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Abstract- The Krylov-Bogoliubov-Mitropolskii (KBM) method is an enormously used technique to study the transient .

behavior of vibrating systems. In this work, an oscillating semi-submerged horizontal cylinder is considered in a liquid
and the governing equation of this system deem to weakly nonlinear to find out the solutions. Analytical approximate
solutions are investigated for obtaining the transient response of the system for undamped and damped oscillatory
motions. The results obtained by the proposed technique for the different sets of initial conditions have found

to be well suited with the numerical solutions.
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I. INTRODUCTION

Krylov and Bogoliubov [1] initiated a perturbation method to obtain
approximate solution (oscillatory type) of the second order nonlinear differential system
with a small nonlinearity

X+ ot x=—¢ f (X, X) (1)

where the over dots denote the differentiation with concerning ¢, @,>0 and ¢ is a small
parameter. This method has amplified and justified by Bogoliubov and Mitropolskii [2,
3]. Today the method is a well-known method as Krylov-Bogoliubov-Mitropolskii
(KBM) [1, 2] in the literature of nonlinear oscillations. Popov [4] extended it to the
following damped oscillatory system

X+CX+ w* = — &f (X, X) (2)

where €>0, @w>0 and c<2®. It is to be noted that if ¢> 2w, the system (2) becomes
non-oscillatory. First, Murty et al [5, 6] used this method to obtain an approximate
solution of (2) characterized by non-oscillatory processes. In the case of over-damped
systems, we know the characteristic roots of the unperturbed equation of (2) become
real, unequal and negative inequality. The roots of the unperturbed equation of (1) are
purely imaginary. On the contrary, these are complex conjugate with the negative
real part, when C<2®(considered by Popov[4]). Sattar [7] found an approximate
solution of (2) characterized by critical damping. An asymptotic solution proposed by
Kawser and Akbar [8] for the third order critically damped nonlinear system. Kawser
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and Sattar [9] suggested an asymptotic solution of a fourth order critically damped
nonlinear system with pair-wise equal eigenvalues. Later, Kawser et al [10] has
developed a method for fourth order critically damped oscillatory nonlinear systems
when the eigenvalues are complex and pair-wise equal. It has further extended by
Kawser et al. [11] to fourth order critically undamped oscillatory nonlinear systems with
pair-wise equal imaginary eigenvalues. Recently, Kawser et al [12] presented a
technique to obtain perturbation solutions of fifth order critically undamped nonlinear
oscillatory systems with pair-wise equal imaginary eigenvalues.

In this paper, we have investigated the solutions of a horizontally semi-
submerged cylinder in a liquid under oscillations due to the gravitational force for both
oscillatory and damped oscillatory motions. So in these cases, the eigenvalues are
imaginary and complex conjugate for undamped and damped motions respectively. For
different sets of initial conditions the solutions show excellent coincidence with the

o

numerical solutions obtained by the AMathematica program.
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[I.  FORMULATION OF THE PROBLEM

Suppose a half-submerged horizontal cylinder of radius (R) and length (1) is
floating in a liquid. If we consider x is instantaneous displacement of a diametric plane
from the equilibrium position.

Volume of cylinder from the bottom of height 4 is,

V. =1 [Rz cos‘l(%hj—(R— h)v2Rh - hﬂ (3)

Now using equation (3), we obtain the volume of cylinder from the bottom of
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Figure 1: The oscillating semi-submerged cylinder in a liquid

And the volume of cylinder from the bottom of height R+ X is,
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R+x

Vv, =l [RZ cosl[R_g_ Xj— (R-R-X)y/2R(R+X) - (R+ x)ﬂ

Thus the volume of the partial part from the diametric plane of height x is

Vx = VR VR

X

Notes

B 1
=|| R? cos‘l(—l}t x(R2—x2)z - L R?
R 2

7 ox 1x 31X
=l| Rt =ttt
2 R 6R 40R

3
As X is very small and R is large, so neglecting the terms higher than (%j , we get
r x X X\ oz
Vo=l R+ S+ — xR 1- = |- =R
2 R 6R 2R 2

3
— ol xr— 2
6R

Suppose M is the mass of the cylinder, mis mass of the liquid occupied by the

volumeV,, p is the density of the cylinder, 2p is the density of the liquid and gis the
gravitational force. Suppose the semi-submerged cylinder is oscillating in the liquid
without damping, then Newton’s second law of motion gives

2
Le., d—;(+8—gX: 493X3
dt- 7~R 3zR

(4)

Also if the half-submerged cylinder is floating in the liquid under damping, then
the equation of the system is given by

dx dx 8g 4g
—+2k—+—=Xx= X
d’ T dt zR 3R (5)
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where 2K is the damping constant.

