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I.

 

Introduction

 
Krylov and Bogoliubov [1] initiated a perturbation method to obtain 

approximate solution (oscillatory type) of the second order nonlinear differential system 
with a small nonlinearity

                                         
2
0 ( , )x x f x xω ε+ = − 

   

                              (1)

 where the over dots denote the differentiation with concerning

 

t,

 

0 0ω >

 

and ε is a small 
parameter. This method has amplified and justified by Bogoliubov and Mitropolskii [2, 
3]. Today the method is a well-known method as Krylov-Bogoliubov-Mitropolskii 
(KBM) [1, 2] in the literature of nonlinear oscillations. Popov [4] extended it to the 
following damped oscillatory system

                                            
2 ( , )x + + = − 

  

                             (2)
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where 0,c > 0ω > and 2c ω< . It is to be noted that if 2c ω≥ , the system (2) becomes 
non-oscillatory. First,  Murty et al. [5, 6] used this method to obtain an approximate 
solution of (2) characterized by non-oscillatory processes. In the case of over-damped 
systems, we know the characteristic roots of the unperturbed equation of (2) become 
real, unequal and negative inequality. The roots of the unperturbed equation of (1) are 
purely imaginary. On the contrary, these are complex conjugate with the negative
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Abstract- The Krylov-Bogoliubov-Mitropolskii (KBM) method is an enormously used technique to study the transient 
behavior of vibrating systems. In this work, an oscillating semi-submerged horizontal cylinder is considered in a liquid 
and the governing equation of this system deem to weakly nonlinear to find out the solutions. Analytical approximate 
solutions are investigated for obtaining the transient response of the system for undamped and damped oscillatory 
motions.  The results obtained by the proposed technique for the different sets of initial conditions have found 
to be well suited with the numerical solutions.

real part, when 2c ω< (considered by Popov[4]). Sattar [7] found an approximate 
solution of (2) characterized by critical damping. An asymptotic solution proposed by 
Kawser and Akbar [8] for the third order critically damped nonlinear system. Kawser 
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and Sattar [9] suggested an asymptotic solution of a fourth order critically damped 
nonlinear system with pair-wise equal eigenvalues. Later, Kawser et al. [10] has 
developed a method for fourth order critically damped oscillatory nonlinear systems 
when the eigenvalues are complex and pair-wise equal. It has further extended by 
Kawser et al. [11] to fourth order critically undamped oscillatory nonlinear systems with 
pair-wise equal imaginary eigenvalues. Recently, Kawser et al. [12] presented a 
technique to obtain perturbation solutions of fifth order critically undamped nonlinear 
oscillatory systems with pair-wise equal imaginary eigenvalues.

In this paper, we have investigated the solutions of a horizontally semi-
submerged cylinder in a liquid under oscillations due to the gravitational force for both 
oscillatory and damped oscillatory motions. So in these cases, the eigenvalues are 
imaginary and complex conjugate for undamped and damped motions respectively. For 
different sets of initial conditions the solutions show excellent coincidence with the 

numerical solutions obtained by the Mathematica program.

Suppose a half-submerged horizontal cylinder of radius (R  length l ) is 
floating in a liquid. If we consider x is instantaneous displacement of a diametric plane 
from the equilibrium position.
Volume of cylinder from the bottom of height h is,

                                 

2 1 2cos ( ) 2h
R hV l R R h Rh h

R
− −  = − − −    

                         (3)

Now using equation (3), we obtain the volume of cylinder from the bottom of 

height R i.e. volume of half cylinder is, 21
2RV R lπ=

Figure 1:

And the volume of cylinder from the bottom of height R x+ is,
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Thus the volume of the partial part from the diametric plane of height x is

1
2 1 2 2 22cos ( )

2
xl R x R x R
R

π−  = − + − −  
  
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As x is very small and R is large, so neglecting the terms higher than
3x

R
 
 
 

