

Ricci Solitons on *CR*-Submanifolds of Maximal *CR* Dimension of a Complex Space Form

By Z. Nazari & E. Abedi

Azarbajian shahid madani University

Abstract- We study Ricci solitons on CR-submanifolds of maximal CR dimension M^n of a complex space form $\mathbb{C}^{\frac{n+p}{2}}$ such that the shape operator A has only one eigenvalue. We prove that Ricci soliton on CR-submanifolds of maximal CR dimension M^n with eigenvalue zero is expanding and with eigen-value nonzero is expanding and shrinking.

Finally, we study Ricci soliton on CR-hypersurfaces M^n of a complex space form $\mathbb{M}^{\frac{n+1}{2}}$ ($4k$) such that the shape operator A has exactly two distinct eigen-values and show that a Ricci soliton (M, g, V, λ) for $k < 0$ is shrinking and expanding and for $k > 0$ is shrinking.

Keywords: Ricci soliton, complex space form, CR-submanifolds of maximal CR dimension.

GJSFR-F Classification: MSC 2010: 53C25, 53C15, 53C40.

RICCI SOLITONS ON CR SUBMANIFOLDS OF MAXIMAL CR DIMENSION OF A COMPLEX SPACE FORM

Strictly as per the compliance and regulations of:

RESEARCH | DIVERSITY | ETHICS

Ricci Solitons on CR-Submanifolds of Maximal CR Dimension of a Complex Space Form

Z. Nazari ^a & E. Abedi ^a

Abstract- We study Ricci solitons on CR-submanifolds of maximal CR dimension M^n of a complex space form $\mathbb{C}^{\frac{n+p}{2}}$ such that the shape operator A has only one eigenvalue. We prove that Ricci soliton on CR-submanifolds of maximal CR dimension M^n with eigenvalue zero is expanding and with eigenvalue nonzero is shrinking.

Finally, we study Ricci soliton on CR-hypersurfaces M^n of a complex space form $\mathbb{C}^{\frac{n+1}{2}}$ (4k) such that the shape operator A has exactly two distinct eigen-values and show that a Ricci soliton (M, g, V, λ) for $k < 0$ is shrinking and expanding and for $k > 0$ is shrinking.

Keywords: Ricci soliton, complex space form, CR-submanifolds of maximal CR dimension.

I. INTRODUCTION

A Ricci soliton is defined on a Riemannian manifold (M, g) by

$$\frac{1}{2}\mathcal{L}_V g + Ric - \lambda g = 0 \quad (1.1)$$

where $\mathcal{L}_V g$ is the Lie-derivative of the metric tensor g with respect to V and λ is a constant on M . The Ricci soliton is a natural generalization of an Einstein metric. The Ricci soliton is said to be shrinking, steady and expanding according as $\lambda > 0$, $\lambda = 0$ and $\lambda < 0$, respectively. Compact Ricci solitons are the fixed points of the Ricci flow:

$$\frac{\partial}{\partial t} g(t) = -2Ric(g(t)) \quad (1.2)$$

projected from the space of metrics onto its quotient modulo diffeomorphisms and scalings and often arise as blow-up limits for the Ricci flow on compact manifolds. We denote a Ricci soliton by $(M, g, V; \lambda)$ and call the vector field V the potential vector field of the Ricci soliton. A trivial Ricci soliton is one for which V is Killing or zero. If its potential field $V = \nabla f$ such that f is some smooth function on M then a Ricci soliton $(M, g, V; \lambda)$ is called a gradient Ricci soliton and the smooth function f is called the potential function. It was proved by Grigory Perelman in [13] that any compact Ricci soliton is the sum of a gradient of some smooth function f up to the addition of a Killing field. Thus compact Ricci solitons are gradient Ricci solitons. In particular, Perelman applied Ricci solitons to solve the long standing Poincare conjecture posed in 1904.

