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[.  INTRODUCTION

A Ricci soliton is defined on a Riemannian manifold (M, g) by
1 .
iﬁvg + Ric—Ag=0

where Ly g is the Lie-derivative of the metric tensor g with respect to V and A is a
constant on M. The Ricci soliton is a natural generalization of an Einstein metric.
The Ricci soliton is said to be shrinking, steady and expanding according as A > 0,
A =0 and A < 0, respectively. Compact Ricci solitons are the fixed points of the
Ricci flow:

£9(t) = ~2Ric(g(1)

projected from the space of metrics onto its quotient modulo diffeomorphisms and
scalings and often arise as blow-up limits for the Ricci flow on compact manifolds.
We denote a Ricci soliton by (M, g,V;A) and call the vector field V' the potential
vector field of the Ricci soliton. A trivial Ricci soliton is one for which V is Killing
or zero. If its potential field V = V f such that f is some smooth function on M
then a Ricci soliton (M, g,V; ) is called a gradient Ricci soliton and the smooth
function f is called the potential function. It was proved by Grigory Perelman
in [13] that any compact Ricci soliton is the sum of a gradient of some smooth
function f up to the addition of a Killing field. Thus compact Ricci solitons are
gradient Ricci solitons. In particular, Perelman applied Ricci solitons to solve the
long standing Poincare conjecture posed in 1904.

(1.1)

(1.2)
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Hamilton[7] and Ivey [9] proved that a Ricci soliton on a compact manifold has
constant curvature in dimension 2 and 3, respectively. In [10], Ki proved that there
are no real hypersurfaces with parallel Ricci tensor in a complex space form Mn(c)
with ¢ # 0 when n > 3. Kim [11] proved that when n = 2, this is also true. In
particular, these results give that there is not any Einstein real hypersurfaces in a
non-flat complex space form.

In [2], Chen studied important results on Ricei solitons which occur obviously
on some Riemannian submanifolds. He presented several recent new criterions of
trivial compact shrinking Ricci solitons.

Cho and Kimura [3] studied on Ricci solitons of real hypersurfaces in a non-flat
complex space form and showed that a real hypersurface M in a non-flat complex
space form Mn(c # 0) does not admit a Ricci soliton such that the Reeb vector
field £ is potential vector field. They defined so called n-Ricci soliton, such that
satisfies

1
§£Vg+Ric—)\g—u77®77=0 (1.3)

where A, i are constants. They first proved that a real hypersurface M of a non-flat
complex space form M n(c) which accepts an 7-Ricci soliton is a Hopf-hypersurface
and classified that n-Ricci soliton real hypersurfaces in a non-flat complex space
form.

We study Ricci solitons on C'R-submanifolds of maximal C'R dimension M™ of a
complex space form C"3* such that the shape operator A has only one eigenvalue.
We prove that Ricci soliton on C'R-submanifolds of maximal C'R dimension M™
with eigenvalue zero is expanding and with eigenvalue nonzero is expanding and
shrinking.

Finally, we study Ricci solitons on CR-hypersurfaces M™ with exactly two dis-

Zng1
tinct eigenvalues of a complex space form M * (4k) and show that a Ricci soliton
(M,g,V,\) for k < 0 is shrinking and expanding and for k£ > 0 is shrinking.

[I. PRELIMINARIES

__nip
Let M * be a complex Kéhler manifold with the natural almost complex struc-
ntp

ture J. A Kihler manifold M ? is called a complex space form if it has constant
holomorphic sectional curvature. The Riemannian curvature tensor R of a complex
space form is given by

RIX,Y)Z = k{GY,2)X —3(X,2)Y
+ gV, 2)JX —g(JX,2)JY —29(JX,Y)JZ}.  (2.1)

A CR-submanifold is a submanifold M" tangent to £ that admits an invariant distri-
bution D whose orthogonal complementary distribution D is anti-invariant, that
is, TM = D ® D+ with condition p(D,) C D, for all p € M and @(Dy) C T;-M
for all p € M, where D = span{ X1, ..., X;m, X1, ..., X} and D+ = span{¢} such

that m = ”51.

Therefore, there exists a vector subbundles anti-invariant v and J-invariant v+ of
the normal bundle such that

Jv, C T, M,
Jvy Cuy, (2.2)

for p € M, where v+ = span{Ny, ..., Ny, N1= = JN1, ... Ny» = JN,},q = ”2;1 and
v=span{N} and T*M =v o vt.
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Notes

__nip
If M™ is an C R-submanifolds of maximal C'R dimension of M * , then at each

point p € M, the real dimension of JT,,(M)NT,(M)=n—1.