, we get

Suppose m is the mass of the cylinder, 1m is mass of the liquid occupied by the 

volume xV , ρ is the density of the cylinder, 2ρ is the density of the liquid and g is the 

gravitational force. Suppose the semi-submerged cylinder is oscillating in the liquid 

without damping, then Newton’s second law of motion gives

2

12

d xm m g
dt

= −

                                      
                        

(4)

Also if the half-submerged cylinder is floating in the liquid under damping, then 
the equation of the system is given by
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Notes

2 1 2( ) 2 ( ) ( )R x
R R xV l R R R x R R x R x

R
−

+

 − −  = − − − + − +    
cos

x R x RV V V+= −

3 5
2

3 5

2 4
2

2 4

1 31
2 6 40

1
2 8 2

x x xl R
R R R

x xxR R
R R

π

π

  
= + + + + ⋅⋅⋅⋅ ⋅ ⋅ 

 

 
+ − − − ⋅⋅⋅⋅ ⋅ ⋅ −  

  

                         

(5)

3 2
2 2

3 21
2 6 2 2x

x x xV l R xR R
R R R

π π    
= + + + − −   

    

3

2
6
xl xR
R

 
= − 

 

i.e.,
2

3
2 3

8 4
3

d x g gx x
dt R Rπ π

+ =

2
3

2 3

8 42
3

d x dx g gk x x
dt dt R Rπ π

+ + =



  

 

   

 

 
 

 

 

 

 

 

 

                                         

   

where 2k is the damping constant.

 

III.

 

The

 

Method

 

Consider a second order weakly nonlinear ordinary differential system

 

                                  
22 ( , )x kx x f x xω ε+ + = −  

 

                                (6)

 

where over dots are used for the first and second derivatives of x

 

concerning

 

t; k is a 

non-negative constant, ε

 

is a small parameter and ( , )f x x is the nonlinear function. 

Since the equation is second order, so, we shall get two eigenvalues for the damped 

oscillatory system and the eigenvalues are complex conjugate,

 

i.e. k iλ− ± (say), where 
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2 2  and ,k kλ ω ω= − > and for oscillatory systems i.e. 0k = , then the eigenvalues of 

system (6) are iω± . 

When 0ε = , then the equation (6) becomes linear, and the solution of the 
corresponding linear equation (6) is 

                                     
( )( ,0) cosktx t e a t b  tλ−= +

  

                     (7)

where a and b are arbitrary constants.

Now we seek a solution of (6) that reduces to (7) as the limit 0ε→ . We look for
an asymptotic solution of (6) is

                              
( ) ( ) 2

1( , ) cos sin , , ( )ktx t e a t b t u a b t Oε λ λ ε ε−= + + +
                  

(8)

where a, b are slowly varying functions of time, t and satisfy the following first order 
differential equations:

                                               

                        

(9)

Now differentiating (8) twice times, substituting for the derivatives x, x and x
in (6). Now utilizing relations (9) and comparing the coefficients of various powers of ε, 
we get

                                         

(10)

where ( ) ( )0
0 0,f f x x=  and ( )0 cos sinktx e a t b tλ λ−= + .

0 λsin0

0 0

( )

( )

1

1

, ,

, ,

da A a b t
dt

db B a b t
dt

=

= +

ε + ......

ε ......

Notes
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( ) ( )
2

021 1
12 2 , ,u uk u f a b t

t t
ω∂ ∂

+ + + = −
∂ ∂

1 1
1 12 cos 2 sinkt A Be B t A t

t t
λ λ λ λ−  ∂ ∂   + + − +    ∂ ∂    



  

 

 

 

   

 

 

 

    

 

 

 

  

 

 

 
 

  

For the oscillatory system to obtain the solution, we have to put 0k =

 

and 

replacing λ by ω

 

in equation (10).

 

Thus for oscillatory system, we get

 

           

( ) ( )
2

021 1 1
1 1 122 cos 2 sin , ,A B uB t A t u f a b t

t t t
ω ω ω ω ω∂ ∂ ∂   + + − + + + = −   ∂ ∂ ∂              

(11)

  

 

 

IV.