Author: Department of Mathematics, Azarbaijan shahid madani University, Tabriz 53751 71379, Iran. e-mails: esabedi@azaruniv.edu, z.nazari@azaruniv.edu

Hamilton[7] and Ivey [9] proved that a Ricci soliton on a compact manifold has constant curvature in dimension 2 and 3, respectively. In [10], Ki proved that there are no real hypersurfaces with parallel Ricci tensor in a complex space form $\overline{M}^n(c)$ with $c \neq 0$ when $n \geq 3$. Kim [11] proved that when $n = 2$, this is also true. In particular, these results give that there is not any Einstein real hypersurfaces in a non-flat complex space form.

In [2], Chen studied important results on Ricci solitons which occur obviously on some Riemannian submanifolds. He presented several recent new criterions of trivial compact shrinking Ricci solitons.

Cho and Kimura [3] studied on Ricci solitons of real hypersurfaces in a non-flat complex space form and showed that a real hypersurface M in a non-flat complex space form $\overline{M}^n(c \neq 0)$ does not admit a Ricci soliton such that the Reeb vector field ξ is potential vector field. They defined so called η -Ricci soliton, such that satisfies

$$\frac{1}{2}\mathcal{L}_V g + Ric - \lambda g - \mu\eta \otimes \eta = 0 \quad (1.3)$$

where λ, μ are constants. They first proved that a real hypersurface M of a non-flat complex space form $\overline{M}^n(c)$ which accepts an η -Ricci soliton is a Hopf-hypersurface and classified that η -Ricci soliton real hypersurfaces in a non-flat complex space form.

We study Ricci solitons on CR -submanifolds of maximal CR dimension M^n of a complex space form $\mathbb{C}^{\frac{n+p}{2}}$ such that the shape operator A has only one eigenvalue. We prove that Ricci soliton on CR -submanifolds of maximal CR dimension M^n with eigenvalue zero is expanding and with eigenvalue nonzero is expanding and shrinking.

Finally, we study Ricci solitons on CR -hypersurfaces M^n with exactly two distinct eigenvalues of a complex space form $\overline{M}^{\frac{n+1}{2}}(4k)$ and show that a Ricci soliton (M, g, V, λ) for $k < 0$ is shrinking and expanding and for $k > 0$ is shrinking.

II. PRELIMINARIES

Let $\overline{M}^{\frac{n+p}{2}}$ be a complex Kähler manifold with the natural almost complex structure J . A Kähler manifold $\overline{M}^{\frac{n+p}{2}}$ is called a complex space form if it has constant holomorphic sectional curvature. The Riemannian curvature tensor \overline{R} of a complex space form is given by

$$\begin{aligned} \overline{R}(X, Y)Z &= k\{\overline{g}(Y, Z)X - \overline{g}(X, Z)Y \\ &+ \overline{g}(JY, Z)JX - \overline{g}(JX, Z)JY - 2\overline{g}(JX, Y)JZ\}. \end{aligned} \quad (2.1)$$

A CR -submanifold is a submanifold M^n tangent to ξ that admits an invariant distribution D whose orthogonal complementary distribution D^\perp is anti-invariant, that is, $TM = D \oplus D^\perp$ with condition $\varphi(D_p) \subset D_p$ for all $p \in M$ and $\varphi(D_p^\perp) \subset T_p^\perp M$ for all $p \in M$, where $D = \text{span}\{X_1, \dots, X_m, \varphi X_1, \dots, \varphi X_m\}$ and $D^\perp = \text{span}\{\xi\}$ such that $m = \frac{n-1}{2}$.

Therefore, there exists a vector subbundles anti-invariant ν and J -invariant ν^\perp of the normal bundle such that

$$\begin{aligned} J\nu_p &\subset T_p M, \\ J\nu_p^\perp &\subset \nu_p^\perp, \end{aligned} \quad (2.2)$$

for $p \in M$, where $\nu^\perp = \text{span}\{N_1, \dots, N_q, N_1^* = JN_1, \dots, N_q^* = JN_q\}$, $q = \frac{p-1}{2}$ and $\nu = \text{span}\{N\}$ and $T^\perp M = \nu \oplus \nu^\perp$.

