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thermal Rayleigh number. The results show that stress relaxation destabilises the system whereas strain retardation
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transfer and stress relaxation parameter increases them. It is seen that modulation gives rise to sub-critical motion.
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[. INTRODUCTION

The study of convection in non-Newtonian liquids has been a topic of interest
due to its usage as a working media in many engineering and industrial applications.
Viscoelastic fluids exhibits both solid and liquid properties and find application in
diverse fields such as geothermal energy modeling, crystal growth, solar receivers etc.
Some other applications include chemical industry, bioengineering, petroleum industry
and so on. These liquids are defined by constitutive equations which include complex
differential operators. They also include relaxation and retardation times. As they
possess both elastic (property of solids) and viscosity (property of liquids) leading to a
unique instability patterns such as overstability which is not observed in Newtonian
fluids. This is the main reason why many researchers have studied Rayleigh-Benard
convection in a rectangular layer of viscoelastic fluid heated from below (Vest and
Apaci [1], Sokolov and Tanner[2, Green[3], Siddheshwar et. al. [4] ).

Oldroyd-B liquid is a type of viscoelastic fluid. The study of stationary and
oscillatory convection in viscoelastic fluids gave information about the formation of
pattern in these fluids (Li and Khayat [5,6]). It was also found that a thin layer of fluid
when heated from below sets up oscillatory convection. Siddheshwar and Krishna [7]
investigated Rayleigh— Bénard convection in a viscoelastic fluid and found that the
ratio of strain retardation parameter to the stress relaxation parameter should be less
than one for convection to set in.

The nonlinear stability analysis under the influence of gravity modulation in
viscoelastic fluids was studied by Siddheshwar [8] who found that modulation helps in
controlling the onset of convection. The destabilizing and stabilizing effects of rotation
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on Oldroyd-B liquids were found by Sharma [9]. In spite of these studies not many
literature exists on non-linear convection in Oldroyd-B liquids.

The classical Rayleigh— Bénard convection arises due to temperature gradient
alone. In most practical cases convection may be caused not just due to one gradient,
but multiple gradients. Double diffusion occurs when there are two components whose
rates of diffusion are different. These varying diffusivities give rise to unpredictable
movement of fluid particles, thus making these problems interesting. In majority of
cases the two varying components are temperature and solute (Mojtabi and Charrier-
Mojtabi [10]). In such fluids density variations depend on both thermal and solutal
gradients which diffuse at different rates. This leads to the formation of salt fingers or
oscillations in the fluid layer. Malashetty and Swamy [11] found that there is a
competition between the processes of thermal diffusion, solute diffusion and
viscoelasticity that causes the convection to set in through oscillatory mode rather than
stationary. A common example of double diffusive convection is found in the ocean
(Stommel et al [12]). Stommel noticed that with the decrease in solute quantity there
was a large amount of potential energy available. Further study on this was done by
Stern [13, 14] who made the observation that if there are two diffusing components in a
system, then the behaviour of the system depend on whether the solute component is
stabilizing or destabilizing. Siddheshwar and Pranesh [15] studied the effects of
temperature modulation and g-gitter on magneto-convection in a weak electrically
conducting fluid with internal angular momentum. The effects of temperature
modulation on double diffusion were found by Bhadauria [16]. Double diffusive magneto
convection in viscoelastic fluids was investigated by Narayana et. al [17]. A stability
analysis of chaotic and oscillatory magneto-convection in binary viscoelastic fluids with
gravity modulation was done by Bhadauria and Kiran [18]. A Ginzburg—Landau model
was adopted to find the effects of the parameters. It was found that gravity modulation
can be used to either advance or delay convection by varying its frequency. Siddheshwar
et. al. [19] analyzed the heat transport by stationary magneto-convection in Newtonian
liquids under g-gitter and temperature modulation and obtained similar. Kiran [20] used
the Darcy model the porous medium to study the nonlinear thermal convection in a
porous medium saturated with viscoelastic nanofluids and found that frequency of
modulation can be varied to get the desired results with respect to onset of convection.

