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Abstract- We study Ricci solitons on CR-submanifolds of maximal CR di-mension Mn of a complex space form ℂ
𝒏𝒏+𝒑𝒑
𝟐𝟐

such that the shape operator A has only one eigenvalue. We prove that Ricci soliton on CR-submanifolds of maximal CR
dimension Mn with eigenvalue zero is expanding and with eigen-value nonzero is expanding and shrinking.

Finally, we study Ricci soliton on CR-hypersurfaces Mn of a complex space form 𝑴𝑴
𝒏𝒏+𝟏𝟏
𝟐𝟐 (4k) such that the shape 

operator A has exactly two distinct eigen-values and show that a Ricci soliton ( ) for 0 is shrinking and
expanding and for                         0 is shrinking.

M, g, V, λ k <

k >

Keywords: Ricci soliton, complex space form, CR-submanifolds of maximal CR dimension.

A Ricci soliton is defined on a Riemannian manifold (M, g) by

1

2
LV g +Ric− λg = 0

where LV g is the Lie-derivative of the metric tensor g with respect to V and λ is a
constant on M . The Ricci soliton is a natural generalization of an Einstein metric.
The Ricci soliton is said to be shrinking, steady and expanding according as λ > 0,
λ = 0 and λ < 0, respectively. Compact Ricci solitons are the fixed points of the
Ricci flow:

∂

∂t
g(t) = −2Ric(g(t))

projected from the space of metrics onto its quotient modulo diffeomorphisms and
scalings and often arise as blow-up limits for the Ricci flow on compact manifolds.
We denote a Ricci soliton by (M, g, V ;λ) and call the vector field V the potential
vector field of the Ricci soliton. A trivial Ricci soliton is one for which V is Killing
or zero. If its potential field V = ∇f such that f is some smooth function on M
then a Ricci soliton (M, g, V ;λ) is called a gradient Ricci soliton and the smooth
function f is called the potential function. It was proved by Grigory Perelman
in [13] that any compact Ricci soliton is the sum of a gradient of some smooth
function f up to the addition of a Killing field. Thus compact Ricci solitons are
gradient Ricci solitons. In particular, Perelman applied Ricci solitons to solve the
long standing Poincare conjecture posed in 1904.

Author: Department of Mathematics, Azarbaijan shahid madani University, Tabriz 53751 71379, Iran. e-mails: esabedi@azaruniv.edu, 
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Ricci Solitons on CR-Submanifolds of Maximal CR Dimension of a Complex Space Form

particular, these results give that there is not any Einstein real hypersurfaces in a
non-flat complex space form.

In [2], Chen studied important results on Ricci solitons which occur obviously
on some Riemannian submanifolds. He presented several recent new criterions of
trivial compact shrinking Ricci solitons.

Cho and Kimura [3] studied on Ricci solitons of real hypersurfaces in a non-flat
complex space form and showed that a real hypersurface M in a non-flat complex
space form M

n
(c 6= 0) does not admit a Ricci soliton such that the Reeb vector

field ξ is potential vector field. They defined so called η-Ricci soliton, such that
satisfies

1

2
LV g +Ric− λg − µη ⊗ η = 0

where λ, µ are constants. They first proved that a real hypersurface M of a non-flat
complex space form M

n
(c) which accepts an η-Ricci soliton is a Hopf-hypersurface

and classified that η-Ricci soliton real hypersurfaces in a non-flat complex space
form.

We study Ricci solitons on CR-submanifolds of maximal CR dimension Mn of a

complex space form C
n+p
2 such that the shape operator A has only one eigenvalue.

We prove that Ricci soliton on CR-submanifolds of maximal CR dimension Mn

with eigenvalue zero is expanding and with eigenvalue nonzero is expanding and
shrinking.

Finally, we study Ricci solitons on CR-hypersurfaces Mn with exactly two dis-

tinct eigenvalues of a complex space form M
n+1
2 (4k) and show that a Ricci soliton

(M, g, V, λ) for k < 0 is shrinking and expanding and for k > 0 is shrinking.