Let V and V are the Riemannian connections of M and M, respectively and V+
is the normal connection induced from V in the normal bundle 7+ (M).
Let M™ be a C' R-submanifolds of maximal C'R dimension of a complex space form

___ntp
M * with constant holomorphic sectional curvature 4k and the normal vector

field N be parallel with respect to normal connction V. We can write

V_%(N = Z{Sa(X)Na + Sa= (X)No~} (23)

by the relation 2.3, we have the following lemma

Lemma 2.1. [6] for a CR- submanifold of mazimal CR dimension, the vector field
N is parallel with respect to the normal connection V*, if and only if s = 54+ = 0
fora=1,..,q.

We define a metric g on C'R-submanifolds M"™ of maximal C'R dimension by

g(Xv Y) = g(LXv LY)a

for any X,Y € TM. The Riemannian metric g is said the induced metric from g
n Hn+1(4k) and the ¢ is called an isometric immersion.

For any vector field X € x(M) the decomposition holds:
JX = pX +n(X)N (2.4)

where, ¢ is an endomorphism acting on T (M) and 7 is one-form on M and N is a
unit normal vector field on M™ such that JN = —¢£. The structure (¢,7,£,¢) is an
almost contact metric structure on M™ such that

P=—ldrné  n@=1 ¢=0,  pop=0.  (2.5)
and
9(pX, pX) = g(X,Y) = n(X)n(Y), n(X) = g(X,¢). (2.6)
Now, the Gauss formula are given by
VxY =VxY +h(X,Y), (2.1)
for any X,Y € x(M). Where, the h is the second fundamental form such that

h(X,Y) = g(AX,Y)N
+ > {9(AaX,Y)Ny + g(Aa X, Y)Ny- }. (2.8)

a=1

Moreover, the Weingarten formulae can be written as follows

VxN = —AX+VxN
q
= —AX Y {5a(X)Na + 50 (X)Na }, (2.9)
a=1
VxN, = —AX+V%N,

—AaX = $a(X)N + > {sab(X)Ny + sap- (X)Np-}, - (2.10)
b=1
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VxNow = —ApX +VyNge

(2.11)

q
—Ag X = 50 (X)N + > {504 (X)Np + saepr (X)Nye b, (2.11)
b=1

where A, A,, Ag~ are the shape operators for the normals NV, Ny, Ny«, respectively,
and s’s are called the coefficients of the third fundamental form of M in M.

Therefore, taking the covariant derivative of N« = JN, and using (2.4), (2.10),

(2.11) and JN = —¢ , we compute
Apr X = pA X — 54(X)E,
AgX = —pApr X + 80+ (X)E,
Sa+ (X) = n(4aX) = g(Aa&, X),
sa(X) = —n(Aa- X) = —g(4a-¢, X),

Sa*b* = Sab, Sa*b = —Sab*-

2.12

N
—_

3

N
—_

[\]
—

15
2.

)
)
4)
)
16)

(
(
(
(
(

for all XY € TM and a,b = 1,...,q. Further, since ¢ is skew-symmetric and
Ag, Agr,a =1,...,q are symmetric, using relations (2.12) and (2.13), we compute

traceAg g~ = Zg(Aa*ei, ei) = 8a(§),
i=1

traceA, = sq+(£).

(2.17)

By the note the vector field N is parallel with respect to the normal connection

V4, using Lemma 2.1 and relations (2.12)- (2.15), we conclude
Ak =0, Ai£=0,

AaX = —@Aa*X, Aa*X = QOAaX,

(2.18)

for all X € TM and all a = 1, ...,q. Further, we differentiate (2.4) and JN = —¢
covariantly and compare the tangential part and the normal part. Then we obtain

(Vxp)Y =n(Y)AX — g(AY, X)¢,
Vx€=pAX.

Then from (2.4), The Gauss equation are written as follow:

+ 9(@Y, Z)pX — g(¢X, Z)pY —29(pX,Y)pZ}
+ g(AY, 2)AX — g(AX, Z)AY

q
+ Y oA, 2)AuX — g(AuX, Z)AY

a=1
+ gAY, Z) A0 X — g(Ae- X, Z)Ap- Y},

by Lemma 2.1, the Codazzi equation become

(VxA)Y — (Vy A)X = k{n(X)pY —n(Y)pX —29(pX,Y)E},

© 2017 Global Journals Inc. (US)
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hence, by the relations (2.17), (2.18), Ricci tensor is obtained as
Ric(X,Y) = k{(n+2)g(X,Y) = 3n(X)n(Y)}

+ (traceA)g(AX,Y) —g(AX, AY)

q

- 2 Z g(A. X, AY). (2.22)

a=1

for any tangent vector fields X,Y, Z on M, where R and Ric are the curvature and
Ricci tensors of M, respectively.