In this paper we use linear and non-linear stability analysis to investigate the
effects of gravity modulation on double diffusive convection in Oldroyd-B liquid.

[[.  MATHEMATICAL FORMULATION

Consider a layer of Oldroyd-B liquid held between two parallel plates at z = 0
and z = d. The two plates are maintained at two different temperatures with the
difference in temperatures and solute concentrations AT and ASrespectively. This causes
variable heating of the fluid particles and hence, variable movements. That is, a
temperature gradient arises and in turn gives rise to convection. The fluid density is
assumed to be a linear function of temperature, T, and solute concentration, S. A
Cartesian co-ordinate system is taken with origin in the lower boundary and z-axis
vertically upwards (fig 1).
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Fig.: Physical Configuration
Nomenclature
d thickness of the liquid
k dimensionl ess wave number
pr Prandtl number
q vel ocity
Ra  thermal Rayleigh humber
Rs  solutal Rayleigh number
t time
T temperature
To constant temperature of the
upper  boundary
Tr reference temperature
Le  Lewisnumber
Greek symboals
o  thermal expansion coefficient
g amplitude of modulation
x  thermal diffusivity
K, solutal diffusivity
A, stress relaxation coefficient
4, strain retardation coefficient
A dasticratio( 2 /4;)
i Viscosity
o frequency of modulation
p density

Thus the governing equations for Rayleigh-Benard situation of an Oldroyd-B liquid are:

Continuity Equation:

Conservation of momentum:

V§=0

p@—?j ——Vp+ pG() + VT
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Rheological Equation:
8., OV
[l+ A ajr = (1+ Ay aj(Vq +V§' )

Conservation of Energy:

oT )
L (GV)T =&V7T
& (@)

Conservation of Species:

§+ (GV)S=«xV’S

FEnergy Equation:
pP= po(l_a(Tb -To)+ay(S, - So)
The variation of gravity with time is given by

G(t) = g, 1+ S& cosat)k

(7)

Where 6 is the amplitude of gravity modulation and & is a small quantity

indicative of weak variation.

[1I. BAsSIC STATE

In the basic state the fluid is at rest. Therefore, the velocity is zero and the other

parameters are function of z alone.
d=0d(b) =0, p=p,(2. p=p,(2,

S=5,(2, T=T,(2)

The temperature T, pressure p, and density p, satisfy

dp + p9(l+ ecosat) =0
dz

ay_ 07T,

ot 0z°

Using the boundary condition, the above equation yields

AT
T, =—" 4T
b d 0

p=pyl-all,-T)+a, (S, -S,)

The rheological equation takes the form
0 og
(1+ A aj{po Eq +Vp+ pgl+ e cosa)t)}
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[V.  STABILITY ANALYSIS

The infinitesimal perturbations on the basic state are superimposed to study the
stability of the system. The basic state is slightly perturbed by an infinitesimal
N perturbation as given in eq. (14). The primes denote the perturbations.
otes

4=0.P=pP,+tP.p=p, +p . T=Ty+T,S=§ +S (14)

Substituting eq. (14) in the governing equations and with the help of the basic
state solutions, we get eq. (15) — (17) for the perturbations
oT' oT' oT,

T W+ W2 = VT
ot 0z 0z (15)

§+V\I’§+W’§ =k V’S
ot 0z 0z (16)

o\V2w :
(1+11 gj Lo (at )—apog(1+gcosa)t)VfT

+a p,g(l+ecosat)V2S'
0 17
:ﬂ[lmz EJV“W (17)
Eq. (20) is used to arrive at the non-dimensional form of the above equations.
W W ot o, T S
xld d?/«x AT AS
. e\ (XY z
\% ZdV, X, 2 )= =T
oy 2)-(22.2) (18)

Since we consider only two-dimensional disturbances, we introduce the stream
function y such that

oy oy
:—’W:—i
0z OX (19)

and all the terms are independent of y. The resulting non-dimensional equations are:

