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Harmonic analysis in hypercomplex systems (HCSs) dates back to Delsartes and Levitans work

during the 1930s and 1940s, but the substantial development had to wait till the 1990s when

Berezansky and Kondratiev [1] put HCSs in the right setting for harmonic analysis. Recently,

some authors as Zabel and Bin Dehaish [2, 3], Bin Dehaish [4], Okb El Bab, Zabel and Ghany [5]

and Okb El Bab, Ghany and Boshnaa [6], studied some important subjects related to harmonic

analysis in HCSs. Furthermore, Okb El Bab, Ghany, Hyder and Zakarya [7, 8], studied some

important subjects related to a construction of non-Gaussian white noise analysis using the theory

of HCSs.

Generalized translation operators (GTOs) were first introduced by Delsarte [9] as an object

that generalizes the idea of translation on a group. Later, they were systematically studied by

Levitan [10–14], for some classes of GTOs, he obtained generalizations of harmonic analysis, the

Lie theory, the theory of almost periodic functions, the theory of group representations, etc. The

fact that GTOs arise in various problems of analysis is explained by Vainerman and Litvinov in [15].

Transformations of Fourier type for which the Plancherel theorem and the inversion formula hold,

as a rule, are closely related to families of GTOs. According to Section 1 in [1], each hypercomplex

system (HCS) can be associated with a family of GTOs. So, we begin with recalling some necessary

facts deal with theory of GTOs and reviewing the conditions that distinguish the class of HCSs

from the class of GTOs [2,14].

Let L1(Q,m) be a HCS with basis Q and let Φ be a space of complex valued functions on Q.

Assume that an operator valued function Q 3 p 7→ Lp : Φ → Φ is given such that the function
g(p) = (Lpf)(q) belongs to Φ for any f ∈ Φ and any fixed q ∈ Q.
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Positive Definite and Related Functions in the Product of Hypercomplex Systems

The operators Lp, p ∈ Q are called GTOs, provided that the following axioms
are satisfied.

I. Associativity axiom. The equality

(
Lqp(Lqf)

)
(r) =

(
Lrq(Lpf)

)
(r) (1.1)

holds for any elements p, q ∈ Q.

II. There exists an element e ∈ Q such that Le = I, where I is the identity operator in Φ.

The GTOs are called commutative if for any p, q ∈ Q, we have
(
Lrp(Lqf)

)
(r)

=
(
Lrq(Lpf)

)
(r). For commutative GTOs Lp the following equality is satisfied.

(
Lpf

)
(q) =

(
Lqf

)
(p), p, q ∈ Q. (1.2)

In this paper we are interest in the case where Q is locally compact space with regular Borel

measurem positive on open sets and bounded GTOs Lp act in the space of functions Φ = L2(Q,m).

Given an involutive homeomorphism Q 3 p 7→ p∗ ∈ Q. The GTOs Lp are

involutive if the equalities

(
Lpf

)
(q) =

(
Lq∗f∗

)
(p∗),

(
f ∈ L2(Q,m), f

∗(p) = f(p∗)
)
, (1.3)

and e∗ = e hold for almost all p, q ∈ Q.

The GTOs Lp preserve positivity if
(
Lpf

)
(q) ≥ 0 almost everywhere in m when-

ever f(q) ≥ 0.

The family of operators Lp is called weakly continuous if the operator-valued

function Q 3 p 7→ Lp is weakly continuous.

Let L∗p be the operator adjoint to Lp. The measure m is called strongly invariant

if L∗p = Lp∗ for all p ∈ Q. We say that the measure m unimodular if m(A) = m(A∗) for all

A ∈ B(Q).

Assume that the GTOs Lp satisfy the finiteness condition:

(F) For any A,B ∈ B0(Q), there is a compact set F so large that
(
Lpf

)
(q) = 0 for almost all

p ∈ A and q ∈ B provided that supp f ∩ F = ∅.

[1] If weakly continuous GTOs Lp are commutative, then relation (1.2) holds for

almost all p and q.

Definition 1.1. 

Definition 1.3. 

Definition 1.4. 

Definition 1.5. 

Definition 1.2. 

Definition 1.6. 

Lemma 1.1. 

Lemma 1.2. [1] Let m be a measure strongly invariant with respect to the GTOs Lp (p ∈ Q) which
preserve the unit element and satisfy the finiteness condition (F), Then

∫

Q

(
Lpf

)
(q)dq =

∫

Q

f(q)dq, (p ∈ Q and f ∈ L2,0(Q,m)), (1.4)

where L2,0(Q,m) is the subspace of finite functions from L2(Q,m).

