
© 2017. Ioannis K. Argyros & Santhosh George. This is a research/review paper, distributed under the terms of the Creative 
Commons Attribution-Noncommercial 3.0 Unported License http://creativecommons.org/licenses/by-nc/3.0/), permitting all non 
commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. 

 

  
 

   

 
 
Unified Local Convergence for Some High order Methods with 
One Parameter          

By Ioannis K. Argyros & Santhosh George 
Cameron University   

Abstract- The aim of this paper is to extend the applicability of some Chebyshev-Halley-type 
method with one parameter for solving nonlinear equations under weaker than before 
hypotheses on the second derivative.         

Keywords: chebyshev-halley methods, banach space, local convergence. 

GJSFR-F Classification: MSC 2010: 49M15, 47H17 
 
 

UnifiedLocalConvergenceforSomeHighorderMethodswithOneParameter 
 
 

 
 
 
 

Strictly as per the compliance and regulations of:

 
 
 

 
 

Global Journal of Science Frontier Research: F
Mathematics and Decision Sciences 
Volume 17  Issue 8 Version 1.0  Year  2017 
Type : Double Blind Peer Reviewed International Research Journal
Publisher: Global Journals Inc. (USA)
Online ISSN: 2249-4626 & Print ISSN: 0975-5896



 
 
 

Unified Local Convergence for Some High 
order Methods with One Parameter 

Ioannis K. Argyros α & Santhosh George σ 

   
    

 

Abstract-

 

The aim of this paper is to extend the applicability of some Chebyshev-Halley-type method with one parameter 
for solving nonlinear equations

 

under weaker than before hypotheses on the second derivative.

 

Keywords:

 

chebyshev-halley methods, banach space, local convergence.

 
I.

 

Introduction

 

   

 
 

 

   

 
 
 

 

  
 

 
  

 
  

  
  

 
 

  
 

 
  

                    

1

G
lo
ba

l
Jo

ur
na

l
of

Sc
ie
nc

e
Fr

on
tie

r
R
es
ea

rc
h 

  
  
  
V
ol
um

e
X
V
II  

 I
ss
ue

  
  
  
 e

rs
io
n 

I
V

V
III

Y
ea

r
20

17

51

  
 

( F
)

© 2017   Global Journals Inc.  (US)

Authorα: Department of Mathematical Sciences, Cameron University, Lawton, OK 73505, USA. e-mail: iargyros@cameron.edu
Author σ: Department of Mathematical and Computational Sciences, NIT Karnataka, India-575 025. e-mail: sgeorge@nitk.ac.in

Let B1,B2 be Banach spaces and Ω be an open and convex subset of B1. The
problem of finding a solution x∗ of equation

F (x) = 0. (1.1)

where F : Ω −→ B2 is differentiable in the sense of Fréchet is an important
problem in applied mathematics due its wide applications. Higher order meth-
ods like [2–17] are considered for approximating the solution x∗ of (1.1). The
convergence analysis of higher order methods, requires assumptions on higher
order derivatives.

A typical example of (1.1), in which the Lipschitz-type condition on deriva-
tives of order greater than two does not hold is the mixed Hammerstein type
equation defined on X = Y = C[0, 1] by

x(s) =

∫ 1

0

K(s, t)(
1

2
x(t)

5
2 +

x(t)2

8
)dt, (1.2)

where the kernel K is the Green’s function defined on the interval [0, 1]× [0, 1]
by

K(s, t) =

{
(1− s)t, t ≤ s
s(1− t), s ≤ t. (1.3)

Define F : C[0, 1] −→ C[0, 1] by

F (x)(s) := x(s)−
∫ 1

0

K(s, t)(
1

2
x(t)

5
2 +

x(t)2

8
)dt (1.4)

and consider

F (x)(s) = 0. (1.5)
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Then, we have that

F ′(x)µ(s) = µ(s)−
∫ 1

0

K(s, t)(
5

8
x(t)

3
2 +

x(t)

4
)µ(t)dt.

Notice that x∗(s) = 0 is one of the solutions of (1.1). Using (1.3), we obtain

‖
∫ 1

0

K(s, t)dt‖ ≤ 1

8
. (1.6)

Then, by (1.3)–(1.6), we have that

‖F ′(x)− F ′(y)‖ ≤ 1

8
(5‖x− y‖ 1

4 + ‖x− y‖). (1.7)

Note that , F ′′ is not Lipschitz. Hence the results in [1–17] cannot be used to
solve (1.5).