 

Oscillatory

 

Motion

 

For the oscillatory motion from equation (4), we have
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                         (12)

where 3

4
3

g
R

ε
π

=

Usually, equation (10) or (11) is solved for the unknown functions 1A and 1B    

     

under the assumption that 1u does not contain first harmonic terms. We shall follow 

this assumption (early imposed by KBM [1, 3]) partially to obtain approximate 

solutions of nonlinear systems with large damping. 

                                                  
  

Thus the solution of equation (12) is given by putting 0k = and replacing λ by ω
in equation (8), we get

                                 ( ) 1, cos sin ( , , )x t a t b t u a b tε ω ω ε= + +
                         

(13)

where

Comparing equation (12) with the equation (6), we obtain

3( , )f x x x=

Therefore, ( )0 3[ cos sin ]f a t b tω ω= +

                             

( ) ( )3 2 2 3

3 2 2 3

3 3cos sin
4 4

1 3 3 1cos3 sin 3
4 4 4 4

a ab t a b b t

a ab t a b b t

ω ω

ω ω

= + + +

   + − + −   
                          

(14)

Substituting (0)f from equation (14) into equation (11), we obtain

( )2 21 1
1 1 12 sin cos 2 cos sinA BA t t B t t D u

t t
ω ω ω ω ω ω ω∂ ∂

− + + + + +
∂ ∂

( ) ( )3 2 2 33 3cos sin
4 4

a ab t a b b tω ω+ + +=              (15)
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38gx x x
R

ε
π

+ =    

8g
R

ω
π

= .   



  

 
  

 

   
  

  

 

 

 

 

  

            
3 22 31 3 3 1cos3 sin 3

4 4 4 4
a ab t a b b tωω   + − + −   

   

 

According to our assumption, 1u does not contain first harmonic terms

 

of

 

( )0f . The 

following equations can be obtained by comparing the coefficients of sin

 

tω

 

and

 

cos

 

tω
are the higher argument terms of sin tω

 

and cos tω

 

as

 

                                     
( )2 2 3 2

1
3 34
2 2

D A b a bω ωω+ = − −

 

                               (16)

 

                                       

( )2 2 3 2
1

3 34
2 2

D B a abω ωω+ = +
                                 

(17)

 

                   

( )2 2 3 2 2 3
1

1 3 3 1cos3

 

sin 3
4 4 4 4

D u a ab t a b b tω ω ω   + = − + −   
                              

(18)

 

The solutions of the equations (16) to (18) are respectively
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3 2

1
3( )

8
b a bA

ω
+

= −
                                            

(19)

                                            

                                            

3 2

1
3( )

8
a abB

ω
+

=
                                              

(20)

                              ( ) ( )2 3 3 2
1 3 cos3 3 sin 3u ab a t b a b tω ω= − + −

                           
(21)

Substituting the values of 1A , 1B from equations (19) and (20) into equation (9), 

we obtain

                                          

3 23( )   
8

da b a b
dt

ε
ω
+

= −
                                          

(22)

                                           
3 23( )
8

db a ab
dt

ε
ω
+

=
                                           

(23)

Thus for the transformation cosa c φ= and sin ,b c φ= − the  equations (21) to 

(23) respectively become

3

1 2 cos(3 3 )
32

cu tω
ω

φ= − +                                  (24)

                                            

And 0c =

23
8

cεφ
ω

= −

Notes

© 2017  Global Journals Inc.  (US)
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Or,          0c c=                                                                                          

 

                                       

2

0
3

 

8
c tεφ φ
ω

= −
                                             

(26)

 

Thus by substituting cosa c φ=

 

and sinb c φ= − into equation (13) and after 

simplification it becomes 

 

                                          
( ) ( ) 1, cos

 

x t c t uε ω φ ε= + +
                                  

(27)

 

Therefore, equation (27) represents the first order oscillatory solution of equation 

(12), where 1, ,c uφ are given by (25), (26) and (24).

 

V.

