A Reliable Technique for Solving Gas Dynamic Equation using Natural Homotopy Perturbation Method

By Adesina. K. Adio
Babcock University

Abstract- In this paper, a new analytical technique called Natural transform homotopy perturbation method has been successfully applied to obtain exact solution of nonlinear gas dynamic equation.

Application of the method to three test modelling problems from mathematical physics lead to sequence which tends to the exact solution of the problems.
The solution procedure shows the reliability of the method and is high accuracy evident.

Keywords: gas dynamic equation, homotopy perturbation method, natural transform method.

GJSFR-F Classification: MSC 2010: 26E70
A Reliable Technique for Solving Gas Dynamic Equation using Natural Homotopy Perturbation Method

Abstract: In this paper, a new analytical technique called Natural transform homotopy perturbation method has been successfully applied to obtain exact solution of nonlinear gas dynamic equation.

Application of the method to three test modelling problems from mathematical physics lead to sequence which tends to the exact solution of the problems.

The solution procedure shows the reliability of the method and is high accuracy evident.

Keywords: gas dynamic equation, homotopy perturbation method, natural transform method.

I. Introduction

Gas dynamics is a science in the branch of fluid dynamics concerned with studying the motion of gases and its effects on physical systems, based on the principles of fluid mechanics and thermodynamics.

The science arises from the studies of gas flows, often around or within physical bodies. Examples of these studies include but not limited to choked flows in nozzles and valves, shock waves around jets, aerodynamic heating on atmospheric reentry vehicles and flow of gas fuel within a jet engine.

The equations of gas dynamics (Aminikah & Jamalian, 2013) are mathematical expressions based on the physical laws of conservation, namely, the laws of conservation of mass, conservation of momentum, conservation of energy and so forth.

The nonlinear equations of ideal gas dynamics are applicable for three types of nonlinear waves like shock fronts, rarefaction and contact discontinuities.

Author: School of Science and Technology, Babcock University, Ilorin-Remo Nigeria. e-mail: adioa@babcock.edu.ng
In this study, we construct solution of gas dynamic equation by using a combination of Natural transform and homotopy perturbation methods (NHPM).

In one spatial dimension, the inviscid equations of gas dynamics can be written in the conservative form (Keskin & Oturanc, 2010) as:

\[v_t(x,t) - v(x,t) + \frac{1}{2} v_x^2(x,t) + v^2(x,t) = f(x,t); \quad 0 \leq x \leq 1, \ t > 0 \]

(1.1)

\[v(x,0) = g(x) \]

(1.2)

II. Analysis of the Method

For the purpose of illustration of the methodology of the proposed method, we write the gas dynamic equation in the standard operator form:

\[Dv(x,t) + Rv(x,t) + Nv(x,t) = f(x,t) \]

(2.1)

With the following initial conditions:

\[v(x,0) = g(x) ; \quad v_t(x,0) = h(x) \]

(2.2)

Where \(D(v(x,t)) = v_t(x,t) \) is a linear operator which has partial derivatives;
\(R(v(x,t)) = v(x,t) \);
\(N(v(x,t)) = \frac{1}{2} v_x^2(x,t) + v^2(x,t) \) is a nonlinear term and \(g(x) \) is an inhomogenousterm.

Applying the Natural transform to equation (2.1) subject to the given initial condition, we have

\[N^+[Dv(x,t)] + N^+[Rv(x,t)] + N^+[Nv(x,t)] = N^+[f(x,t)] \]

(2.3)

using differentiation property of Natural transform and above initial conditions, we have

\[V(x,s,v) = \frac{1}{s} g(x) + \frac{v}{s^2} h(x) - \frac{v^2}{s^2} N^+[Rv(x,t)] - \frac{v^2}{s^2} N^+[Nv(x,t)] + \frac{v^2}{s^2} N^+[f(x,t)] \]

(2.4)

Operating with the inverse Natural transform on both sides of equation (2.3), we have

\[v(x,t) = F(x,t) - N^{-1} \left[\frac{v^2}{s^2} N^+[Rv(x,t)] + Nv(x,t) \right] \]

(2.5)

where \(F(x,t) \) represents the term arising from the source term and the prescribed initial condition.

Now, applying the homotopy perturbation method (HPM)

\[v(x,t) = \sum_{n=0}^{\infty} P^n v_n(x,t) \]

(2.6)

and the nonlinear term can be decomposed as

\[Nv(x,t) = \sum_{n=0}^{\infty} P^n H_n(v) \]

(2.7)
where \(H_0(v) \) are He’s polynomials and can be evaluated using the following formula:

\[
H_n(v_1, v_2, \ldots, v_n) = \frac{1}{n!} \frac{\partial^n}{\partial v^n} \left[N \sum_{j=0}^{n} P^j V_j \right] \quad ; \quad n = 0, 1, 2, \ldots
\]

(2.8)

Substituting equations (2.6) and (2.7) in (2.5); we have

\[
\sum_{n=0}^{\infty} P^n v_n(x) = F(x) - P \left(N^{-1} \left[\frac{v^2}{s^2} N^+ \left[R \sum_{n=0}^{\infty} P^n v_n(x) + \sum_{n=0}^{\infty} P^n H_n(v) \right] \right] \right)
\]

(2.9)

which is the coupling of the Natural transform and the homotopy perturbation method using He’s polynomials.