{— (1+ A, ajlvz a+(1+ A, ajV“}aV/=
ot)Pr

u

at at ox
(20)
(1+ A, aat)[Ra(l+ £COSm)V 20 + RS(L+ £ COSt)V 24
0 2 _ oy
2 v o+ (Gv)o="L,
(8t j Havo=2, (21)
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0
(&—LV j¢+(qV)¢—— (22)

The non-dimensional parameters appearing in eq. (20) — (22) are the Prandtl
number, Thermal Rayleigh number, Solutal Rayleigh number, stress relation parameter
and strain retardation parameter, which are given in equation (23).

Ax Aok K H
A ’ A ) =" Pr =
Pz 2T e K Lok
3 3
Ra - ap,9ATd " Rs= ap,0Ad (23)
UK UK

V.  LINEAR STABILITY ANALYSIS

In this section, we discuss the linear stability analysis by considering marginal
and over-stable states. The solution of this analysis is of great utility in the local non-
linear stability analysis discussed in the later sections. The linearlized equations after
neglecting the non linear terms are:

_[1+A16) V26+[1+A ajV“ o _
ot ) Pr ot ot OX

(24)
(1+ A, aatj[Ra(1+ £COSwt)VZO + Rs(1+ ¢ coswt)quﬁ],
e
ot oX (25)
0
- (26)

Eq. (24) — (26) are reduced to a single equation by eliminating 6 and ¢ to get an
equation in terms of the stream function, y.

oo

t
= _ VZ(//
ot ot Le (1“\ j
= (1+ A, aj(a—vz)(Ra(l+gcosa)t)a ":J
at \ ot ox
_ 09 _1ge oy 2
(1+A16tj(6t =V sz(1+ecosa)t) e (27)

V1. PERTURBATION PROCEDURE

We seek the eigenfunction, y, and eigenvalue Ra of eq. (27) for the basic
temperature distribution that departs from the linear profile by using quantities of order
€. Thus, the eigenvalues of the present problem differ from those of double diffusive

© 2017 Global Journals Inc. (US)
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convection in Oldroyd-B liquids by quantities of €. The solution of eq. (27) is sought in
the form

W=y, tey, e, .
Ra=Ra, +&Ra, + £°Ra, +.... (28)

Malkus and Veronis [21] first used this type of expansion in connection with the
study of finite amplitude convection. Here y, and Ra, are the eigenfunction and
eigenvalue respectively of the unmodulated system and (y;, Ra;), i>1 are the corrections
due to modulation of y, and Ra,.

These expansions are used in eq. (28) and the coefficients of various powers of &
are equated to obtain the following system of equations

Ly, =0 (29)
Ly, = 6—1V2j 144, 2 Ra, 82V/"+Ra cothﬁz!//O
Tl Le Lot ox? ’ ox?
2
+[6—V2j(1+ A, aszcoth 4 VIZO
ot ot ox (30)
o 1_, 0
Ly,=|———V°|1+A,—
Ve [6t Le )[ " 16t)
0%y 0%y 0%y 0%y
(Ra0 cosQt ale + Ra, ale + Ra, cosQt ale + Ra, axzo (31)

2
- (a - v2)[1+ A, a)Rscoth vy
ot ot X

2
SCReCy
ot ot Le
(1+Ala]la—[1+/\2 ajvz v?
ot) pr ot ot
—1+A g (a_vz Raoﬁ
Lot ot ox?

oyo 1 0?
+[1+Alatj(at—l_eV2szaX2 (32)