In this paper we study the local convergence of the method defined for each
n = 0, 1, 2... [7] by

xn+1 = xn − [I +
1

2
LnGn]F ′(xn))−1F (xn), (1.8)

Gn = I +
α

2
LnJn

Jn = (I − 1

2
Ln)−1

Ln = F ′(xn)−1F ′′(xn)F ′(xn)−1F (xn),

with x0 ∈ Ω is an initial guess and α ∈ R. The semilocal convergence of method
(1.8) was shown in [7] using hypotheses on F ′′ satisfying Lipschitz or Hölder or
ω−continuity conditions. Here we use ω−type weaker hypotheses to study the
local convergence not studied in [7].

The paper is structured as follows. In Section 2 we present the local con-
vergence analysis. We also provide a radius of convergence, computable error
bounds and uniqueness result not given in the earlier studies [2–17]. Special
cases and numerical examples are presented in the concluding Section 3.

The convergence shall be computed based on scalar parameters and functions.
Let w0 : [0,+∞) −→ [0,+∞) be continuous and nondecreasing with w0(0) =
w(0) = 0. Let ρ0 stand for the smallest positive number satisfying

w0(t) = 1. (2.1)

Let also w, v, z be real continuous and nondecreasing function defined on the
interval [0, ρ0) with w(0) = 0. Define functions q, hq on interval [0, ρ0) by

q(t) =
1

2

(
1

1− w0(t)

)2 ∫ 1

0

v(θt)dθz(t)t

and

hq(t) = q(t)− 1.

We have hq(0) = −1 < 0 and hq(t) −→ +∞ as t −→ ρ−0 . The application of
the intermediate value theorem on [0, ρ0) guarantees the existence of solutions

II. Local Convergence
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for the equation hq(t) = 0 in (0, ρ0). Let rq stand for the smallest such solution.
Moreover, define functions f and hf on the interval [0, rq) by

f(t) =

∫ 1

0
w((1− θ)t)dθ
1− w0(t)

+
q(t)(1 + |α− 1|q(t))

∫ 1

0
v(θt)dθ

(1− w0(t))(1− q(t))

and

hf (t) = f(t)− 1.

We also get hf (0) = −1 < 0 and hf (t) −→ +∞ as t −→ r−q . Denote by r the
smallest solution of equation hf (t) = 0. Then, we have that for each t ∈ [0, r)

0 ≤ q(t) < 1 (2.2)

and

0 ≤ f(t) < 1. (2.3)

The set B(u, λ) = {x ∈ B1 : ‖x − x0‖ < λ} is called the closed ball in B1 with
center u ∈ B1 and radius λ > 0, whereas B̄(u, λ) is its closure.

The local convergence analysis is based on the notation introduced previ-
ously.

Let F : Ω ⊆ B1 −→ B2 be a continuously Fréchet differen-
tiable operator. Suppose: there exist x∗ ∈ Ω, function w0 : [0,+∞) −→ [0,+∞)
continuous and nondecreasing with w0(0) = 0 such that

F (x∗) = 0, F ′(x∗)−1 ∈ L(B2,B1), (2.4)

and for all x ∈ D

‖F ′(x∗)−1(F ′(x)− F ′(x∗))‖ ≤ w0(‖x− x∗‖). (2.5)

Let Ω0 := Ω ∩ B(x∗, ρ0). There exist functions w, v, z : [0, ρ0) −→ [0,+∞)
continuous, nondecreasing with w(0) = 0 such that

‖F ′(x∗)−1(F ′(x)− F ′(y))‖ ≤ w(‖x− y‖), (2.6)

‖F ′(x∗)−1F ′(x)‖ ≤ v(‖x− x∗‖) (2.7)

‖F ′(x∗)−1F ′′(x)‖ ≤ z(‖x− x∗‖) (2.8)

and

B̄(x∗, r) ⊆ Ω, (2.9)

where the radius r is defined previously. Then, iteration {xn}produced for x0 ∈
B(x∗, r)− {x∗} by method (1.8) exists, lies in B(x∗, r) and converges to x∗, so
that

‖xn+1 − x∗‖ ≤ f(‖xn − x∗‖)‖xn − x∗‖ ≤ ‖xn − x∗‖ < r, (2.10)

where the functions f is defined previously. Moreover, if there exists r∗ ≥ r
such that ∫ 1

0

w0(θr∗)dθ < 1,

the x∗ is the only solution of equation F (x) = 0 in Ω1 = Ω ∩ B̄(x∗, r∗).