Theorem 1.3. [1] There exists a one-to-one correspondence between normal HCSs with basis unity
e and weakly continuous families of bounded involutive GTOs Lp satisfying the finiteness condi-

tion, preserving positivity in the space L2(Q,m) with unimodular strongly invariant measure m,
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and preserving the unit element. Convolution in the HCS L1(Q,m) and the corresponding family

of GTOs Lp satisfy the relation

(
f ∗ g

)
(p) =

∫

Q

(
Lpf

)
(q) g(q∗)dq =

(
Lpf, g

∗),
(
f, g ∈ L2(Q,m)

)
. (1.5)

Moreover, the HCS L1(Q,m) is commutative if and only if the GTOs Lp, p ∈ Q are commutative.

In this paper we can generalized the concept of HCS to the direct product of HCSs. This

work can be immediately generalized to a direct product of any finite number of HCSs. While,

the case of infinite number of HCSs is still open. Moreover, it is fairly easy to observe that all our

results for direct product of HCSs can be easily investigated for direct products of semigroups and

hypergroups (See [16,17]).

This paper is organized as follows: In section 2, we give the basic definition of the direct

product of HCSs and discuss its objects like convolution, characters, normality and commutativity

preserving. In section 3, we give an example to improve the concept of direct product of HCSs.

In section 4, we introduce and analyze the concept of positive definite functions on the direct

product of commutative normal HCSs, and we present the integral representation of positive

definite functions. Section 5 is employed for conclusion.

Suppose that Lpi(i = 1, 2) be GTOs associated with normal HCSs L1(Q1,m1) and L1(Q2,m2)

with basis unity e1 and e2x respectively. We denote, H1 = L1(Q1,m1) and H2 = L1(Q2,m2). The

direct product of the GTOs Lp1 and Lp2 (p1 ∈ Q1, p2 ∈ Q2) is defined as the operator-valued

function

Q1 ×Q2 3 (p1, p2) 7→ L(p1,p2) = Lp1 ⊗ Lp2 : H1 ⊗H2 → H1 ⊗H2. (2.1)

It is clear that the operators L(p1,p2) ((p1, p2) ∈ Q1 × Q2) form in H1 ⊗ H2 a family of GTOs
satisfying the conditions of Theorem 1.3. The HCS H1 ⊗H2 constructed from the GTOs L(p1,p2)
is called the direct product of the HCSs L1(Q1,m1) and L1(Q2,m2). To denote the operation of

taking the direct product, we write

H1 ⊗H2 = L1(Q1 ×Q2,m1 ⊗m2) = L1(Q1,m1)⊗ L1(Q2,m2).

The following Lemma shows that the operation of taking the direct product preserves commu-

tativity

The direct product of two commutative HCSs is commutative.

Let H1,H2 be two commutative HCSs and Lp, Lq be the corresponding GTOs, respec-

tively. According to the above Theorem, it is sufficient to prove that the GTOs L(p1,p2) =

Lp1 ⊗ Lp2 , L(q1,q2) = Lq1 ⊗ Lq2
(
(p1, p2), (q1, q2) ∈ Q1 × Q2

)
are commutative. So from defini-

tion 1.2 and Eq.1.2 we have,

(
L(p1,p2)

(
L(q1,q2)f

))
(r1, r2) =

(
L(q1,q2)

(
L(p1,p2)f

))
(r1, r2), (2.2)

and hence, the Lemma is proved. �

There are important concepts related to any HCS like structure measure, multiplicative mea-

sure, characters and normality. Now, we transfer these concepts to the direct product of two

HCSs.

Lemma 2.1. 

Proof.  

II. Direct Product of Hypercomplex Systems

Notes



 
 

 
 

 
 
 
 
 
 
 
 
 
 

LetQ1 andQ2 be complete separable locally compact metric spaces. B(Q1×Q2) is the σ-algebra
of Borel subsets from Q1 ×Q2, and B0(Q1 ×Q2) be the subring of B(Q1 ×Q2) which consists of
sets with compact closure. We will consider the Borel measures, that is, positive regular measures

on B(Q1 × Q2), finite on compact sets. The spaces of continuous functions, of finite continuous
functions, of continuous functions vanishing at infinity and of bounded functions are denoted by

C(Q1 ×Q2), C0(Q1 ×Q2), C∞(Q1 ×Q2) and Cb(Q1 ×Q2), respectively.