Each v, is required to satisfy the boundary condition

Where,

w=Vy=V'w=0atz=0, 1. (33)

a) Solution to the zero™ order problem
The absence of gravity modulation is equivalent to the zero™ order problem. The

general solution of eq. (29), obtained at o(¢"), is the marginally stable solution of the
zero™ order problem. The marginally stable solutions are
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W, = sin(nox)sin(nz) (34)

with the corresponding eigenvalue R,, given by

6

o 2
Ra, =———+LeR. +&¢°R
A, R R, a,

(35)
b) Solution to the first order problem
Substituting Eq. (34) in Eq. (30), we get Notes
2 21,2
Ly, = %«k Ra, cosQty, + Ra,7°a’QsinQty,,
e
+Ra,r’a’A Q% cosQty, + Rsz’a’k? cosQty, (36)
—Rsz?a’QsinQy, — Rsz’a?A,Q% cosQty,
Where,
L(w,n) =Y, +iY, (37)
Y o= k® . k°A,Q? KT k*A,Q* . k'Q?
toLe Pr Pr Pr
42 6 2 2
+k°A,Q% + KO +k/\729+7z2a2R k——AlQ2 (38)
LePr Le Le
—ﬂzazRS(kz —Alﬂz)
6 8 23
Y, = 'L( gr+ K /L\ZQ— KO —k*A,Q°% +Kk°Q
e e
kA Q° N k°Q  k'A,Q° 20?Re O 4 k*A,Q
Pr Le  LePr Le (39)
+ 72 RQ +k*Q)

Eq. (36) is inhomogeneous and its solution poses a problem since it contains
resonance terms The solvability condition requires that the first non-zero correction to
R,. The steady part of eq. (36) is orthogonal to sin nz. We take the time average and
get the following expression for the correction Rayleigh number.

Ro,. = Le (X, X,Q+ X, X, + X2 ),

C27%a%K? [ L(Q,N) P [+ (X, X,Q+ X, X5 — X X, )Y, (40)
Where,

2 2 Raoﬂzazkzl\l 2 2 2 2,2

X =-Ragr’a’ -2 ——t+Rer’a’ + Rer’a’k’A, (41)
R 2 2k2
X, :—W++ Ra,7%a?Q?A, + Rsr?a?k?
e

_Rsﬂ_ZaZQZAl (42)
X, = Ra,r°a’Q - Rsr’a’Q (43)
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—Ra,7%a’k?

2 21,2 2 .22
X, = o +Rsza“k® +Ra,m“a"Q°A, (44)

—Rst2a’Q%A,

The linear theory predicts only the condition for the onset of convection and is
silent about the heat and mass transport. We now embark on a non-linear analysis by
means of truncated representation of Fourier series to find the effects of various
parameters on finite amplitude convection and to know the amount of heat and mass
transport.

VII. NoON LINEAR THEORY

A non-linear analysis is done to study the amount of heat and mass transfer due
to the various parameters. Using the stream functions given by eq. (19)

(1+ A, aj[la (vay )+ Ra2? - Rsaﬂ
ot ) PR ot X - ox

9 \o4
00 oy 1,
9@, 1-fH) Y -~y
230+ - =Ly »
9% _ oy _ 1
230+ L= L .

An infinite series representation is used to find the solutions to eq. (45)— (47).
The amplitudes depend only on time. Only one term in the Fourier representation for
the stream function may be retained with two terms in the temperature expressions to
retain some nonlinearity.
Eq. (45) is decomposed into two first order equations since it is a second order equation.

10 w2y = ra%? 1 RS 4 AV 48

PI’@t(Vl//) RaaX+RsaX+AVy/+M (48)

where A=Dz (49)
Al

and Al% M+ (- AV (50)

The stream function, W, the temperature distribution, 0, concentration
distribution, @ and M are represented as follows:

v = A(t) sSin(zzax) sin(zz) (51)
0 = B(t) cos(wax) sin(zz) + C(t) sSin(27z) (52)
¢ = E(t) cos(wax) sin(zz) + F (t) sSin(27z) (53)

M = G(t) sin(zax) sin(zz) (54)
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where A(t), B(t), C(t), E(t), F(t) and, G(t) are the amplitudes to be determined from
the dynamics of the system.