Ref

11. U. K. Kim, *Nonexistence of Ricci-parallel real hypersurfaces in P_2C or H_2C* , Bull. Korean Math. Soc. 41 (2004), 699708.

If M^n is an CR -submanifolds of maximal CR dimension of $\overline{M}^{\frac{n+p}{2}}$, then at each point $p \in M$, the real dimension of $JT_p(M) \cap T_p(M) = n - 1$.

Let $\overline{\nabla}$ and ∇ are the Riemannian connections of \overline{M} and M , respectively and ∇^\perp is the normal connection induced from $\overline{\nabla}$ in the normal bundle $T^\perp(M)$.

Let M^n be a CR -submanifolds of maximal CR dimension of a complex space form $\overline{M}^{\frac{n+p}{2}}$ with constant holomorphic sectional curvature $4k$ and the normal vector field N be parallel with respect to normal connection ∇^\perp . We can write

$$\nabla_X^\perp N = \sum_{a=1}^q \{s_a(X)N_a + s_{a^*}(X)N_{a^*}\} \quad (2.3)$$

by the relation 2.3, we have the following lemma

Lemma 2.1. [6] for a CR -submanifold of maximal CR dimension, the vector field N is parallel with respect to the normal connection ∇^\perp , if and only if $s_a = s_{a^*} = 0$ for $a = 1, \dots, q$.

We define a metric g on CR -submanifolds M^n of maximal CR dimension by

$$g(X, Y) = \overline{g}(\iota X, \iota Y),$$

for any $X, Y \in TM$. The Riemannian metric g is said the induced metric from \overline{g} on $\overline{M}^{n+1}(4k)$ and the ι is called an isometric immersion.

For any vector field $X \in \chi(M)$ the decomposition holds:

$$JX = \varphi X + \eta(X)N \quad (2.4)$$

where, φ is an endomorphism acting on $T(M)$ and η is one-form on M and N is a unit normal vector field on M^n such that $JN = -\xi$. The structure (φ, η, ξ, g) is an almost contact metric structure on M^n such that

$$\varphi^2 = -Id + \eta \otimes \xi, \quad \eta(\xi) = 1, \quad \varphi\xi = 0, \quad \eta\circ\varphi = 0. \quad (2.5)$$

and

$$\overline{g}(\varphi X, \varphi X) = \overline{g}(X, Y) - \eta(X)\eta(Y), \quad \eta(X) = \overline{g}(X, \xi). \quad (2.6)$$

Now, the Gauss formula are given by

$$\overline{\nabla}_X Y = \nabla_X Y + h(X, Y), \quad (2.1)$$

for any $X, Y \in \chi(M)$. Where, the h is the second fundamental form such that

$$\begin{aligned} h(X, Y) &= g(AX, Y)N \\ &+ \sum_{a=1}^q \{g(A_a X, Y)N_a + g(A_{a^*} X, Y)N_{a^*}\}. \end{aligned} \quad (2.8)$$

Moreover, the Weingarten formulae can be written as follows

$$\begin{aligned} \overline{\nabla}_X N &= -AX + \nabla_X^\perp N \\ &= -AX + \sum_{a=1}^q \{s_a(X)N_a + s_{a^*}(X)N_{a^*}\}, \end{aligned} \quad (2.9)$$

$$\begin{aligned} \overline{\nabla}_X N_a &= -A_a X + \nabla_X^\perp N_a \\ &= -A_a X - s_a(X)N + \sum_{b=1}^q \{s_{ab}(X)N_b + s_{ab^*}(X)N_{b^*}\}, \end{aligned} \quad (2.10)$$

$$\begin{aligned}
\bar{\nabla}_X N_{a^*} &= -A_{a^*} X + \nabla_X^\perp N_{a^*} \\
(2.11) \quad &= -A_{a^*} X - s_{a^*}(X)N + \sum_{b=1}^q \{s_{a^*b}(X)N_b + s_{a^*b^*}(X)N_{b^*}\}, \quad (2.11)
\end{aligned}$$

where A, A_a, A_{a^*} are the shape operators for the normals N, N_a, N_{a^*} , respectively, and s 's are called the coefficients of the third fundamental form of M in \bar{M} .