Let A1 × A2, B1 × B2 ∈ B0(Q1 × Q2) and let K(A1×A2) and K(B1×B2) be the characteristic
functions of A1×A2, B1×B2, respectively. By using Eq.(1.5), we can set up the structure measure
of the HCS H1 ⊗H2 as follows

c
(
A1 ×A2, B1 ×B2, (r1, r2)

)
= K(A1×A2) ∗ K(B1×B2)(r1, r2)

=

∫

Q1×Q2

(
L(r1,r2)K(A1×A2)

)
(q1, q2)K(B1×B2)(q

∗
1, q
∗
2)d(q1, q2), (2.3)

where (r1, r2) ∈ Q1 ×Q2. This structure measure is said to be commutative whenever

c
(
A1 ×A2, B1 ×B2, (r1, r2)

)
= c
(
B1 ×B2, A1 ×A2, (r1, r2)

)
. (2.4)

A regular Borel measure m := m1 ⊗m2 on B0(Q1 ×Q2) is called multiplicative if
∫

Q1×Q2

c
(
A1 ×A2, B1 ×B2, (r1, r2)

)
dm(r1, r2) = m(A1 ×A2)m(B1 ×B2). (2.5)

By using Eq.(1.5), we can define the convolution in H1 ⊗H2 as follows

(
f ∗ g

)
(p1, p2) =

∫

Q1×Q2

(
L(p1,p2)f

)
(q1, q2)g(q

∗
1, q
∗
2)d(q1, q2)

=
(
L(p1,p2)f, g

∗)
(H1⊗H2)2

, (2.6)

where f, g ∈ L2
(
Q1 ×Q2,m1 ⊗m2

)
:= (H1 ⊗H2)2.

A non zero measurable and bounded almost everywhere function Q1 × Q2 3 (r1, r2) 7→
χ(r1, r2) ∈ C is said to be a character of HCS H1 ⊗H2, if the equality

∫

Q1×Q2

c
(
A1 ×A2, B1 ×B2, (r1, r2)

)
χ(r1, r2)dm(r1, r2) = χ(A1 ×A2)χ(B1 ×B2) (2.7)

holds for any A1 × A2, B1 × B2 ∈ B0(Q1 × Q2). Every direct product of HCSs has at least one
character, namely, the function χ = 1. A non zero measurable complex-valued function χ(r1, r2),

(r1, r2) ∈ Q1 ×Q2 is called a generalized character of H1 ⊗H2, if the equality (2.7) holds.

The HCS H1⊗H2 is said to be normal, if there exists an involution homomorphism Q1×Q2 3
(r1, r2) 7→ (r∗1, r

∗
2) ∈ Q1 ×Q2, such that m(E1 × E2) = m(E

∗
1 × E

∗
2)
(
E1 × E2 ∈ B(Q1 ×Q2)

)
and

for all A1 ×A2, B1 ×B2, C1 × C2 ∈ B0(Q1 ×Q2), we have

c
(
A1 ×A2, B1 ×B2, C1 × C2

)
= c

(
C1 × C2, B

∗
1 ×B

∗
2 , A1 ×A2

)
,

= c
(
A∗1 ×A

∗
2, C1 × C2, B1 ×B2

)
, (2.8)

© 2017  Global Journals Inc.  (US)
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where

c
(
A1 ×A2, B1 ×B2, C1 × C2

)
=

∫

C1×C2

c
(
A1 ×A2, B1 ×B2, (r1, r2)

)
dm(r1, r2). (2.9)

A normal HCS H1 ⊗H2 possesses a basis unity if there exists a point (e1, e2) ∈ Q1 ×Q2 such
that (e1, e2) = (e

∗
1, e
∗
2) and

c
(
A1 ×A2, B1 ×B2, (e1 × e2)

)
= m

(
(A∗1 ×A

∗
2) ∩ (B1 ×B2)

)
, (2.10)

where A1 ×A2, B1 ×B2 ∈ B(Q1 ×Q2).

A normal HCS H1 ⊗H2 is called Hermitian if (r∗1, r
∗
2) = (r1, r2) fore all (r1, r2) ∈ Q1 × Q2.

Every Hermitian direct product of HCSs is commutative. We should remark that, for a normal

HCS H1 ⊗H2, the mapping

H1 ⊗H2 3 f(r1, r2) 7→ f∗(r1, r2) ∈ H1 ⊗H2 (2.11)

is an involution in the Banach algebra H1 ⊗H2. A character χ of a normal HCS H1 ⊗H2 is said
to be Hermitian if

χ(r∗1, r
∗
2) = χ(r1, r2), (r1, r2) ∈ Q1 ×Q2. (2.12)

Denote the families of characters, of generalized characters and of bounded Hermitian characters

by X, Xg and Xh, respectively.