I11. Riccr SoritoN oN CR HYPERSURFACES

Let M™ be a C R-submanifolds of maximal C'R dimension of a complex space
__nip
form M * with the vector field N be parallel with respect to normal connction
V+ such that the shape operator A for unit normal vector field N has only one
eigenvalue. Let {e1,...,e,_1,£} be a local orthonormal fram field such that D+ =
spcm{f}1 and D = span{ei,...,em,€mt1 = QE1,...,Come=n—1 = @ep} such that
P

m:T.

In [6], proved that

Theorem 3.1. If the shape operator A with respect to unit normal vector field N
—__ntp
of M™ has only one eigenvalue, then M * is a complex Euclidean space.

According to the assumption, it follows that A = 0 or AX = aX for all X €
T (M) such that « # 0.
Let AX = aX, therefore by the relation (2.22), we obtain

a
Ric(e;,e;) = {(n — 1)a?}d;; — ZZg(Aaei,Aaej), ,j=1,..,n—1, (3.1)

a=1
Ric(&,€) = (n —1)a?, (3.2)
Ric(e;, &) =0, i=1,...,n—1 (3,3)

We consider C'R-submanifolds of maximal C'R dimension of a complex space form
c** satisfying Ricci soliton equation

%Evg—i-Ric— Ag =0 (3'4)
with respect to potential vector field V on M for constant A.
Putting
V= f€, (f: M =R, f+#0) (3.5)
Then definition of Lie derivative and second relation (2.19) imply
(L1eg)(X,Y) = df (X)n(Y) + df (Y )n(X). (3.6)
We compute
(L1eg)(€.€) = 2df(€), (3.7)
(Lreg)(§sei) = df (es), (i=1,..,n-1), (3.8)
(Lseg)(eise;) =0 (i,j=1,..,n—1). (3.9)
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Using relations (3.1)-(3.3) and (3.7)-(3.9), Ricci soliton equation (3.4) is equivalent
to

df(€) =X — (n—1)a?, (3.10)

df (e;) =0, (i=1,..n—1), (3.11)

q
{(n—1)a® = \}6;; =2 g(Aaei, Auej) =0, (,j=1,..,n—1). (3.12)

a=1

By the relation (3.12), for i = j we have A = (n—1)a? =23 _, g(Aqe;, Aqe;) and
thus the following theorem holds:

Theorem 3.2. Let M™ be a CR-submanifolds of mazimal CR dimension of a
complex space form C"3* with AX = aX. Then a Ricci soliton (M, g,V,\) with
potential field V := f€ is

(a) shrinking Ricci soliton if (n — 1)a? >23"9_ g(Ae;, Ages).
(b) expanding Ricci soliton if (n — 1)a? <237 _, g(Aqeq, Ages).
Now, let A = 0, using relation (2.22), it follows that
q
Ric(ei,e;) = =2 g(Aaei, Aaej), i,j=1,..,n—1,  (3.13)
a=1

Ric(€,6) =0, (3.14)

Ric(e;, &) =0, i=1,..,n—1. (3.15)

CR-submanifolds of maximal CR dimension M™ (n > 3) is considered in a com-

plex space form c " satisfying Ricci soliton equation with potential vector field
f€. From relations (3.13)-(3.15) and (3.7)-(3.9), Ricci soliton equation (3.4) is
equivalent to

df (§) = A, (3.16)
df (e;) =0, (i=1,...,n-1), (3.17)
(=\)dij — 2§q:g(Aan-, Auej) =0,(i,5=1,...,n—1). (3.18)

a=1
Using the relation (3.18), it follows A = —23>"?_ g(A,e;, Aqe;) and hence

Theorem 3.3. Let M™ be a CR-submanifolds of mazimal CR dimension of com-
plex space form C™#* with A = 0. Then a Ricci soliton (M, g,V,\) with potential
field V := f€ is expanding Ricci soliton.

n+1

Let M™ (n > 3) is a C R-hypersurface in a complex space form M ? . We assume

that the shape operator A with respect to N has exactly two distinct eigenvalues
a and . The following lemma holds|6]

___ntl
Lemma 3.4. Let M > be a Kdhler manifold of constant holomorphic sectional
curvature 4k, with k # 0. If the shape operator A has exactly two distinct eigenval-
ues, then & ia an eigenvector of A.