Comparing the coefficient of same powers of \(P \), we obtain the following approximations:

\[
P^0 : v_0(x,t) = F(x,t) \]

\[
P^1 : v_1(x,t) = -N^{-1} \left[\frac{v^2}{s^2} N^+ \left[R v_0(x,t) + H_0(v) \right] \right]
\]

\[
P^2 : v_2(x,t) = -N^{-1} \left[\frac{v^2}{s^2} N^+ \left[R v_1(x,t) + H_1(v) \right] \right]
\]

\[
P^3 : v_3(x,t) = -N^{-1} \left[\frac{v^2}{s^2} N^+ \left[R v_2(x,t) + H_2(v) \right] + H_2(v) \right]
\]

(2.10)

and so on.

Thus, the series solution of equation (2.1) is

\[
v(x,t) = \lim_{k \to \infty} \sum_{n=0}^{k} v_n(x,t)
\]

(2.11)

III. EXPERIMENTAL EVALUATION

In this section; we consider the following nonlinear homogenous and nonhomogenous gas dynamics equations:

Example 3.1: Consider the nonlinear homogenous gas dynamic equation [3-7]:

\[
v_t(x,t) + \frac{1}{2} v^2_x(x,t) - v(x,t) + v^2(x,t) = 0
\]

(3.1)

with initial condition

\[
v(x,0) = g(x) = e^{-x}
\]

(3.2)

applying the natural transform on both sides of equation (3.1) subject to the initial condition (3.2), we have

\[
v(x,s) = \frac{e^{-x}}{s} + \frac{v}{s} N^+ \left[v(1-v) - \frac{1}{2} v^2 \right]
\]

(3.3)
The inverse of natural transform implies that
\[v(x,t) = e^{-x} + N^{-1} \left[\frac{v}{s} N^+ \left[v(1 - v) - \frac{1}{2} \left(v^2 \right)_x \right] \right] \] \hspace{1cm} (3.4)

Now, we apply the homotopy perturbation method to get
\[\sum_{n=0}^{\infty} P^n v_n(x,t) = e^{-x} + P \left(N^{-1} \left[\frac{v}{s} N^+ \left[\sum_{n=0}^{\infty} P^n v_n(x,t) \left(1 - \sum_{n=0}^{\infty} P^n v_n(x,t) \right) - \frac{1}{2} \left(\sum_{n=0}^{\infty} P^n v_n(x,t) \right)^2 \right] \right] \right) \] \hspace{1cm} (3.5)

Comparing the coefficients of like powers of \(P \) in eqn (3.5); we obtain the following approximations.

\[
\begin{align*}
P^0 : & \quad v_0(x,t) = e^{-x} \\
P^1 : & \quad v_1(x,t) = N^{-1} \left[\frac{v}{s} N^+ \left[v_0(1 - v_0) - \frac{1}{2} \left(v_0^2 \right)_x \right] \right] = e^{-x} t \\
P^2 : & \quad v_2(x,t) = N^{-1} \left[\frac{v}{s} N^+ \left[v_1(1 - v_1) - \frac{1}{2} \left(v_1^2 \right)_x \right] \right] = e^{-x} \frac{t^2}{2!} \\
P^3 : & \quad v_3(x,t) = N^{-1} \left[\frac{v}{s} N^+ \left[v_2(1 - v_2) - \frac{1}{2} \left(v_2^2 \right)_x \right] \right] = e^{-x} \frac{t^3}{3!}
\end{align*}
\]

and so on.

Therefore, the solution \(v(x,t) \) is given by
\[v(x,t) = e^{-x} \left(1 + t + \frac{t^2}{2!} + \frac{t^3}{3!} + \frac{t^4}{4!} + \ldots \right) = e^{t-x} \] \hspace{1cm} (3.6)

Obtained upon using the Taylor expansion for \(e^t \). Higher number of iterations lead to convergence to the exact solution \(e^{t-x} \). This result is similar to what obtained using HPTM \([16]\), RDTM \([7]\), VIM \([5]\), RVIM \([7]\), ADM \([13]\), ETHPM \([2]\), HPM \([4]\), VHPM \([10]\), MHPM \([11]\) and NDM\([9]\).