The following result gives us the criterium of the generalized characters of a normal commuta-

tive direct product of HCSs.

In order that a function χ(r1, r2) ∈ C(Q1 × Q2) be a generalized character of the
normal commutative direct product of HCS H1 ⊗H2 with basis unity (e1, e1) it is necessary and
sufficient that the equality

(
L(p1,p2)χ

)
(q1, q2) = χ(p1, p2)χ(q1, q2), (2.13)

hold for almost all (p1, p2), (q1, q2) ∈ (Q1 ×Q2).

Assume that a function χ ∈ Xg. Then, we have

χ(A1 ×A2)χ(B1 ×B2) =
∫

Q1×Q2

c
(
A1 ×A2, B1 ×B2, (r1, r2)

)
χ(r1, r2)d(r1, r2)

=

∫

Q1×Q2

∫

B∗1×B
∗
2

(
L(r1,r2)K(A1×A2)

)
(s1, s2)d(s1, s2)χ(r1, r2)d(r1, r2)

=

∫

B1×B2

∫

Q1×Q2

(
L(s∗1,s∗2)K(A1×A2)

)
(r1, r2)χ(r1, r2)d(r1, r2)d(s1, s2)

=

∫

B1×B2

∫

A1×A2

(
L(s1,s2)χ

)
(r1, r2)d(r1, r2)d(s1, s2) (2.14)

for any A1×A2, B1×B2 ∈ B0(Q1×Q2), which yields 2.13. The converse statement can be proved
by analogy. �
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Lemma 2.2.

Proof.  
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Let Q1 = G1, Q2 = G2 be commutative locally compact groups. It is easy to see

that Q1 ×Q2 = G1 ×G2 is commutative locally compact group with unity (e1, e2), where e1 and
e2 are the unities of G1 and G2, respectively. Consider its group algebra, i.e., a set L1(G1×G2,m)
of functions defined on the group G1 × G2 and summable with respect to the Haar measure

m := m1 ⊗m2. So, we can define the involution

G1 ×G2 3 (p1, p2) 7−→ (p
∗
1, p
∗
2) ∈ G1 ×G2. (2.15)

In this case, where

(
L(p1,p2)f

)
(q1, q2) = f

(
(q1, q2)(p1, p2)

)
, (p1, p2), (q1, q2) ∈ G1 ×G2, (2.16)

we have the convolution

(
f ∗ g

)
(p1, p2) =

∫

Q1×Q2

f
(
(q1, q2)(p1, p2)

)
g(q∗1, q

∗
2)d(q1, q1) (2.17)

Also, the structure measure has the form,

c
(
A1 ×A2, B1 ×B2, (r1, r2)

)
= m

(
(A−11 ×A

−1
2 )(r1, r2) ∩ (B1 ×B2)

)
, (2.18)

where A1 × A2, B1 × B2 ∈ B(G1 ×G2), (r1, r2) ∈ G1 ×G2. Thus, we obtain the direct product of
the commutative HCSs H1 ⊗H2. This direct product is also commutative and with basis unity
(e1, e2). In particular, if G1×G2 = R×R is an additive groups of all real numbers. For such HCSs
it is possible to introduce generalized translation L(p1,p2):

R× R 3 (p1, p2) 7−→
(
L(p1,p2)f

)
(q1, q2) ∈ C, f ∈ C(R× R),

where
(
L(p1,p2)f

)
(q1, q2) = f

(
(q1, q2) + (p1, p2)

)
. By using the operators L(p1,p2), one can rewrite

the involution and convolution as follows respectively:

R× R 3 (p1, p2) 7−→ (p
∗
1, p
∗
2) := (p

−1
1 , p−12 ) ∈ R× R, (2.19)

(
f ∗ g

)
(p1, p2) =

∫

R×R

f(q1, q2)
(
L(q∗1 ,q∗2)g

)
(p1, p2)d(q1, q1)

=

∫

R×R

f(q1, q2)g
(
(p1, p2)− (q1, q2)

)
d(q1, q1), (2.20)

where (q∗1, q
∗
2) = (−q1,−q2) in additive groups R×R, f, g ∈ H1⊗H2 and the functions χ(t1, t2) =

ei(t1,t2)(s1,s2),
(
(s1, s2) ∈ R× R

)
are characters.

Actually, there are many examples can be modified to the case of direct product of HCSs. For

more details see [1, 19].

