by
1 2(1)2
F(z)(s) := 2(s) — O K(s,t)(%:r(t)g + (;) )dt (1.4)
and consider
F(z)(s) =0. (1.5)
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Then, we have that

: 4 @)M(t)dt.

[SI[%

Pt = ts) = [ K(s(Ga()

Notice that 2*(s) = 0 is one of the solutions of (1.1). Using (1.3), we obtain

1
1
I Kot < 5. (1.6)
0 8
Then, by (1.3)—(1.6), we have that
1 1
1E" () = F'()ll < g (Gllz —ylI% + llz = ylD)- (1.7)

Note that , F” is not Lipschitz. Hence the results in [1-17] cannot be used to
solve (1.5).

In this paper we study the local convergence of the method defined for each
n=0,1,2... [7] by

1
Tn+l1 = Tn — [IWL iLnGn]F/(xn))ilF(xn)a (18)
Gn = I+2L,J,
2
1.
I = (I - iLn)
L, = F/(xn)71F”($n)F,($n)71F(xn)a

with xg € € is an initial guess and a € R. The semilocal convergence of method
(1.8) was shown in [7] using hypotheses on F” satisfying Lipschitz or Holder or
w—continuity conditions. Here we use w—type weaker hypotheses to study the
local convergence not studied in [7].

The paper is structured as follows. In Section 2 we present the local con-
vergence analysis. We also provide a radius of convergence, computable error
bounds and uniqueness result not given in the earlier studies [2-17]. Special
cases and numerical examples are presented in the concluding Section 3.

[I. LocaL CONVERGENCE

The convergence shall be computed based on scalar parameters and functions.
Let wq : [0, +00) — [0, +00) be continuous and nondecreasing with wg(0) =
w(0) = 0. Let po stand for the smallest positive number satisfying

wo(t) = 1. (2.1)

Let also w, v, z be real continuous and nondecreasing function defined on the
interval [0, pg) with w(0) = 0. Define functions g, h, on interval [0, pg) by

q(t) = % <1_1um(t)>2/01v(9t)d02(t)t

and

We have hy(0) = —1 < 0 and hy(t) — 400 as t — p, . The application of
the intermediate value theorem on [0, pg) guarantees the existence of solutions

© 2017 Global Journals Inc. (US)
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for the equation hy(t) = 0 in (0, po). Let 74 stand for the smallest such solution.
Moreover, define functions f and hy on the interval [0,74) by

[y w((1—0)t)ds  q(t)(1+ o — 1]q(t)) [, v(6t)db
1 — wo(t) (1 —wo(t))(1 —q(t))

ft) =

and
hy(t) = f(t) — 1.

We also get hy(0) = —1 < 0 and hs(t) — 400 as t — r_ . Denote by r the
smallest solution of equation h(t) = 0. Then, we have that for each ¢ € [0, r)

0<qt) <1 (2.2)
and

0< f(t) <1. (2.3)

The set B(u,\) = {x € By : ||z — xo|| < A} is called the closed ball in By with

center u € By and radius A > 0, whereas B(u, A) is its closure.

The local convergence analysis is based on the notation introduced previ-
ously.

Theorem 2.1 Let F:Q C By — By be a continuously Fréchet differen-
tiable operator. Suppose: there exist x* € Q, function wy : [0, +00) — [0, +00)
continuous and nondecreasing with wo(0) = 0 such that

F(z*) =0, F'(z*)"! € L(By, By), (2.4)
and for all x € D

IF" (2*) 7 (F' () = F'(2")) || < wo(llz — 2™[])- (2.5)

Let Qo := QN B(x*, po). There exist functions w,v,z : [0,p9) — [0,+00)
continuous, nondecreasing with w(0) = 0 such that

IF" (%)~ (F'(2) = F'() || < w([z = yl), (2.6)
[F" (@)~ F' ()] < o(lle —2*)) (2.7)
IF'(z*) " P ()| < z(|lz — 2*]) (2.8)
and
B(z*,r) € Q, (2.9)

where the radius v is defined previously. Then, iteration {x, } produced for xy €
B(z*,r) — {z*} by method (1.8) exists, lies in B(z*,r) and converges to x*, so
that