Therefore, taking the covariant derivative of $N_{a^*} = JN_a$ and using (2.4), (2.10), (2.11) and $JN = -\xi$, we compute

$$A_{a^*} X = \varphi A_a X - s_a(X)\xi, \quad (2.12)$$

$$A_a X = -\varphi A_{a^*} X + s_{a^*}(X)\xi, \quad (2.13)$$

$$s_{a^*}(X) = \eta(A_a X) = g(A_a \xi, X), \quad (2.14)$$

$$s_a(X) = -\eta(A_{a^*} X) = -g(A_{a^*} \xi, X), \quad (2.15)$$

$$s_{a^*b^*} = s_{ab}, \quad s_{a^*b} = -s_{ab^*}. \quad (2.16)$$

Notes

for all $X, Y \in TM$ and $a, b = 1, \dots, q$. Further, since φ is skew-symmetric and $A_a, A_{a^*}, a = 1, \dots, q$ are symmetric, using relations (2.12) and (2.13), we compute

$$\begin{aligned}
\text{trace} A_{a^*} &= \sum_{i=1}^n g(A_{a^*} e_i, e_i) = s_a(\xi), \\
\text{trace} A_a &= s_{a^*}(\xi). \quad (2.17)
\end{aligned}$$

By the note the vector field N is parallel with respect to the normal connection ∇^\perp , using Lemma 2.1 and relations (2.12)- (2.15), we conclude

$$\begin{aligned}
A_a \xi &= 0, \quad A_{a^*} \xi = 0, \\
A_a X &= -\varphi A_{a^*} X, \quad A_{a^*} X = \varphi A_a X, \quad (2.18)
\end{aligned}$$

for all $X \in TM$ and all $a = 1, \dots, q$. Further, we differentiate (2.4) and $JN = -\xi$ covariantly and compare the tangential part and the normal part. Then we obtain

$$\begin{aligned}
(\nabla_X \varphi)Y &= \eta(Y)AX - g(AY, X)\xi, \\
\nabla_X \xi &= \varphi AX. \quad (2.19)
\end{aligned}$$

Then from (2.4), The Gauss equation are written as follow:

$$\begin{aligned}
R(X, Y)Z &= k\{g(Y, Z)X - g(X, Z)Y \\
&+ g(\varphi Y, Z)\varphi X - g(\varphi X, Z)\varphi Y - 2g(\varphi X, Y)\varphi Z\} \\
&+ g(AY, Z)AX - g(AX, Z)AY \\
&+ \sum_{a=1}^q \{g(A_a Y, Z)A_a X - g(A_a X, Z)A_a Y \\
&+ g(A_{a^*} Y, Z)A_{a^*} X - g(A_{a^*} X, Z)A_{a^*} Y\}, \quad (2.20)
\end{aligned}$$

by Lemma 2.1, the Codazzi equation become

$$(\nabla_X A)Y - (\nabla_Y A)X = k\{\eta(X)\varphi Y - \eta(Y)\varphi X - 2g(\varphi X, Y)\xi\}, \quad (2.21)$$

hence, by the relations (2.17), (2.18), Ricci tensor is obtained as

$$\begin{aligned}
 Ric(X, Y) &= k\{(n+2)g(X, Y) - 3\eta(X)\eta(Y)\} \\
 &+ (trace A)g(AX, Y) - g(AX, AY) \\
 &- 2 \sum_{a=1}^q g(A_a X, A_a Y).
 \end{aligned} \tag{2.22}$$

for any tangent vector fields X, Y, Z on M , where R and Ric are the curvature and Ricci tensors of M , respectively.