Practically, to illustrate the concept of direct product of HCSs, we give an example as follows:

In this section, we present a concept of positive definite functions on a commutative normal

direct product of HCSs with basis unity. So, we give the following definitions and the important

concepts of positive definite functions.

© 2017  Global Journals Inc.  (US)
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Example 2.1. 

III. Positive Definite Functions on Direct Product of HCSs 
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An essentially bounded function Θ(p1, p2)
(
(p1, p2) ∈ Q1 ×Q2

)
is called positive

definite if ∫

Q1×Q2

Θ(p1, p2)
(
x∗ ∗ x

)
(p1, p2)d(p1, p2) ≥ 0 (3.1)

for all x ∈ H1 ⊗H2. We also, present another definition of positive definiteness as the following.

A continuous bounded function Θ(p1, p2)
(
(p1, p2) ∈ Q1 × Q2

)
is called positive

definite if the inequality
n∑

i,j=1

λiλj
(
L(
(p1)∗,(p2)∗

)
i

Θ
)
(p1, p2)j ≥ 0 (3.2)

holds for all (pi, pj), ..., (pn, pn) ∈ Q1 × Q2, (p1, p2)∗i :=
(
(p1)

∗
i , (p2)

∗
i

)
, (p1, p2)j :=

(
(p1)j , (p2)j

)
,

(
i, j = 1, ..., n (n ∈ N)

)
and λ1, ..., λn ∈ C.

If the GTOs L(t1,t2) extended to L∞ : Cb(Q1 ×Q2)→ Cb

(
(Q1 ×Q2)× (Q1 ×Q2)

)
.

Then the definitions 3.1 and 3.2 are equivalent for the functions φ ∈ Cb(Q1 ×Q2).

From definition 3.1, we have
∫

Q1×Q2

φ(r1, r2)
(
x∗ ∗ x

)
(t1, t2)d(t1, t2)

=

∫

Q1×Q2

φ(t1, t2)

∫

Q1×Q2

(
L(s1,s2)x

)
(t1, t2)x(s1, s2)d(s1, s2)d(t1, t2)

=

∫

Q1×Q2

∫

Q1×Q2

(
L(s∗1,s∗2)φ

)
(t1, t2)x(s1, s2)d(s1, s2)x(t1, t2)d(t1, t2)

=

∫

Q1×Q2

∫

Q1×Q2

(
L(t1,t2)φ

)
(s∗1, s

∗
2)x(t1, t2)x(s1, s2)d(t1, t2)d(s1, s2)

≥ 0, (3.3)

where x ∈ H1 ⊗H2. By the condition, we have
(
L(t1,t2)φ

)
(s∗1, s

∗
2) ∈ Cb

(
(Q1 × Q2) × (Q1 × Q2)

)
,

then the last inequality clearly implies (3.2). Let us prove the converse assertion. Let Qn × Qn
be an increasing sequence of compact sets covering the entire Q1 × Q2. We consider a function
Ω(r1, r2) ∈ C0(Q1 ×Q2) and set λi = Ω(r1, r2)i in (3.2) This yields

n∑

i,j=1

(
L(
r∗1 ,r

∗
2

)
i

φ
)
(r1, r2)j Ω(r1, r2)iΩ(r1, r2)j ≥ 0. (3.4)

By integrating this inequality with respect to each (ri, rj), ..., (rn, rn), over the set Qk×Qk (k ∈ N)
and collecting similar terms, we conclude that

nm(Qk ×Qk)
∫

Qk×Qk

(L(r∗1 ,r∗2)φ
)
(r1, r2) |Ω(r1, r2)|

2d(r1, r2)

+ n(n− 1)
∫

Qk×Qk

∫

Qk×Qk

(
L(r∗1 ,r∗2)φ

)
(s1, s2)Ω(r1, r2)Ω(s1, s2)d(r1, r2)d(s1, s2)

≥ 0 (3.5)
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Further, we divide this inequality by n2 and pass to the limit as n→∞. We get
∫

Qk×Qk

∫

Qk×Qk

(
L(r∗1 ,r∗2)φ

)
(s1, s2)Ω(r1, r2)Ω(s1, s2)d(r1, r2)d(s1, s2) ≥ 0 (3.6)

for each k ∈ N. By passing to the limit as k → ∞. and applying Lebesgue theorem, we see that
(3.1) holds for all functions from C0(Q1×Q2). Approximating an arbitrary function from H1⊗H2
by finite continuous functions, we arrive at (3.1) �

By P(Q1 ×Q2) we denote the set of all positive definite functions.