Projecting eq. (46), (47), (48) and (50) onto the modes (51) - (54) and following
the standard orthogonalization procedure, we obtain the following non-linear
autonomous system of differential equations (generalized Lorenz model [22]):

A) :‘R"’l‘(ﬂB(t)+%E(t)—APrk2A(t)—%G(t) (55)
B(t) = (f —1)7zaA(t) — k2B(t) (56)
Ct) = ”;“ At)B(t) — 47°C(t) (57)
E(t) =—7aA(t) —'%; E(t) (58)
F0="2 AvE0 - Fo) (59)
60 =760+ & Mieay (60)

1 1

Where the over dot denotes the time derivative with respect to t. More modes
other than the minimal ones have not been considered in the study in view of the
observation by Siddheshwar and Titus [23] that additional modes do not significantly
alter the results on the onset of convection as well as transport.

VIII. HEAT TRANSPORT

In non-linear study of convection, the heat transport across the layers of fluid is
important. The onset of convection can be easily determined by analyzing the increase
and decrease in heat transport. In the basic state, transfer of heat takes place only due
to convection.

If Hy is the rate of heat transfer / unit area, then

oT.
He = — total ’ 61
. ){< e > (61)

where the bracket corresponds to a horizontal average and

Tow = [To —A.TTZ} +T(x2)

The first term is the temperature distribution due to conduction state prevalent
before convection sets in. The second term represents the convective heat transport.
The Nusselt number Nu is defined by

_ HT
KAT/d

Alternately, Nu may be directly defined in terms of the non-dimensional
quantities as follows:

Nu (62)
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271k,
—< 1 (1-z+T),dx
Nu_[zﬁ l( ) }_1 4kEA?

K 271 kg =1+ 452 '
—< (1—z)zdx}
{27[ 1[

The solutal gradient, arising due to double diffusive convection, causes a transfer
of mass in the fluid system. This is quantified using Sherwood number given by

(63)

2 2 N2
gy, 2K |_e2 A
(64)
We use these expressions to determine the effects of various parameters of the
problem on heat and mass transfer.

[T1I. RESULTS AND DISCUSSIONS

In this paper an attempt is made to study the effects of gravity modulation on
double diffusive convection in Oldroyd-B liquids. The following effects on the classical
Rayleigh-Benard problem are considered
i) Stress relaxation parameter.

ii) Strain retardation parameter.
iii) Lewis number.
iv) Frequency of modulation.
These are represented by A;,A, Le and o. The effects of these parameters on

heat and mass transfer are also analyzed. In the case of thermal modulation the
amplitude, €, is small compared with the imposed steady temperature difference. The

validity of the results obtained here depends on the value of modulating frequency, ®.
When ® < 1, the period of modulation is large and hence, the disturbance grows to
such an extent as to make finite amplitude effects important. When ® — o, Ra,,— 0.
Thus, modulation becomes small. Therefore, we choose moderate values of ®

Graphs of Ra,, versus w are plotted for varying values of the parameters which
represent the linear part of the problem (figs (2) — (5)). The effects of gravity
modulation on non-linear stability analysis are also discussed using graphs of Nusselt
number versus time and Sherwood number versus time. The non — autonomous Lorenz
model obtained is solved numerically. The parameters of the system are Lewis number,
Le, Stress relaxation parameter, A,, Strain retardation parameter, A,, Prandtl
number, Pr, Solutal Rayleigh number, Rs and frequency of modulation, @, which
influence the heat and mass transfer.

The linear stability analysis is discussed through graphs of correction Rayleigh
number, Ra,,, as a function of frequency of modulation, . Figures (2) — (6) are the
corresponding graphs.
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A, =0.05,Pr =10, R, =20,R, =1, L =100

A=D1

1000 o e A =05

200 4
S0 -
400 A

200+

Notes

Fig. 2: Graph of Ra,, vs t for different values of A,
Fig (2) is the graphs for different values of the stress relaxation parameter, A,,
for fixed values of other parameters. It is evident from the graph that increase in A,,

causes a decrease in the value of Ra,. This, in turn, causes acceleration in the onset of
convection, thus, destabilizing the system