[1I.  THE METHOD

Consider a second order weakly nonlinear ordinary differential system

X+ 2k + 0’ x = —¢ f (X, X)

(6)

where over dots are used for the first and second derivatives of x concerning £ K is a

system (6) are tiw.

corresponding linear equation (6) is

where &, and b, are arbitrary constants.

an asymptotic solution of (6) is

differential equations:

a_gA,L(a,b,t)Jr ......
DB (ab)

we get

Global Journal of Science Frontier Research (F) Volume XVII Issue VIII Version I E Year 2017

ot

oy,
ot?

where f© = f(x,%) and X =€ (acosAt+bsinit).

© 2017 Global Journals Inc. (US)

X(t,0) =™ (a,cos At +bysin At)

X(t,e) =€ (acos At +bsin At)+eu, (a,b,t)+O(e?)

e™ {(a_h ZiBljcos At +(—2M +aa—'?

+2k%“1+ o’y =—1(ab,t)

non-negative constant, & is a small parameter and f(X, X) is the nonlinear function.
Since the equation is second order, so, we shall get two eigenvalues for the damped
oscillatory system and the eigenvalues are complex conjugate, ie. —K+id (say), where
A=+’ —k* and >k, and for oscillatory systems e k=0, then the eigenvalues of

When £=0, then the equation (6) becomes linear, and the solution of the

(7)

Now we seek a solution of (6) that reduces to (7) as the limit £— 0. We look for

(8)

where a, b are slowly varying functions of time, ¢ and satisfy the following first order

(9)

Now differentiating (8) twice times, substituting for the derivatives X, X and X
in (6). Now utilizing relations (9) and comparing the coefficients of various powers of ¢,

(10)

Notes



For the oscillatory system to obtain the solution, we have to put k=0 and
replacing A by @ in equation (10).
Thus for oscillatory system, we get

2
(%+ ZwBleOS ot +(—2wﬁ1 +%jsin wt +a—l;1+ o’y =—f © (ab,t) (11)
ot ot ot
Ref Usually, equation (10) or (11) is solved for the unknown functions A and B

under the assumption that U, does not contain first harmonic terms. We shall follow
this assumption (early imposed by KBM [1, 3|) partially to obtain approximate
solutions of nonlinear systems with large damping.

[V. OSCILLATORY MOTION

For the oscillatory motion from equation (4), we have

%+ 39 x = ox? (12)

T
49

where ¢ = 3
7R

Thus the solution of equation (12) is given by putting k=0 and replacing 1 by w
in equation (8), we get

X(t, &) = acos wt +bsin wt+cu, (a, b, t) (13)
89
o= |—.
where R
Comparing equation (12) with the equation (6), we obtain
f(x,x)=x
Therefore, f(© =[acos wt + bsin wt]’

=%( 3 +ab2)c03a)t+%(a2b+b3)sin wt

+(1a3—Easzcos&ot+(§a2b—1b3jsin3a)t (14)
4 4 4 4

Substituting f© from equation (14) into equation (11), we obtain

Princeton University Press, New Jersey, 1947.