[2ns1 — 2" < fllen — 2*)llzn — 2| < flon — 2™ <7, (2.10)

where the functions f is defined previously. Moreover, if there exists v* > r
such that

1
/ wo(Or™)dh < 1,
0

the z* is the only solution of equation F(x) =0 in Oy = QN B(z*,r*).
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Proof. We shall base the proof on mathematical induction. By hypothesis
xo € B(z*,r) — {z*}, (2.5) and the definition of r, we have that

1F" (@)~ (F" (w0) = F'(2*))II < wo([lwo — 2*[|) < wo(r) < 1. (2.11)

The Banach perturbation lemma [1] in combination with (2.11) assert the exis-
tence of F’'(x9)~! and the estimate

) < !
= T wo(fzo — =)

| F'(20) L F' (2 (2.12)

Next, we show the existence of z7 as follows: By (2.4) we can write

Flan) = Flao) = Fa) = [ /@ 46000 = 2"~ 7). (213

The point 2*+0(xg—a*) € B(a*,r), since ||z*+0(xg—z*) —2z*|| = O]|zo —z*|| <
|lxo — 2*|| < r. Then, by (2.7) and (2.13) we get that

1
|F" (@)~ F (o) ]| < /O v(0llzo — 2"[])[lzo — =7|db. (2.14)

We need an upper bound on 3 L. Using (2.2), (2.8), (2.12) and (2.14), we obtain
in turn that

1 1 — * *) —
Nl € HIF ) @ IF ) o))
<F0)) ™ F ) | P (a) )|
1 1 2t
< = v(0||xo — x||)db||xo — =*||2(||zo — ="
< s (tmmmmzay) [ vl - ablizo — 2" ao - 1)

= (w0 —2™[)) < q(r) <1, (2.15)
SO J(;l exists and

o (2.16)

1
I < e
1—q([lzo — 2*])

Hence, z; is well defined by the first substep of method (1.8) for n = 0. By the
definition of Gg we can write

a—1

Go :I—i—%LOJO: I+ LolJo

SO

o —

1
L
Lol

[Goll <[l +

1+ |a —1g([lzo — 2™[)
1 —q([lzo — =)

(2.17)
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Furthermore, using method (1.8) for n = 0, (2.3), (2.6), (2.12), (2.14), (2.16)
and (2.17) we have in turn from the identity

) —x* = xo— F'(x0) ' F(20) — 2*
1 / —1
—§L0G0F (o)™ F(xo) (2.18)

that

lor —a*| < |IF(x0) Fla")]
1
<] / F/(a*) (' (" + 0o — ) — F(20)) (o — 2*)db)|

%IILollIIGollHF’(wo)_lF'(x*>IIHF’(w*)‘lF(xo)II

. [f&w(enxo — z*||)df

1 —wo(fJzo — *|)

g(llwo = 2* ) (1 + o = Ug(llwo = &) Jy v(O]lzo — 2*[)d¥
(1 —wo(llzo —2*[)))(1 = q([lzo — =*[)))

+ [[zo— 2"

= [fllzo —2*)lzo — 27| < [lwo — 27| <1, (2.19)

which shows (2.10) for n = 0 and z; € B(z*,r). Simply replacing xo,z; by
Tk, Tr+1 in the preceding estimates, we arrive at (2.10). In view of the estimate

[#r+1 — 2| < cllog — ™| <7, c= f([lzo —27[]) €]0,1),
we deduce that lim 2, = 2* and 241 € B(x*,r). Finally, to show the uniqueness

part, let F'(y*) = 0 with y* € ;. Define Q = fol F'(z* 4+ 0(y* — 2*))d6. Using
(2.5), we get that

1 1
IF/() (@ - F'(a))]| < / wo(Bl|z* — y*|)d6 < / wo(6r*)d6 < 1. (2.20)
0 0
That is Q=1 € L(By, B;). Using the identity

0=F(y") - Fz") = Qy" —z7),
we conclude that z* = y*.