© 2017 Global Journals Inc. (US)
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By the lemma above, let A( = a. Differentiating A{ = af covariantly and the
second relation (2.19) imply

(VxA) = apAX — ApAX + (Xa)¢
The Codazzi equation is obtained as
(VeAX = kpX +apAX — ApAX + (Xa)
Since V¢A is self-adjoint, we conclude the relation:
0 = —29(ApAX)Y) + 2kg(pX,Y) 4+ ag((Ap + pA)X,Y)
+ (Xa)n(Y) - (Ya)n(X) (3.19)

Substituting Y for £ in (3.19) and using of the fact that « is an eigenvalue of A,
it follow that (X«a) = n(X)&a. Similarly by substituting X for £ in (3.19), we get
(Ya) =n(Y)Ea. It follows

24pAX — 2koX = a(Ap + pA)X (3.20)
We assume that AX = X for any vector field X € D, || X|| = 1. Then

_ (af +2k)
ApX = mg@X. (3.21)

Therefore, ¢ X is an eigenvector corresponding to the eigenvalue

_ M (3.22)

As A has exactly two distinct eigenvalues, we have the following three cases:

If @ = B, we conclude that v = (O‘Q(QL)%) and traceA = W

Since the shape operator A is self-adjoint, for any XY € D

ag(pX,Y) = g(AX,¢Y) = g(X, ApY) = v9(X,¢Y) (3.23)

therefore, « = = +, which is a contradiction since the shape operator A with
respect to N has exactly two distinct eigenvalues.

Now, if ¥ = a, we conclude that aff — a? = 2k and traceA = ”Tflﬂ + ”%rloz.

By the note the shape operator A is self-adjoint, we have
ag(X,¢Y) = g(X, ApY) = g(AX,9Y) = Bg(X,¢Y) (3.24)

therefore, v = a = [, which is a contradiction since the shape operator A with
respect to N has exactly two distinct eigenvalues. Thus the multiplicity of the
eigenvalue a corresponding to the eigenvector ¢ is one.

Therefore, we suppose that the shape operator A has exactly two distinct eigen-
values, o, 8 = . Then it follows that 32 — af = k and Ap = @A and traceA =
a+(n—1)p.

Hence, by the relation (2.22), Ricci tensor related to a C R-hypersurface (M", g) is
written as

Ric(ei,e;) = {2kn + (n — 1)3*}6;5,  (i,j=1,...,n— 1), (3.25)
Ric(fv g) = (n - 1)(k + 62>7 (326)
Ric(e;, &) =0, (i=1,..,n—1), (3.27)
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—_

n+1

We consider a C'R-hypersurface M™ (n > 3) in complex space form M ? (4k) that
satisfying Ricci soliton

%Cvg—i—Ric— Ag=0 (3.28)
with respect to potential vector field V' on M for constant .
We put
V= £, (f: M =R, f+#£0) (3.29)
Definition of Lie derivative and the second relation (2.19) imply
(Lseg)(X,Y) =df (X)n(Y) + df (Y)n(X). (3.30)
We obtain
(L1eg)(€,€) = 2df(©), (3.31)
(Lreg)(§,€i) = df (e:), (i=1,.,n-1), (3.32)
(Lrug)(ei e;) =0, (G,j=1,..,n—1). (3.33)
Using relations (3.25)-(3.27) and (3.31)-(3.33), Ricci soliton equation (3.28) follows
A=2kn+ (n—1)8% (3.34)
df (&) = k(n + 1), (3.35)
df (e;) =0, (i=1,..,n—1), (3.36)

Theorem 3.5. Let M be a CR-hypersurface of complex space form M * (4k) .
If k > 0, then a Ricci soliton (M, g, V, X) with potential field V := f& is shrinking
Ricci soliton.

___ntl
Theorem 3.6. Let M be a CR-hypersurface of complex space form M 2 (4k) with
k <0.

a) If |k| > (DB Then g Ricei soliton (M, g,V, \) with potential field V := f€ is

2n
expanding Ricci soliton.

b)If |k| < % Then a Ricci soliton (M, g, V,\) with potential field V := f€ is
shrinking Ricci soliton.
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