A oB,

—2Awsin a)t+Ecoswt+ZBla)coswt+Esin ot+(D*+ 0’ )y

1. Krylov, N. N. and Bogoliubov N. N., Introduction to Nonlinear Mechanics,

=%(a3+ab2)cosa)t+%(a2b+b3)sina)t (15)
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1 3 3 1 .
+| =a’-=ab’ |cos3mt +| —a’b—=b’ |sin 3wt
4 4 4 4

According to our assumption, U, does not contain first harmonic terms of f©. The
following equations can be obtained by comparing the coefficients of sin ot and cos wt
are the higher argument terms of sinwt and coswt as

30,5 30 o Notes

D*+40”)A =——Db 16
[\ (D +40") A =—=2b7 == (16)
(D2+4a)2)Bl:3—wa3+3—wab2 (17)
g 2 2
(D2+a)2)ul:(las—EabZJCOSSwt+(§aZb—1b3)sin3a)t (18)
4 4 4 4

The solutions of the equations (16) to (18) are respectively

_3(b° +a’b)

E 8w

Thus for the transformation a=ccos¢ and b=-csing, the equations (21) to
(23) respectively become

3

; = 19

: A= (19)
;J 3(a’ +ab%)

: B =——7—" (20)
= 8w

= u, =(3ab’ —a’)cos 3t + (b* —3a’b)sin 3wt (21)
5 Substituting the values of A, B, from equations (19) and (20) into equation (9),
~  we obtain

g 3, .2

: da__ 3(°+a’h) (22)
- dt 8w

s o

- db__3(a’+ab?) (23)

c
u =- D207 cos(3wt + 3¢) (24)
And ¢c=0
|
. 3ec?
$=- 8w
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Notes

Or, c=g, (25)

3ec?t

S (26)

¢=¢o_

Thus by substituting a=ccos¢ and b=-csing into equation (13) and after
simplification it becomes

X(t,&)=ccos(wt+¢)+ey, (27)
Therefore, equation (27) represents the first order oscillatory solution of equation
(12), where c, ¢, u, are given by (25), (26) and (24).
V.  DAMPED OSCILLATORY MOTION
For the damped oscillatory motion, we have from equation (5)

5<+2k>'(+8—gx:gx3 (28)
7R

49
3rR’
Comparing equation (28) with the equation (6), we obtain

where ¢ =

f(x %) =x (29)
Therefore, f© =[e™®(acosit+bsinit)]?

—gM (a3 cos® At +3absin At cos? At +3ab?sin? Atcos At+ I sin® M)
—gM g(a3 + abz)cosﬂ,t +§(a2b+ b3)sin At
4 4 (30)
[1
+ J—
4

where | = 8_g_ k?
7R

Substituting f© from equation (30) into equation (10), we obtain

a’ —Easzcos&it+[§a2b—1b3jsin 31t
4 4 4

e (—ZAl/lsin At +%cos/1t +2B.Acos At +%Sin /ltj

2 89 ok | 33 2 3/, 3\ o
(D +2kD+ﬁju1: e Z( +ab )cos}tt+z(a b+b°®)sin At (31)
+(£a3—EabZJCOSB/It+(§a2b—lb3jsin3ﬂ,t
4 4 4 4
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Since, U, does not contain first harmonic terms, the following equations obtained
by comparing the coefficients of sinAt and cosAt are the higher argument terms of
sin At and cosAt as

(D7 +427) A ==& (k(a +ab )+ 2 @b+ ) (32)
(D% +42)B = S {(a +ab*)-k(a'b+ ") (33)
(DZ +2kD +%} u, =e* cos 3t (%as —%ab2)+ e*sin3it (% azb—%bsj (34)

The solutions of the equations (32) to (34) are respectively

e (k(a® +ab®)+ A (a’b+ D)}

A=s 8(k*+1%) (35)
e _k(a’h+b®)+A(a+ab’
§ )2 (e ) "
8(k + )
e—Skt , , ) , -
b T 6K +5KA% + 407 [ (8 —3ab®){(k* —22°) cos 34t — 3k Asin 34t} an

+(3a’h—b°){3kA cos 32t + (k* — 22°)sin 34t} |

Substituting the values of A,B, from equations (35) and (36) into equation
(9), we obtain

da  3e™{k(a+ab’)+A(a’b+b’)
o 8(k?+ 27

(38)

@:83@2“ {—k(a2b+b3)+/1(a3+ab2)} 59)
dt 8(k2 +/12)

Therefore, under the transformation, a=csing and b=-csing equations (37)
to (39) respectively become
U - C3e—3kt
' 16(k* +5k%A% +54%)