A=U01 P=10, B =208 =1 L==100 A0.05

1000

&00

&00 4

2

4004

zoo -

Fig. 3: Graph of Ra,, vs t for different values of A,

Fig (3) is the graphs of Ra,, versus w for varying values ofA,. The other
parameters remain fixed. It can be seen that A,causes an effect opposite to that of A;.
With increase in A, , Ra,, also increases, thus delaying the convective process

© 2017 Global Journals Inc. (US)



A, =017, =005, R, =20,R, =1, Pr=10

1000
a00
600

m 4004

N 200
otes

Fig. 4. Graph of Ra,, vs t for different values of Le

Fig (4) is a graph of Ra,, versus o for different values of Le. As can be seen from
the graph the increasing values of Le results in the increase in Ra,. This delays the
onset of convection. Le is the ratio of thermal to solutal diffusivities. As Le increases
the Solutal diffusivity decreases and the thermal diffusivity increases. This results in
more heat transfer

@ A,=0LA, =005 R =20.R, =1 Le=100 Pr=1
1000
800 4

600 4

Fig. 5. Graph of Ra, vs t for different values of Pr

Figure (5) is the graph varying the values of Pr. It is appropriate here to note
that Pr does not significantly affect the values of Ra,. The graphs in fig (2)-(5) depict
sub critical motion. There is a steady line as well as a parabolic profile. This parabolic
part is subject to finite amplitude instabilities
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1t Pr=10,Le=100,A, =0.05,R: = 20,00 =10

s o LB E )

Fig. 6: Graph of Nu vs t for different values of A,

Figures (6) — (15) are the graphs of heat and mass transfer. They represent the
non-linear theory. Nusselt number, Nu, and Sherwood number, Sh, are used to plot

these graphs as functions of time. Figures (6) — (10) show the effects of the different

parameters on the Nusselt number. Fig (6) shows that A, causes an increase in the

Nusselt number and in turn, the heat transport. This is obvious as A; causes a decrease

in Ra,,

b Pr=10,A, =01 Le =100, R: =20,02=10

Fig. 7. Graph of Nu vs t for different values of A,

The opposite result is seen for A, (Fig (7)). That is, as A,increases Nusselt

number decreases, thus reducing the heat transfer. This is again an expected result as

A, was found to cause an increase in the value of Ra,. Therefore, its stabilizing effects

are affirmed here
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Fig. 8: Graph of Nu vs t for different values of Le

Fig (8) Shows the graphs of Nusselt number versus time for varying values of Le.
It can be seen that the increasing values of Le decreases Nu, thus reducing heat

transfer.
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Fig. 9: Graph of Nu vs t for different values of Pr

Fig (9) Shows the pattern in Nu when Prandtl number is varied. The variation
in the values of Nu can be observed for smaller values of Pr. As the value of Pr
increases largely the values of Nu becomes more or less similar. Pr is the property of the
type of fluid and hence smaller values of it differentiates the fluids
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Fig (10) is the graphs of Nusselt number versus time for varying values of the |

frequency of modulation, @. It is evident that the increase in @ results in the decrease
of Nu, Therefore, higher the frequency of modulation, lesser is the transport of heat.
Thus, the frequency can be controlled to get desirable results in the system

© 2017 Global Journals Inc. (US)
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Fig. 13: Graph of Sh vs t for different values of Le
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Figures (11) — (15) are graphs of Sherwood number versus time for the same
parameters mentioned above. These graphs show a pattern similar to that of Nusselt
number. Therefore, heat and mass transfer show same type of variations for all the
parameters.

IV. CONCLUSIONS

The stress relaxation parameter, A,, and strain retardation parameter, A,, have
opposing effects on the stability with A, destabilizing the system and thereby

increasing the heat transfer.
Lewis number, Le, stabilizes the system thereby decreasing the heat transfer.

Effect of the frequency of modulation, o, is to decrease the heat transfer.

Sherwood number behaves in a way similar to Nusselt number.
Modulation can be used as effective means of controlling convection.
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