III. RICCI SOLITON ON CR HYPERSURFACES

Let M^n be a CR -submanifolds of maximal CR dimension of a complex space form $\overline{M}^{\frac{n+p}{2}}$ with the vector field N be parallel with respect to normal connection ∇^\perp such that the shape operator A for unit normal vector field N has only one eigenvalue. Let $\{e_1, \dots, e_{n-1}, \xi\}$ be a local orthonormal fram field such that $D^\perp = \text{span}\{\xi\}$ and $D = \text{span}\{e_1, \dots, e_m, e_{m+1} = \varphi e_1, \dots, e_{2m=n-1} = \varphi e_m\}$ such that $m = \frac{n-1}{2}$.

In [6], proved that

Theorem 3.1. *If the shape operator A with respect to unit normal vector field N of M^n has only one eigenvalue, then $\overline{M}^{\frac{n+p}{2}}$ is a complex Euclidean space.*

According to the assumption, it follows that $A = 0$ or $AX = \alpha X$ for all $X \in T(M)$ such that $\alpha \neq 0$.

Let $AX = \alpha X$, therefore by the relation (2.22), we obtain

$$Ric(e_i, e_j) = \{(n-1)\alpha^2\}\delta_{ij} - 2 \sum_{a=1}^q g(A_a e_i, A_a e_j), \quad i, j = 1, \dots, n-1, \tag{3.1}$$

$$Ric(\xi, \xi) = (n-1)\alpha^2, \tag{3.2}$$

$$Ric(e_i, \xi) = 0, \quad i = 1, \dots, n-1. \tag{3.3}$$

We consider CR -submanifolds of maximal CR dimension of a complex space form $\mathbb{C}^{\frac{n+p}{2}}$ satisfying Ricci soliton equation

$$\frac{1}{2}\mathcal{L}_V g + Ric - \lambda g = 0 \tag{3.4}$$

with respect to potential vector field V on M for constant λ .

Putting

$$V := f\xi, \quad (f : M \rightarrow \mathbb{R}, f \neq 0) \tag{3.5}$$

Then definition of Lie derivative and second relation (2.19) imply

$$(\mathcal{L}_{f\xi} g)(X, Y) = df(X)\eta(Y) + df(Y)\eta(X). \tag{3.6}$$

We compute

$$(\mathcal{L}_{f\xi} g)(\xi, \xi) = 2df(\xi), \tag{3.7}$$

$$(\mathcal{L}_{f\xi} g)(\xi, e_i) = df(e_i), \quad (i = 1, \dots, n-1), \tag{3.8}$$

$$(\mathcal{L}_{f\xi} g)(e_i, e_j) = 0 \quad (i, j = 1, \dots, n-1). \tag{3.9}$$

Using relations (3.1)-(3.3) and (3.7)-(3.9), Ricci soliton equation (3.4) is equivalent to

$$df(\xi) = \lambda - (n-1)\alpha^2, \quad (3.10)$$

$$df(e_i) = 0, \quad (i = 1, \dots, n-1), \quad (3.11)$$

$$\{(n-1)\alpha^2 - \lambda\}\delta_{ij} - 2 \sum_{a=1}^q g(A_a e_i, A_a e_j) = 0, \quad (i, j = 1, \dots, n-1). \quad (3.12)$$

By the relation (3.12), for $i = j$ we have $\lambda = (n-1)\alpha^2 - 2 \sum_{a=1}^q g(A_a e_i, A_a e_i)$ and thus the following theorem holds:

Theorem 3.2. *Let M^n be a CR-submanifolds of maximal CR dimension of a complex space form $\mathbb{C}^{\frac{n+p}{2}}$ with $AX = \alpha X$. Then a Ricci soliton (M, g, V, λ) with potential field $V := f\xi$ is*