[(k? —24%)cos(32t +3¢)—3kAsin (3t +3¢)]  (40)

3lec’e®™

’= 80 1)

© 2017 Global Journals Inc. (US)
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Notes

3kecle ™

T 8(k2+ 29
2
Or, P=¢ "‘%(e2kt —1) (41)
g 3% (g
C_C°+816(k2+/12)(e 1) (42)

Thus by substituting a =ccos¢ and b =-csing into equation (8) and after
simplification it becomes

X(t, £) = ce " cos (At +¢)+ ey, (43)

Therefore, equation (43) represents a first order damped oscillatory solution of
equation (28), where c, ¢, u are given by (42), (41) and (40).

VI. RESULTS AND DISCUSSION

To test the accuracy of our results, we match our results with the numerical
results obtained by the Mathematica program for the different sets of initial conditions.
Firstly, x(t, £) has been computed by analytic solution (27) for undamped motion in
which C, ¢ are calculated by (25), (26) and U, is obtained from (24) together with three
sets of initial conditions, which are obtained for different radius of the cylinder and
gravitational force, g=9.8 ms”. The corresponding numerical solutions that computed
by the Mathematica program for various values of time, ¢ and all the results are showed
in the Fligure 2 to Figure 4. The numerical results for damped oscillatory motion
obtained by the Mathematica program for same initial conditions are assimilating with
the perturbation results. Here, X(t,a) has been computed by asymptotic solution (43),
where C, ¢ are calculated by (42), (41) and U, is obtained from (40) with the same initial
conditions, when ¢=9.8ms? and different values of damping constant 2k. The
comparative results of numerical and perturbation for various values of ¢ are showed
graphically in the figure 5 to figure 7.

x(t)
—— Perturbation Results
e ’ = Numerical Results

“ TERRN

-005 1

o i |}

-015 [

Figure 2: Comparison between perturbation and numerical results for
R=2m,g=98 ms? with the initial conditions ¢, =0.12 m, ¢, =55°
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— — Numerical Results
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—04 L

Figure 3: Comparison between perturbation and numerical results for
R=22m, g=9.8 ms? with the initial conditions ¢, =0.25 m, ¢, = 25°

x(t)
= Pertirbation Results

04 L ~— Numerical Results

AT
AT

-04 |

Figure 4: Comparison between perturbation and numerical results for
R=1.8m,g=9.8 ms? with the initial conditions ¢, =0.35 m, ¢, =35°

x(t)
= Perturbation Results

0.15
—— Numerical Results
0.10

oos J[\U[\VI\WI\VI\VI\VI\VAVAMAVA@.A.A_;O t

-0.10 U
-0.15 u

Figure 5: Comparison between perturbation and numerical results for
R=2.0m,k=0.15s",g=9.8 ms? with the initial conditions ¢, =0.20 m, ¢, =30°
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04 " = Perturbation Results

n —— Numerical Results
02 “
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Figure 6: Comparison between perturbation and numerical results for
R=1.7m,k=0.10 s, g=9.8 ms? with the initial conditions ¢, =0.50 m, ¢, =45°

x(t)
n = Perturbation Results
05 —— Numerical Results

A

Figure 7: Comparison between perturbation and numerical results for
R=25m,k=0.18 s*, g=9.8 ms? with the initial conditions ¢, =1.00 m, ¢, = 60°

VII.  CONCLUSIONS

In this article, we have successfully applied the modified method to the half-
submerged cylinder for oscillatory and damped oscillatory nonlinear systems. The
system is oscillating in a liquid due to the gravitational force and upward pressure. A
second order nonlinear equation has been derived from a horizontally half
submerged cylinder, which is floating in a liquid for both oscillatory and damped
oscillatory motion. Based on the modified KBM method transient responses of
nonlinear differential systems have been investigated. For different sets of initial
conditions, the modified KBM method provides solutions which show well
agreement with the numerical solutions. In the KBM method, much error occurs in
the case of rapid changes of x with respect to time, ¢. But it is noteworthy to observe
from all figures, x changes rapidly in the time period t=0 to t=30, the results obtained
via the modified KBM method show good coincidence with those obtained by the
numerical method.
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