 

Damped

 

Oscillatory Motion

 

For the damped oscillatory motion, we have from equation (5)

 

                                                   

 

                                  
(28)

 

where 3

4
3

g
R

ε
π

=

 

Comparing equation (28) with the equation (6), we obtain
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3( , )f x x x=                                         (29)

  Therefore, 

       

( )

( ) ( )

3 3 3 2 2 2 2 3 3

3 3 2 2 3

3 2 2 3

cos 3 sin cos 3 sin cos sin

3 3cos sin
4 4

1 3 3 1cos3 sin 3
4 4 4 4

kt

kt

e a t a b t t a         t t b t

e a ab t a b b t

a ab t a b b t

λ λ λ λ λ λ

λ λ

λ λ

−

−

= + + +

= + + +

   + − + −                        

(30)

where  

Substituting (0)f from equation (30) into equation (10), we obtain

( ) ( )

1 1
1

3 3 2 2 3

3 2 2 3

1

3 3cos

2 sin

sin
4 4

1 3 3 1cos3 sin 3
4

cos 2 cos sin

4 4 4

kt

kt

A Be A t t B t t
t

e a ab t a b b t

a ab t a b b

t

t

λ λ λ λ λ λ

λ λ

λ λ

−

− ∂ ∂ − + + + 

+ + +

   + − + −     

∂ ∂ 

=

           

(31)









b
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Notes

(25)

382 gx kx x x
R

ε
π

+ + = 

( )0 3[ ( cos sin )]ktf e a t b tλ λ−= +

28g k
R

λ
π

= − .

2
1

82 gD kD u
Rπ

 + + 
 



  

                                                       

 

 

 

  

 

 

Since, 1u does not contain first harmonic terms,

 

the following equations obtained 

by comparing the coefficients of sin

 

tλ  and

 

cos

 

tλ are the higher argument terms of 

sin tλ

 

and cos tλ  as

 

                         

( ) ( ) ( ){ }2 2 2 3 2 2 3
1

34
2

ktD A e k a ab a b bλ λ−+ = − + + +

 

                      (32)

 

                           

( ) ( ) ( ){ }2 2 2 3 2 2 3
14

 

2
ktD B e a ab k a b bλ λ−3

+ = + − +

             

(33)

            

3 3 21 3cos3

 

4 4
kte t a aλ  = − + 

 

 

 

  (34)

 

The solutions of the equations (32) to (34) are

 

respectively

 

                             

( ) ( ){ }
( )

2 3 2 2 3

1 2 2

3

8

kte k a ab a b b
A

k

λ

λ

− + + +
= −

+

 

                                (35)

 

                              

( ) ( ){ }
( )

2 2 3 3 2

1 2 2

3

 

8

kte k a b b a ab
B

k

λ

λ

− − + + +
=

+
                               (36)
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b− 3 2 33 1sin 3
4 4

kte t a b bλ−  − 
 

       

3
3 2

4 2 2
2 2

1

2 3 2 2

4 ( {( 2 )cos3 33 )
16(

sin 3 }

(3 ){3 cos3 ( 2 )s

5 4 )

in 3 }

kt

u k t k t

a b b k t k t

e a ab
k k

λ λ λ λ

λ λ λ λ

λ λ

−

= − −

+ − + −

−
+ +



               (37) 

Substituting the values of   1A , 1B from equations (35) and (36) into equation 

(9), we obtain

                             

( ) ( ){ }
( )

2 3 2 2 3

2 2

3

8

kte k a ab a b bda
dt k

λ
ε

λ

− + + +
= −

+
                              

(38)

                              

( ) ( ){ }
( )

2 2 3 3 2

2 2

3

8

kte k a b b a abdb
dt k

λ
ε

λ

− − + + +
=

+
                            (39)

Therefore, under the transformation, a c φ= and sinb c φ= − equations (37)

to (39) respectively become

sin

( ) ( )
3 3

2 2
1 4 2 2 4 [ 3 3 3 sin 3 3 ]( 2 )c

16( 5 5 )

ktc eu k t k t
k k

λ λ φ λ λ φ
λ λ

−

= − + − +
+ +           

(40) 