Theorem 2.1 
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‖F ′(x0)−1F ′(x∗)‖ ≤ 1

1− w0(‖x0 − x∗‖)
. (2.12)

Next, we show the existence of x1 as follows: By (2.4) we can write

F (x0) = F (x0)− F (x∗) =

∫ 1

0

F ′(x∗ + θ(x0 − x∗))(x0 − x∗)dθ. (2.13)

The point x∗+θ(x0−x∗) ∈ B(x∗, r), since ‖x∗+θ(x0−x∗)−x∗‖ = θ‖x0−x∗‖ ≤
‖x0 − x∗‖ < r. Then, by (2.7) and (2.13) we get that

‖F ′(x∗))−1F (x0)‖ ≤
∫ 1

0

v(θ‖x0 − x∗‖)‖x0 − x∗‖dθ. (2.14)

We need an upper bound on 1
2L0. Using (2.2), (2.8), (2.12) and (2.14), we obtain

in turn that

1

2
‖L0‖ ≤ 1

2
‖F ′(x0)−1F ′(x∗)‖‖F ′(x∗)−1F ′′(x0)‖

×‖F ′(x0))−1F ′(x∗)‖‖F ′(x∗)−1F (x0)‖

≤ 1

2

(
1

1− w0(‖x0 − x∗‖

)2 ∫ 1

0

v(θ‖x0 − x∗‖)dθ‖x0 − x∗‖z(‖x0 − x∗‖)

= q(‖x0 − x∗‖) ≤ q(r) < 1, (2.15)

so J−10 exists and

|‖J−10 ‖ ≤
1

1− q(‖x0 − x∗‖)
. (2.16)

Hence, x1 is well defined by the first substep of method (1.8) for n = 0. By the
definition of G0 we can write

G0 = I +
α

2
L0J0 = [I +

α− 1

2
L0]J0

so

‖G0‖ ≤ ‖I +
α− 1

2
L0‖‖J0‖

‖F ′(x∗)−1(F ′(x0)− F ′(x∗))‖ ≤ w0(‖x0 − x∗‖) < w0(r) < 1. (2.11)

The Banach perturbation lemma [1] in combination with (2.11) assert the exis-
tence of F ′(x0)−1 and the estimate

We shall base the proof on mathematical induction. By hypothesis
x0 ∈ B(x∗, r)− {x∗}, (2.5) and the definition of r, we have that
Proof. 

≤ 1 + |α− 1|q(‖x0 − x∗‖)
1− q(‖x0 − x∗‖)

. (2.17)
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Furthermore, using method (1.8) for n = 0, (2.3), (2.6), (2.12), (2.14), (2.16)
and (2.17) we have in turn from the identity

x1 − x∗ = x0 − F ′(x0)−1F (x0)− x∗

−1

2
L0G0F

′(x0)−1F (x0)

that

‖x1 − x∗‖ ≤ ‖F ′(x0)−1F (x∗)‖

×‖
∫ 1

0

F ′(x∗)−1(F ′(x∗ + θ(x0 − x∗))− F ′(x0))(x0 − x∗)dθ‖

1

2
‖L0‖‖G0‖‖F ′(x0)−1F ′(x∗)‖‖F ′(x∗)−1F (x0)‖

≤

[∫ 1

0
w(θ‖x0 − x∗‖)dθ

1− w0(‖x0 − x∗‖)

+
q(‖x0 − x∗‖)(1 + |α− 1|q(‖x0 − x∗‖)

∫ 1

0
v(θ‖x0 − x∗‖)dθ

(1− w0(‖x0 − x∗‖))(1− q(‖x0 − x∗‖))

]
‖x0−x∗‖

= f(‖x0 − x∗‖)‖x0 − x∗‖ ≤ ‖x0 − x∗‖ < r, (2.19)

which shows (2.10) for n = 0 and x1 ∈ B(x∗, r). Simply replacing x0, x1 by
xk, xk+1 in the preceding estimates, we arrive at (2.10). In view of the estimate

‖xk+1 − x∗‖ ≤ c‖xk − x∗‖ < r, c = f(‖x0 − x∗‖) ∈ [0, 1),

we deduce that limxk = x∗ and xk+1 ∈ B(x∗, r). Finally, to show the uniqueness

part, let F (y∗) = 0 with y∗ ∈ Ω1. Define Q =
∫ 1

0
F ′(x∗ + θ(y∗ − x∗))dθ. Using

(2.5), we get that

‖F ′(x∗)−1(Q− F ′(x∗))‖ ≤
∫ 1

0

w0(θ‖x∗ − y∗‖)dθ ≤
∫ 1

0

w0(θr∗)dθ < 1. (2.20)

That is Q−1 ∈ L(B2,B1). Using the identity

0 = F (y∗)− F (x∗) = Q(y∗ − x∗),

we conclude that x∗ = y∗.