Remark 2.2 1. In view of (2.6) and the estimate
|/ (%) T F ()| = ||F (") 7 (F (2) — F'(2%)) + I
ST+ |[F' (@) 7HEF (@) = F'(2)]| < 1+ wo(flz - 27|))
condition (2.8) can be dropped and v can be replaced by

(t) = 1+ wo(t).
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. The radius p =

2. Let wy(t) = Lot, w(t) = Lt, v(t) = M for some Ly > 0,L >0 and M > 1.

In this special case, the results obtained here can be used for operators F'
satisfying autonomous differential equations [1, 3] of the form

where P is a continuous operator. Then, since F'(x*) = P(F(z*)) = P(0),
we can apply the results without actually knowing x*. For example, let
F(x) =e* — 1. Then, we can choose: P(x) =x + 1.

2 .
STLTL Was shown by us to be the convergence radius of

Newton’s method [1, 3]
Tpi1 = xn — F'(x,) ' F(z,) for each n=0,1,2,--- (2.21)

under the conditions (2.5)—(2.7). It follows from the definition of r that
the convergence radius v of the method (1.8) cannot be larger than the
convergence radius p of the second order Newton’s method (2.21). As
already noted in [1,3] p is at least as large as the convergence ball given
by Rheinboldt [14]

2

- = 2.29
TR= 37 (2.22)

In particular, for Ly < L we have that

rr < p
and
1 L
LECHNE S =0 0.
p 3 L

That is our convergence ball p is at most three times larger than Rhein-
boldt’s. The same value for rr was given by Traub [15].

. It is worth noticing that method (1.8) is not changing when we use the

conditions of Theorem 2.1 instead of the stronger conditions used in [3-17].
Moreover, we can compute the computational order of convergence (COC)

defined by
2 —2*|| [2n—1 — 2|
or the approzimate computational order of convergence

£ =In (llwﬂwll) /n (llfvx—lll) ,
lzn = @n ] [ -1 — Zp—o
This way we obtain in practice the order of convergence in a way that

avoids the bounds involving estimates using estimates higher than the first
Fréchet derivative of operator F.

[11. NUMERICAL EXAMPLES

The numerical examples are presented in this section.

Example 3.1 Let By =By =R3 Q= B(0,1),z* = (0,0,0)T. Define func-

tion F' on Q for w = (x,y,2)T by

© 2017 Global Journals Inc. (US)
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1. LK. Argyros,

-1
F(w) = (" =1, =y* +9,2)".

Then, the Fréchet-derivative is given by

e’ 0 0
Flv)=| 0 (e—1Ly+1 0 |.
[ 0 0 1 ]
1
Notice that using the (2.6)-(2.8) conditions, we get Lo = e —1,L = eTo = M,
so wo(t) = Lot = (e — 1)t, w(t) = Lt = eTot and z(t)y =v(t) =M = eTo. Then
the parameters are

rq = 0.8770, 7 = 0.1496.

Example 3.2 Let By = By = C[0,1], the space of continuous functions
defined on [0,1] and be equipped with the max norm. Let @ = B(0,1). Define
function F' on € by

Fle)a) = ola) =5 | a0p(6)'as (3.1)

We have that
1
F'(p(8))(z) = &(x) — 15/ x0p(0)*€(0)do, for each & € D.
0

Then, we get that x* =0, Ly = 7.5, L =15, M = 2 so wy(t) = 7.5t,w(t) = 15¢,
v(t) = 2 and z(t) = 30. Then the parameters are

rq = 0.8000, r = 0.0108.

Example 3.3  Returning back to the motiwational example at the introduc-
tion of this study, we have wy(t) = w(t) = 3—2(5153/2 +1t) v(t) =14+ wo(t) and
z(t) = 2. Then the parameters are

rq = 2.5084, r = 1.3679.
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