If x belongs to (H1 ⊗H2)2, then
(
x∗ ∗ x

)
∈ P(Q1 ×Q2).

The proof is an immediately consequence of Lemma 3.3 in [1]. �

For any function x ∈ H1 ⊗H2 and any character χ ∈ X, we set

x̂(χ) =

∫

Q1×Q2

x(r1, r2)χ(r1, r2)d(r1, r2). (3.7)

This integral exists and x̂ is a continuous function on X. It is called a Fourier transform of the

function x ∈ H1 ⊗H2.
It well known that, every positive definite function in a HCS has a unique integral representation

with respect to a nonnegative finite regular measure defined on the family of Hermitian characters

(see Theorem 3.1 in [1]). Theorem 3.3 below gives a similar representation, but for positive definite

functions in H1 ⊗H2.

Every function Θ ∈ P(Q1×Q2) admits a unique representation in the form of an
integral

Θ(r1, r2) =

∫

Xh

χ(r1, r2)dμ(χ), (r1, r2) ∈ Q1 ×Q2, (3.8)

where μ is a nonnegative finite regular measure on the space Xh. Conversely, each function of the

form (3.8) belongs to P(Q1 ×Q2).

Let Θ ∈ P(Q1 ×Q2). Consider a continuous functional Φ in H1 ⊗H2 defined as follows

Φ(x) =

∫

Q1×Q2

Θ(r1, r2)x(r1, r2)d(r1, r2), (x ∈ H1 ⊗H2). (3.9)

It is clear that this functional is positive. The functional Φ can be extended to a positive

functional Φ̃ in a commutative normal direct product of HCSs with basis unity H1 ⊗H2. To do
this, it suffices to show that

• The functional Φ is real
(
i.e., Φ(x∗) = Φ(x) for all x ∈ H1 ⊗H2

)
,

• The inequality
∣
∣Φ(x)

∣
∣2 ≤ CΦ(x∗) holds, where C is a constant.

Let en ∈ H1 ⊗ H2 be an approximative unit, that is, en(r1, r2) ≥ 0, en(r1, r2) = en(r
∗
1, r
∗
2)

(r1, r2) ∈ Q1 ×Q2, ‖en‖H1⊗H2 = 1 and for all x ∈ H1 ⊗H2, limn→∞
en ∗ x = x weakly in H1 ⊗H2.

Since Φ is positive, we have

Φ(x∗) = lim
n→∞

Φ(e∗n(r1, r2) ∗ x
∗) = lim

n→∞
Φ(x ∗ en(r1, r2)) = Φ(x) (3.10)
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for all x ∈ H1 ⊗H2. Further, by using Lemma 1.3 in [1], we obtain
∣
∣Φ(x)

∣
∣2 = lim

n→∞

∣
∣Φ
(
en(r1, r2) ∗ x

)∣∣2

≤ lim
n→∞

Φ
(
e∗n(r1, r2) ∗ en(r1, r2)

)
Φ
(
x∗ ∗ x

)

≤ ‖Φ‖Φ
(
x∗ ∗ x

)
. (3.11)

Consequently, it is possible to extend Φ to a positive functional Φ̃ on H1 ⊗H2. By virtue of the
theorem on representations of positive functionals on commutative Banach ∗-algebras with identity
element, the functional Φ̃ (and, hence, Φ) can be uniquely represented in the form

Φ(x) =

∫

Xh

∫

Q1×Q2

x(r1, r2)χ(r1, r2)d(r1, r2)dμ(χ), (3.12)

where μ is a finite regular Borel measure on B0(Xh). From Eqs.(3.9) and (3.12), we obtain the
following relation

Θ(r1, r2) =

∫

Xh

χ(r1, r2)dμ(χ),

almost everywhere on Q1 × Q2. Since the characters of H1 ⊗H2 are continuous, both functions
in this equality are also continuous. This yields Eq.(3.8). The second part of the theorem follows

from the relation
∫

Q1×Q2

∫

Xh

χ(r1, r2)dμ(χ)
(
x∗ ∗ x

)
(r1, r2)d(r1, r2)

=

∫

Xh

∫

Q1×Q2

(
x∗ ∗ x

)
(r1, r2)χ(r1, r2)d(r1, r2)dμ(χ)

=

∫

Xh

∣
∣x̂(χ)

∣
∣2dμ(χ) ≥ 0, (3.13)

where x̂(χ) is the Fourier transform of the functions x ∈ H1 ⊗ H2. For all χ ∈ Xh, we have
(x̂∗)(χ) = (x̂)(χ), In particular,

(
x̂∗ ∗ x

)
(χ) =

∣
∣x̂(χ)

∣
∣2. See [1] and the Lebesgue theorem on the

limit transition. �

If the product of any two Hermitian characters is positive definite in H1⊗H2, then
the product of any two continuous positive definite functions in H1 ⊗H2 is also positive definite.