Let M
n+p
2 be a complex Kähler manifold with the natural almost complex struc-

ture J . A Kähler manifold M
n+p
2 is called a complex space form if it has constant

holomorphic sectional curvature. The Riemannian curvature tensor R of a complex
space form is given by

R(X,Y )Z = k{g(Y,Z)X − g(X,Z)Y

+ g(JY, Z)JX − g(JX,Z)JY − 2g(JX, Y )JZ}.

A CR-submanifold is a submanifoldMn tangent to ξ that admits an invariant distri-
bution D whose orthogonal complementary distribution D⊥ is anti-invariant, that
is, TM = D ⊕D⊥ with condition ϕ(Dp) ⊂ Dp for all p ∈ M and ϕ(D⊥p ) ⊂ T⊥p M

for all p ∈M , where D = span{X1, ..., Xm, ϕX1, ..., ϕXm} and D⊥ = span{ξ} such
that m = n−1

2 .

Therefore, there exists a vector subbundles anti-invariant ν and J-invariant ν⊥ of
the normal bundle such that

Jνp ⊂ TpM,

Jν⊥p ⊂ ν⊥p ,

for p ∈ M , where ν⊥ = span{N1, ..., Nq, N1∗ = JN1, ..., Nq∗ = JNq}, q = p−1
2 and

ν = span{N} and T⊥M = ν ⊕ ν⊥.

are no real hypersurfaces with parallel Ricci tensor in a complex space form M
n
(c)

with c 6= 0 when n ≥ 3. Kim [11] proved that when n = 2, this is also true. In

Hamilton[7] and Ivey [9] proved that a Ricci soliton on a compact manifold has
constant curvature in dimension 2 and 3, respectively. In [10], Ki proved that there

II. Preliminaries

(1.3)

(2.1)

(2.2)
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If Mn is an CR-submanifolds of maximal CR dimension of M
n+p
2 , then at each

point p ∈M , the real dimension of JTp(M) ∩ Tp(M) = n− 1.

Let ∇ and ∇ are the Riemannian connections of M and M , respectively and ∇⊥
is the normal connection induced from ∇ in the normal bundle T⊥(M).

Let Mn be a CR-submanifolds of maximal CR dimension of a complex space form

M
n+p
2 with constant holomorphic sectional curvature 4k and the normal vector

field N be parallel with respect to normal connction ∇⊥. We can write

∇⊥XN =

q∑
a=1

{sa(X)Na + sa∗(X)Na∗}

by the relation 2.3, we have the following lemma

[6] for a CR- submanifold of maximal CR dimension, the vector field
N is parallel with respect to the normal connection ∇⊥, if and only if sa = sa∗ = 0
for a = 1, ..., q.

We define a metric g on CR-submanifolds Mn of maximal CR dimension by

g(X,Y ) = g(ιX, ιY ),

for any X,Y ∈ TM . The Riemannian metric g is said the induced metric from g

on M
n+1

(4k) and the ι is called an isometric immersion.

For any vector field X ∈ χ(M) the decomposition holds:

JX = ϕX + η(X)N

where, ϕ is an endomorphism acting on T (M) and η is one-form on M and N is a
unit normal vector field on Mn such that JN = −ξ. The structure (ϕ, η, ξ, g) is an
almost contact metric structure on Mn such that

ϕ2 = −Id+ η ⊗ ξ, η(ξ) = 1, ϕξ = 0, ηoϕ = 0.

and

g(ϕX,ϕX) = g(X,Y )− η(X)η(Y ), η(X) = g(X, ξ).

Now, the Gauss formula are given by

∇XY = ∇XY + h(X,Y ),

for any X,Y ∈ χ(M). Where, the h is the second fundamental form such that

h(X,Y ) = g(AX,Y )N

+

q∑
a=1

{g(AaX,Y )Na + g(Aa∗X,Y )Na∗}.

Moreover, the Weingarten formulae can be written as follows

∇XN = −AX +∇⊥XN

= −AX +

q∑
a=1

{sa(X)Na + sa∗(X)Na∗},

∇XNa = −AaX +∇⊥XNa

= −AaX − sa(X)N +

q∑
b=1

{sab(X)Nb + sab∗(X)Nb∗},

Lemma 2.1. 