1. In view of (2.6) and the estimate

‖F ′(x∗)−1F ′(x)‖ = ‖F ′(x∗)−1(F ′(x)− F ′(x∗)) + I‖

≤ 1 + ‖F ′(x∗)−1(F ′(x)− F ′(x∗))‖ ≤ 1 + w0(‖x− x∗‖)

condition (2.8) can be dropped and v can be replaced by

v(t) = 1 + w0(t).

Remark 2.2 
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2. Let w0(t) = L0t, w(t) = Lt, v(t) = M for some L0 > 0, L > 0 and M ≥ 1.
In this special case, the results obtained here can be used for operators F
satisfying autonomous differential equations [1, 3] of the form

F ′(x) = P (F (x))

where P is a continuous operator. Then, since F ′(x∗) = P (F (x∗)) = P (0),
we can apply the results without actually knowing x∗. For example, let
F (x) = ex − 1. Then, we can choose: P (x) = x+ 1.

3. The radius ρ = 2
2L0+L , was shown by us to be the convergence radius of

Newton’s method [1, 3]

xn+1 = xn − F ′(xn)−1F (xn) for each n = 0, 1, 2, · · · (2.21)

under the conditions (2.5)–(2.7). It follows from the definition of r that
the convergence radius r of the method (1.8) cannot be larger than the
convergence radius ρ of the second order Newton’s method (2.21). As
already noted in [1, 3] ρ is at least as large as the convergence ball given
by Rheinboldt [14]

rR =
2

3L
. (2.22)

In particular, for L0 < L we have that

rR < ρ

and

rR
ρ
→ 1

3
as

L0

L
→ 0.

That is our convergence ball ρ is at most three times larger than Rhein-
boldt’s. The same value for rR was given by Traub [15].

4. It is worth noticing that method (1.8) is not changing when we use the
conditions of Theorem 2.1 instead of the stronger conditions used in [3–17].
Moreover, we can compute the computational order of convergence (COC)
defined by

ξ = ln

(
‖xn+1 − x∗‖
‖xn − x∗‖

)
/ ln

(
‖xn − x∗‖
‖xn−1 − x∗‖

)

or the approximate computational order of convergence

ξ1 = ln

(
‖xn+1 − xn‖
‖xn − xn−1‖

)
/ ln

(
‖xn − xn−1‖
‖xn−1 − xn−2‖

)
.

This way we obtain in practice the order of convergence in a way that
avoids the bounds involving estimates using estimates higher than the first
Fréchet derivative of operator F.

The numerical examples are presented in this section.

Let B1 = B2 = R3,Ω = B̄ (0, 1) , x∗ = (0, 0, 0)T . Define func-
tion F on Ω for w = (x, y, z)T by

III. Numerical Examples
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F (w) = (ex − 1,
e− 1

2
y2 + y, z)T .

Then, the Fréchet-derivative is given by

F ′(v) =

 ex 0 0
0 (e− 1)y + 1 0
0 0 1

 .
Notice that using the (2.6)-(2.8) conditions, we get L0 = e − 1, L = e

1

L0 = M,

so w0(t) = L0t = (e− 1)t, w(t) = Lt = e
1

L0 t and z(t) = v(t) = M = e
1

L0 . Then
the parameters are

rq = 0.8770, r = 0.1496.

Let B1 = B2 = C[0, 1], the space of continuous functions
defined on [0, 1] and be equipped with the max norm. Let Ω = B(0, 1). Define
function F on Ω by

F (ϕ)(x) = ϕ(x)− 5

∫ 1

0

xθϕ(θ)3dθ. (3.1)

We have that

Example 3.2 

F ′(ϕ(ξ))(x) = ξ(x)− 15

∫ 1

0

xθϕ(θ)2ξ(θ)dθ, for each ξ ∈ D.

Then, we get that x∗ = 0, L0 = 7.5, L = 15, M = 2 so w0(t) = 7.5t, w(t) = 15t,
v(t) = 2 and z(t) = 30. Then the parameters are

rq = 0.8000, r = 0.0108.

Returning back to the motivational example at the introduc-
tion of this study, we have w0(t) = w(t) = 1

32 (5t3/2 + t) v(t) = 1 + w0(t) and
z(t) = 3

16 . Then the parameters are

rq = 2.5084, r = 1.3679.

Example 3.3 
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