Example 3.2: Consider the nonlinear, nonhomogenous gas dynamic equation \([2,12,13]\)
\[v_t(x,t) + \frac{1}{2} v_x^2 (x,t) - v(x,t) + v^2(x,t) = -e^{t-x} \] \hspace{1cm} (3.7)

with initial condition \(v(x,0) = g(x) = 1 - e^{-x} \) \hspace{1cm} (3.8)

Applying the natural transform on both sides of equation (3.7) subject to the initial condition (3.8), we have
\[v(x,s) = \frac{1 - e^{-x}}{s} - \frac{ve^{-x}}{s(s-v)} + \frac{v}{s} N^+ \left[v(1 - v) - \frac{1}{2} \left(v^2 \right)_x \right] \] \hspace{1cm} (3.9)

The inverse of Natural transform implies that:
\[v(x,t) = (1 - e^{-x}) + N^{-1} \left[\frac{v}{s} N^+ \left[v(1-v) - \frac{1}{2} (v^2)_x \right] \right] \] (3.10)

Since
\[N^{-1} \left[\frac{ve^{-x}}{s(s-v)} \right] = e^{-x} N^{-1} \left[\frac{v}{s(s-v)} \right] = e^{-x}(e' - 1) \]

Now, we apply the homotopy perturbation method to get:
\[\sum_{n=0}^{\infty} P^n v_n(x,t) = (1 - e^{-x}) + P \left[N^{-1} \left[\frac{v}{s} N^+ \left[\sum_{n=0}^{\infty} P^n v_n(x,t) - \frac{1}{2} \left(\sum_{n=0}^{\infty} P^n v_n(x,t) \right)_x \right] \right] \right] \] (3.11)

Comparing the coefficients of like powers of \(P \) in eqn (3.11), we obtain the following approximations:
\[
\begin{align*}
P^0 : v_0(x,t) &= 1 - e^{-x} \\
P^1 : v_1(x,t) &= N^{-1} \left[\frac{v}{s} N^+ \left[v_0(1-v_0) - \frac{1}{2} (v_0^2)_x \right] \right] = 0 \\
P^2 : v_2(x,t) &= N^{-1} \left[\frac{v}{s} N^+ \left[v_1(1-v_1) - \frac{1}{2} (v_1^2)_x \right] \right] = 0 \\
P^3 : v_3(x,t) &= N^{-1} \left[\frac{v}{s} N^+ \left[v_2(1-v_2) - \frac{1}{2} (v_2^2)_x \right] \right] = 0 \\
\end{align*}
\]

and so on.
Therefore, the solution \(v(x,t) \) is given by
\[v(x,t) = 1 - e^{-x} \] (3.12)

Similar to results obtained using VIM [5], RVIM [12], ADM [13], ETHPM [2], VHPM [10] and NDM [9].

Example 3.3: Consider the non-homogenous, nonlinear gas dynamic equation [1,3]
\[v_t(x,t) + v(x,t)v_x(x,t) - v(x,t) + v^2(x,t) = -e^{-x} \] (3.13)
with initial condition
\[v(x,0) = 1 - e^{-x} \] (3.14)

Applying the natural transform on both sides of eqn (3.13) subject to the initial condition (3.14) we have
\[v(x,s) = \frac{1 - e^{-x}}{s} - \frac{ve^{-x}}{s(s-v)} + \frac{v}{s} N^+ \left[v(1-v) - vv_x \right] \] (3.15)

The inverse of Natural transform implies that
\[v(x,t) = 1 - e^{-x} + N^{-1} \left[\frac{v}{s} N^+ \left[v(1-v) - vv_x \right] \right] \] (3.16)
Now, we apply the homotopy perturbation method to get:

$$\sum_{n=0}^{\infty} P^n v_n(x,t) = 1 - e^{-\nu x} + P \left(N^{-1} \left[\frac{\nu}{s} N^+ \left[\sum_{n=0}^{\infty} P^n v_n(x,t) \right] - \sum_{n=0}^{\infty} P^n v_n(x,t) \left(\sum_{n=0}^{\infty} P^n v_n(x,t) \right)_x \right] \right)$$

(3.17)

Comparing the coefficients of like powers of P in eqn (3.17), we obtain the following approximations

$$P^0 : v_0(x,t) = 1 - e^{-\nu x}$$

$$P^1 : v_1(x,t) = N^{-1} \left[\frac{\nu}{s} N^+ [v_0(1-v_0) - v_0 v_{0x}] \right] = 0$$

$$P^2 : v_2(x,t) = N^{-1} \left[\frac{\nu}{s} N^+ [v_1(1-v_1) - v_1 v_{1x}] \right] = 0$$

$$P^3 : v_3(x,t) = N^{-1} \left[\frac{\nu}{s} N^+ [v_2(1-v_2) - v_2 v_{2x}] \right] = 0$$

and so on.

Therefore, the solution $v(x,t)$ is given by

$$v(x,t) = 1 - e^{-\nu x}$$

(3.18)

Which is the exact solution of the problem.

IV. Conclusion

In the present work, we proposed a combination of Natural transform and Homotopy perturbation methods and successfully applied it to study the homogenous and non-homogenous cases of nonlinear gas dynamics equation.

The method gave closed form solution of the equations, with high accuracy, using the initial conditions and can be considered as a reliable refinement of existing techniques.

References Références Referencias