Let χ and are two Hermitian characters and positive definite in H1 ⊗H2, by virtue of
Theorem 3.3, we have

∫

Q1×Q2

f(r1, r2)g(r1, r2)
(
x∗ ∗ x

)
(r1, r2)d(r1, r2)

=

∫

Q1×Q2

∫

Xh

χ(r1, r2)dμ(χ)

∫

Xh

(r1, r2)dν( )
(
x∗ ∗ x

)
(r1, r2)d(r1, r2)

=

∫

Xh

∫

Xh

∫

Q1×Q2

χ(r1, r2) (r1, r2)
(
x∗ ∗ x

)
(r1, r2)d(r1, r2)dμ(χ)dν( ) ≥ 0 (3.14)

for all f, g ∈ P(Q1 ×Q2), x ∈ H1 ⊗H2. �
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Assume that H1 ⊗H2 is a commutative direct product of HCSs with basis unity,
then a continuous bounded function ϕ(r1, r1) is positive definite in the sense of (3.1) if and only if

it is positive definite in the sense of (3.2). Moreover, it has the following properties.

(i) ϕ(e1, e2) ≥ 0,

(ii) ϕ(r∗1, r
∗
2) = ϕ(r1, r2),

(iii) | ϕ(r1, r2) | ≤ ϕ(e1, e2),

(iv) |
(
L(s1,s2)ϕ

)
(t1, t2) |2≤

(
L(s∗1,s∗2)ϕ

)
(s1, s2)

(
L(t∗1,t∗2)ϕ

)
(t1, t2),

(v) | ϕ(s1, s2)− ϕ(t1, t2) |2≤ 2ϕ(e1, e2)
[
ϕ(e1, e2)−Re

(
L(s1,s2)ϕ

)
(t∗1, t

∗
2)
]
.

The first part of this Corollary we can found it from Lemma 3.1, from Theorem 3.3, we
can proof the second part from (i) to (v) as following

ϕ(e1, e2) =

∫

Xh

χ(e1, e2)dμ(χ) = μ(Xh) ≥ 0, (3.15)

ϕ(r∗1, r
∗
2) =

∫

Xh

χ(r∗1, r
∗
2)dμ(χ) =

∫

Xh

χ(r1, r2)dμ(χ) = ϕ(r1, r2), (3.16)

∣
∣
∣ϕ(r1, r2)

∣
∣
∣ ≤

∫

Xh

∣
∣
∣χ(r1, r2)

∣
∣
∣dμ(χ) ≤ μ(X) = ϕ(e1, e2), (3.17)

∣
∣(L(s1,s2)ϕ

)
(t1, t2)

∣
∣2 =

∣
∣
∣
∣

∫

Xh

χ(s1, s2)χ(t1, t2)dμ(χ)

∣
∣
∣
∣

2

≤
∫

Xh

∣
∣
∣χ(s1, s2)

∣
∣
∣
2
dμ(χ)

∫

Xh

∣
∣
∣χ(t1, t2)

∣
∣
∣
2
dμ(χ)

=

∫

Xh

χ(s1, s2)χ(s
∗
1, s
∗
2)dμ(χ)

∫

Xh

χ(t1, t2)χ(t
∗
1, t
∗
2)dμ(χ)

=
(
L(s∗1,s∗2)ϕ

)
(s1, s2)

(
L(t∗1,t∗2)ϕ

)
(t1, t2), (3.18)

Finally,
∣
∣ϕ(s1, s2)− ϕ(t1, t2)

∣
∣2 =

∣
∣
∣
∣

∫

Xh

χ(s1, s2)dμ(χ)−
∫

Xh

χ(t1, t2)dμ(χ)

∣
∣
∣
∣

2

≤
∣
∣
∣

∫

Xh

(
χ(s1, s2)− χ(t1, t2

)
dμ(χ)

∣
∣
∣
2

≤ μ(Xh)

∫

Xh

∣
∣
∣
(
χ(s1, s2)− χ(t1, t2

)∣∣
∣
2
dμ(χ)

= ϕ(e1, e2)

∫

Xh

(∣
∣χ(s1, s2)

∣
∣2 +

∣
∣χ(t1, t2)

∣
∣
2

− 2Re χ(s1, s2)χ(t1, t2)
)
dμ(χ)