Ricci Solitons on CR-Submanifolds of Maximal CR Dimension of a Complex Space Form
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∇XNa∗ = −Aa∗X +∇⊥XNa∗

= −Aa∗X − sa∗(X)N +

q∑
b=1

{sa∗b(X)Nb + sa∗b∗(X)Nb∗},(2.11)

where A,Aa, Aa∗ are the shape operators for the normals N,Na, Na∗ , respectively,
and s,s are called the coefficients of the third fundamental form of M in M .

Therefore, taking the covariant derivative of Na∗ = JNa and using (2.4), (2.10),
(2.11) and JN = −ξ , we compute

Aa∗X = ϕAaX − sa(X)ξ,

AaX = −ϕAa∗X + sa∗(X)ξ,

sa∗(X) = η(AaX) = g(Aaξ,X),

sa(X) = −η(Aa∗X) = −g(Aa∗ξ,X),

sa∗b∗ = sab, sa∗b = −sab∗ .

for all X,Y ∈ TM and a, b = 1, ..., q. Further, since ϕ is skew-symmetric and
Aa, Aa∗ , a = 1, ..., q are symmetric, using relations (2.12) and (2.13), we compute

traceAa∗ =
n∑
i=1

g(Aa∗ei, ei) = sa(ξ),

traceAa = sa∗(ξ).

By the note the vector field N is parallel with respect to the normal connection
∇⊥, using Lemma 2.1 and relations (2.12)- (2.15), we conclude

Aaξ = 0, Aa∗ξ = 0,

AaX = −ϕAa∗X, Aa∗X = ϕAaX,

for all X ∈ TM and all a = 1, ..., q. Further, we differentiate (2.4) and JN = −ξ
covariantly and compare the tangential part and the normal part. Then we obtain

(∇Xϕ)Y = η(Y )AX − g(AY,X)ξ,

∇Xξ = ϕAX.

Then from (2.4), The Gauss equation are written as follow:

R(X,Y )Z = k{g(Y,Z)X − g(X,Z)Y

+ g(ϕY,Z)ϕX − g(ϕX,Z)ϕY − 2g(ϕX, Y )ϕZ}

+ g(AY,Z)AX − g(AX,Z)AY

+

q∑
a=1

{g(AaY,Z)AaX − g(AaX,Z)AaY

+ g(Aa∗Y,Z)Aa∗X − g(Aa∗X,Z)Aa∗Y },

by Lemma 2.1, the Codazzi equation become

(∇XA)Y − (∇YA)X = k{η(X)ϕY − η(Y )ϕX − 2g(ϕX, Y )ξ},

Ricci Solitons on CR-Submanifolds of Maximal CR Dimension of a Complex Space Form
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(2.11)

(2.12)

(2.13)

(2.14)

(2.15)

(2.16)

(2.17)

(2.18)

(2.19)

(2.20)

(2.21)

Notes



 
 

 
 

 
 
 
 
 
 
 
 
 
 

hence, by the relations (2.17), (2.18), Ricci tensor is obtained as

Ric(X,Y ) = k{(n+ 2)g(X,Y )− 3η(X)η(Y )}

+ (traceA)g(AX,Y )− g(AX,AY )

− 2

q∑
a=1

g(AaX,AaY ).

for any tangent vector fields X,Y, Z on M , where R and Ric are the curvature and
Ricci tensors of M , respectively.

Let Mn be a CR-submanifolds of maximal CR dimension of a complex space

form M
n+p
2 with the vector field N be parallel with respect to normal connction

∇⊥ such that the shape operator A for unit normal vector field N has only one
eigenvalue. Let {e1, ..., en−1, ξ} be a local orthonormal fram field such that D⊥ =
span{ξ} and D = span{e1, ..., em, em+1 = ϕe1, ..., e2m=n−1 = ϕem} such that
m = n−1

2 .

In [6], proved that

If the shape operator A with respect to unit normal vector field N

of Mn has only one eigenvalue, then M
n+p
2 is a complex Euclidean space.

According to the assumption, it follows that A = 0 or AX = αX for all X ∈
T (M) such that α 6= 0.

Let AX = αX, therefore by the relation (2.22), we obtain

Ric(ei, ej) = {(n− 1)α2}δij − 2

q∑
a=1

g(Aaei, Aaej), i, j = 1, ..., n− 1,

Ric(ξ, ξ) = (n− 1)α2,

Ric(ei, ξ) = 0, i = 1, ..., n− 1.