2 2

2 2

3
8( )

ktc e
k
λεφ

λ

−

= −
+


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Or,    
( ) ( )

2
2

0 2 2

3 1
16

ktc e
k k
λεφ φ

λ
−= + −

+
                    (41) 

            
( ) ( )

3
20

0 2 2

3 1
16

ktcc c e
k

ε
λ

−= + −
+

 

                              (42) 

Thus by substituting 1 cosa c φ= and 1 sinb c φ= − into equation (8) and after 

simplification it becomes

 

                                       ( ) 1( , ) cosktx t ce t uε λ φ ε−= + +
                                  

(43)

 

 

VI.

 

Results

 

and

 

Discussion

 

To test the accuracy of our results, we match our results with the numerical 
results obtained by the Mathematica

 

program for the different sets of initial conditions. 
Firstly, ),( εtx

 

has been computed by analytic solution (27) for undamped motion in 
which ,c φ

 

are calculated by (25), (26) and 1u

 

is obtained from (24) together with three 
sets of initial conditions, which are obtained for different radius of the cylinder and 
gravitational force, 29.8g ms−= . The corresponding numerical solutions that computed 
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Therefore, equation (43) represents a first order damped oscillatory solution of 

equation (28), where 1, ,c uφ are given by (42), (41) and (40).

obtained by the Mathematica program for same initial conditions are assimilating with 
the perturbation results. Here, ( ),x t ε has been computed by asymptotic solution (43), 

where ,c φ are calculated by (42), (41) and 1u is obtained from (40) with the same initial 
conditions, when 29.8g ms−= and different values of damping constant 2k . The 
comparative results of numerical and perturbation for various values of t are showed 
graphically in the figure 5 to figure 7.

by the Mathematica program for various values of time, t and all the results are showed 
in the Figure 2 to Figure 4. The numerical results for damped oscillatory motion 
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Notes

x(t) 

-

-

-

Figure 2: Comparison between perturbation and numerical results for
22 9.8R m, g ms−= = with the initial conditions 0 00.12 55c m,φ= = °



  

 

 

 

 

 

  

 

 

 

  

 

Figure 3:

 

Comparison between perturbation and numerical results for 
22.2 9.8R m, g ms−= = with the initial conditions 0 0.25c m= , 0 25φ = °
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x(t) 

x(t) 

-

-

Figure 4: Comparison between perturbation and numerical results for 
21.8 9.8R m, g ms−= = with the initial conditions 0 0.35c m= , 0 35φ = °

Figure 5: Comparison between perturbation and numerical results for
1 22.0 0.15 9.8R m, k s , g ms− −= = = with the initial conditions 0 0.20c m= , 0 30φ = °

x(t) 
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Figure 6:

 

Comparison between perturbation and numerical results for 
1 21.7 0.10 9.8R m, k s , g ms− −= = = with the initial conditions 0 0.50c m= , 0 45φ = °
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Figure 7: Comparison between perturbation and numerical results for 
1 22.5 0.18 9.8R m, k s , g ms− −= = = with the initial conditions 0 1.00c m= , 0 60φ = °

x(t) 

-

x(t) 

-

-

VII. Conclusions

In this article, we have successfully applied the modified method to the half-
submerged cylinder for oscillatory and damped oscillatory nonlinear systems. The 
system is oscillating in a liquid due to the gravitational force and upward pressure. A 
second order nonlinear equation has been derived from a horizontally half 
submerged cylinder, which is floating in a liquid for both oscillatory and damped 
oscillatory motion. Based on the modified KBM method transient responses of 
nonlinear differential systems have been investigated. For different sets of initial 
conditions, the modified KBM method provides solutions which show well 
agreement with the numerical solutions. In the KBM method, much error occurs in 
the case of rapid changes of x with respect to time, t. But it is noteworthy to observe 

from all figures, x changes rapidly in the time period 0t = to 30t= , the results obtained 
via the modified KBM method show good coincidence with those obtained by the 
numerical method.
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