≤ ϕ(e1, e2)

∫

Xh

2
(
1−Re

(
L(s1,s2)χ

)
(t∗1, t

∗
2)
)
dμ(χ)

= 2ϕ(e1, e2)
[
ϕ(e1, e2)−Re

(
L(s1,s2)ϕ

)
(t∗1, t

∗
2)
]
. (3.19)
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Hence, the Corollary is proved. �
In the remaining part of this section, we present the necessary and sufficient conditions guarantees

that the property of positive definiteness on the direct product of HCSs is preserved under the

usual function product.
Let H1⊗H2 be a commutative direct product of HCSs. The following two lemmas are in fact,

an adaption of whatever done for semigroups in Berg et al. [18]. We will not repeat the proof,

wherever the proof for semigroups can be applied to the HCSs [5]. In our work, we can applay it

to the direct product of HCSs H1 ⊗H2 with necessary modification.

(i) The sum and the point-wise limit of positive definite functions in H1 ⊗H2 are
also positive definite.

(ii) Let φ be a continuous positive definite function on Q × Q and define Φ : H1 ⊗H2 −→ C
by Φ(x) :=

∫

Q1×Q2

φ(s1, s2)dm(s1, s2), x ∈ H1 ⊗H2. Then Φ is positive definite in H1 ⊗H2.

The proof is as the case of semigroups and HCSs [5,18]. �

A bounded measurable function φ ∈ Cc(Q1 × Q2) is positive definite if and only if
there exists a in (H1 ⊗H2)2 such that φ = • ˜, where

f • g̃(r1, r2) =
∫

Q1×Q2

f
(
(r1, r2) ∗ (s1, s2)

)
g(s1, s2)dm(s1, s2), (3.20)

for all f, g ∈ (H1 ⊗H2)2.

The proof is as Lemma 7.2.4 in Pederson [20]. �

Let φ1 and φ2 belongs to Cc(Q1 ×Q2), then the product φ1.φ2 is positive definite
on Q1 ×Q2 if and only if φ1 and φ2 are positive definite on Q1 ×Q2.

From Lemma 3.7, there exist f, g ∈ (H1⊗H2)2 such that φ1 = f • f̃ , φ2 = g• g̃. So, we have

φ1 .φ2(r1, r2) =
(
f • f̃(r1, r2)

)
.
(
g • g̃(r1, r2)

)

=

∫

Q1×Q2

f
(
(r1, r2) ∗ (s1, s2)

)
f(s1, s2)dm(s1, s2)

×
∫

Q1×Q2

g
(
(r1, r2) ∗ (t1, t2)

)
g(t1, t2)dm(t1, t2)

=

∫

Q1×Q2

∫

Q1×Q2

f
(
(r1, r2) ∗ (s1, s2)

)
g
(
(r1, r2) ∗ (t1, t2)

)

× f(s1, s2)g(t1, t2) dm(s1, s2) dm(t1, t2)

=

∫

Q1×Q2

∫

Q1×Q2

f . g
(
(r1, r2) ∗ (s1, s2), (r1, r2) ∗ (t1, t2)

)

× f.g
(
(s1, s2), (t1, t2)

)
dm(s1, s2) dm(t1, t2)

=

∫ ∫
f . g

(
(r1, r2) ∗

(
(s1, s2), (t1, t2)

))
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Applying Fubini’s theorem to the right hand side, we get

φ1.φ2(r1, r2) =

∫

(Q1×Q2)×(Q1×Q2)

f . g
(
(r1, r2) ∗

(
(s1, s2), (t1, t2)

))

× f . g
(
(s1, s2), (t1, t2)

)
dn
(
(s1, s2), (t1, t2)

)
. (3.22)

This implies that φ1.φ2(r1, r2) = f . g • f̃ . g(r1, r2). �
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IV. Conclusion

A direct product of two HCSs is precisely defined via the theory of GTOs. We 
showed that, under some conditions, the properties of commutativity, normality are 
preserved under the operation of taking the direct product. Some examples were given 
to improve the concept of direct product of HCSs. Also, we transferred the objects of 
harmonic analysis, namely, the criteria of positive definite, the integral representation of 
positive definite functions, the positive definiteness of the product of two HCSs.

This work can be immediately generalized to a direct product of any finite 
number of HCSs. While, the case of infinite number of HCSs is still open. Moreover, it 
is fairly easy to observe that all our results for direct product of HCSs can be easily 

investigated for direct products of semigroups and hypergroups (See [16–18]). 
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