We consider CR-submanifolds of maximal CR dimension of a complex space form

C
n+p
2 satisfying Ricci soliton equation

1

2
LV g +Ric− λg = 0

with respect to potential vector field V on M for constant λ.
Putting

V := fξ, (f : M → R, f 6= 0)

Then definition of Lie derivative and second relation (2.19) imply

(Lfξg)(X,Y ) = df(X)η(Y ) + df(Y )η(X).

We compute

(Lfξg)(ξ, ξ) = 2df(ξ),

(Lfξg)(ξ, ei) = df(ei), (i = 1, ..., n− 1),

(Lfξg)(ei, ej) = 0 (i, j = 1, ..., n− 1).

Ricci Solitons on CR-Submanifolds of Maximal CR Dimension of a Complex Space Form

III. Ricci Soliton on CR Hypersurfaces

Theorem 3.1. 
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Using relations (3.1)-(3.3) and (3.7)-(3.9), Ricci soliton equation (3.4) is equivalent
to

df(ξ) = λ− (n− 1)α2,

df(ei) = 0, (i = 1, ..., n− 1),

{(n− 1)α2 − λ}δij − 2

q∑
a=1

g(Aaei, Aaej) = 0, (i, j = 1, ..., n− 1).

By the relation (3.12), for i = j we have λ = (n− 1)α2− 2
∑q
a=1 g(Aaei, Aaei) and

thus the following theorem holds:

Let Mn be a CR-submanifolds of maximal CR dimension of a

complex space form C
n+p
2 with AX = αX. Then a Ricci soliton (M, g, V, λ) with

potential field V := fξ is

(a) shrinking Ricci soliton if (n− 1)α2 > 2
∑q
a=1 g(Aaei, Aaei).

(b) expanding Ricci soliton if (n− 1)α2 < 2
∑q
a=1 g(Aaei, Aaei).

Now, let A = 0, using relation (2.22), it follows that

Ric(ei, ej) = −2

q∑
a=1

g(Aaei, Aaej), i, j = 1, ..., n− 1,

Ric(ξ, ξ) = 0,

Ric(ei, ξ) = 0, i = 1, ..., n− 1.

CR-submanifolds of maximal CR dimension Mn (n ≥ 3) is considered in a com-

plex space form C
n+p
2 satisfying Ricci soliton equation with potential vector field

fξ. From relations (3.13)-(3.15) and (3.7)-(3.9), Ricci soliton equation (3.4) is
equivalent to

df(ξ) = λ,

df(ei) = 0, (i = 1, ..., n− 1),

(−λ)δij − 2

q∑
a=1

g(Aaei, Aaej) = 0, (i, j = 1, ..., n− 1).

Using the relation (3.18), it follows λ = −2
∑q
a=1 g(Aaei, Aaei) and hence

Let Mn be a CR-submanifolds of maximal CR dimension of com-

plex space form C
n+p
2 with A = 0. Then a Ricci soliton (M, g, V, λ) with potential

field V := fξ is expanding Ricci soliton.

LetMn (n ≥ 3) is a CR-hypersurface in a complex space formM
n+1
2 . We assume

that the shape operator A with respect to N has exactly two distinct eigenvalues
α and β. The following lemma holds[6]

Let M
n+1
2 be a Kähler manifold of constant holomorphic sectional

curvature 4k, with k 6= 0. If the shape operator A has exactly two distinct eigenval-
ues, then ξ ia an eigenvector of A.

Ricci Solitons on CR-Submanifolds of Maximal CR Dimension of a Complex Space Form

Theorem 3.2. 

Theorem 3.3. 

Lemma 3.4. 
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(3.10)

(3.11)

(3.12)

(3.13)

(3.14)

(3.15)

(3.16)

(3.17)

(3.18)

Notes



 
 

 
 

 
 
 
 
 
 
 
 
 
 

By the lemma above, let Aξ = αξ. Differentiating Aξ = αξ covariantly and the
second relation (2.19) imply

(∇XA)ξ = αϕAX −AϕAX + (Xα)ξ

The Codazzi equation is obtained as

(∇ξA)X = kϕX + αϕAX −AϕAX + (Xα)ξ

Since ∇ξA is self-adjoint, we conclude the relation:

0 = −2g(AϕAX, Y ) + 2kg(ϕX, Y ) + αg((Aϕ+ ϕA)X,Y )

+ (Xα)η(Y )− (Y α)η(X)

Substituting Y for ξ in (3.19) and using of the fact that α is an eigenvalue of A,
it follow that (Xα) = η(X)ξα. Similarly by substituting X for ξ in (3.19), we get
(Y α) = η(Y )ξα. It follows

2AϕAX − 2kϕX = α(Aϕ+ ϕA)X

We assume that AX = βX for any vector field X ∈ D, ‖X‖ = 1. Then

AϕX =
(αβ + 2k)

(2β − α)
ϕX.

Therefore, ϕX is an eigenvector corresponding to the eigenvalue

γ =
(αβ + 2k)

(2β − α)

As A has exactly two distinct eigenvalues, we have the following three cases:

If α = β, we conclude that γ = (α2+2k)
(α) and traceA = nα2+k(n−1)

α .

Since the shape operator A is self-adjoint, for any X,Y ∈ D

αg(ϕX, Y ) = g(AX,ϕY ) = g(X,AϕY ) = γg(X,ϕY )

therefore, α = β = γ, which is a contradiction since the shape operator A with
respect to N has exactly two distinct eigenvalues.

Now, if γ = α, we conclude that αβ − α2 = 2k and traceA = n−1
2 β + n+1

2 α.

By the note the shape operator A is self-adjoint, we have

αg(X,ϕY ) = g(X,AϕY ) = g(AX,ϕY ) = βg(X,ϕY )

therefore, γ = α = β, which is a contradiction since the shape operator A with
respect to N has exactly two distinct eigenvalues. Thus the multiplicity of the
eigenvalue α corresponding to the eigenvector ξ is one.

Therefore, we suppose that the shape operator A has exactly two distinct eigen-
values, α, β = γ. Then it follows that β2 − αβ = k and Aϕ = ϕA and traceA =
α+ (n− 1)β.

Hence, by the relation (2.22), Ricci tensor related to a CR-hypersurface (Mn, g) is
written as

Ric(ei, ej) = {2kn+ (n− 1)β2}δij , (i, j = 1, ..., n− 1),

Ric(ξ, ξ) = (n− 1)(k + β2),

Ric(ei, ξ) = 0, (i = 1, ..., n− 1),

Ricci Solitons on CR-Submanifolds of Maximal CR Dimension of a Complex Space Form
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We consider a CR-hypersurface Mn (n ≥ 3) in complex space form M
n+1
2 (4k) that

satisfying Ricci soliton

1

2
LV g +Ric− λg = 0

with respect to potential vector field V on M for constant λ.
We put

V := fξ, (f : M → R, f 6= 0)

Definition of Lie derivative and the second relation (2.19) imply

(Lfξg)(X,Y ) = df(X)η(Y ) + df(Y )η(X).

We obtain

(Lfξg)(ξ, ξ) = 2df(ξ),

(Lfξg)(ξ, ei) = df(ei), (i = 1, ..., n− 1),

(LfUg)(ei, ej) = 0, (i, j = 1, ..., n− 1).

Using relations (3.25)-(3.27) and (3.31)-(3.33), Ricci soliton equation (3.28) follows

λ = 2kn+ (n− 1)β2,

df(ξ) = k(n+ 1),

df(ei) = 0, (i = 1, ..., n− 1),

Let M be a CR-hypersurface of complex space form M
n+1
2 (4k) .

If k > 0, then a Ricci soliton (M, g, V, λ) with potential field V := fξ is shrinking
Ricci soliton.

Let M be a CR-hypersurface of complex space form M
n+1
2 (4k) with

k < 0.

a) If |k| > (n−1)β2

2n . Then a Ricci soliton (M, g, V, λ) with potential field V := fξ is
expanding Ricci soliton.

b)If |k| < (n−1)β2

2n . Then a Ricci soliton (M, g, V, λ) with potential field V := fξ is
shrinking Ricci soliton.

Ricci Solitons on CR-Submanifolds of Maximal CR Dimension of a Complex Space Form

Theorem 3.5. 

Theorem 3.6. 
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