(a) *shrinking Ricci soliton if $(n-1)\alpha^2 > 2 \sum_{a=1}^q g(A_a e_i, A_a e_i)$.*

(b) *expanding Ricci soliton if $(n-1)\alpha^2 < 2 \sum_{a=1}^q g(A_a e_i, A_a e_i)$.*

Now, let $A = 0$, using relation (2.22), it follows that

$$Ric(e_i, e_j) = -2 \sum_{a=1}^q g(A_a e_i, A_a e_j), \quad i, j = 1, \dots, n-1, \quad (3.13)$$

$$Ric(\xi, \xi) = 0, \quad (3.14)$$

$$Ric(e_i, \xi) = 0, \quad i = 1, \dots, n-1. \quad (3.15)$$

CR-submanifolds of maximal CR dimension M^n ($n \geq 3$) is considered in a complex space form $\mathbb{C}^{\frac{n+p}{2}}$ satisfying Ricci soliton equation with potential vector field $f\xi$. From relations (3.13)-(3.15) and (3.7)-(3.9), Ricci soliton equation (3.4) is equivalent to

$$df(\xi) = \lambda, \quad (3.16)$$

$$df(e_i) = 0, \quad (i = 1, \dots, n-1), \quad (3.17)$$

$$(-\lambda)\delta_{ij} - 2 \sum_{a=1}^q g(A_a e_i, A_a e_j) = 0, \quad (i, j = 1, \dots, n-1). \quad (3.18)$$

Using the relation (3.18), it follows $\lambda = -2 \sum_{a=1}^q g(A_a e_i, A_a e_i)$ and hence

Theorem 3.3. *Let M^n be a CR-submanifolds of maximal CR dimension of complex space form $\mathbb{C}^{\frac{n+p}{2}}$ with $A = 0$. Then a Ricci soliton (M, g, V, λ) with potential field $V := f\xi$ is expanding Ricci soliton.*

Let M^n ($n \geq 3$) is a CR-hypersurface in a complex space form $\overline{M}^{\frac{n+1}{2}}$. We assume that the shape operator A with respect to N has exactly two distinct eigenvalues α and β . The following lemma holds[6]

Lemma 3.4. *Let $\overline{M}^{\frac{n+1}{2}}$ be a Kähler manifold of constant holomorphic sectional curvature $4k$, with $k \neq 0$. If the shape operator A has exactly two distinct eigenvalues, then ξ ia an eigenvector of A .*

By the lemma above, let $A\xi = \alpha\xi$. Differentiating $A\xi = \alpha\xi$ covariantly and the second relation (2.19) imply

$$(\nabla_X A)\xi = \alpha\varphi AX - A\varphi AX + (X\alpha)\xi$$

The Codazzi equation is obtained as

$$(\nabla_\xi A)X = k\varphi X + \alpha\varphi AX - A\varphi AX + (X\alpha)\xi$$

Since $\nabla_\xi A$ is self-adjoint, we conclude the relation:

$$\begin{aligned} 0 &= -2g(A\varphi AX, Y) + 2kg(\varphi X, Y) + \alpha g((A\varphi + \varphi A)X, Y) \\ &\quad + (X\alpha)\eta(Y) - (Y\alpha)\eta(X) \end{aligned} \quad (3.19)$$

Substituting Y for ξ in (3.19) and using of the fact that α is an eigenvalue of A , it follow that $(X\alpha) = \eta(X)\xi\alpha$. Similarly by substituting X for ξ in (3.19), we get $(Y\alpha) = \eta(Y)\xi\alpha$. It follows

$$2A\varphi AX - 2k\varphi X = \alpha(A\varphi + \varphi A)X \quad (3.20)$$

We assume that $AX = \beta X$ for any vector field $X \in D$, $\|X\| = 1$. Then

$$A\varphi X = \frac{(\alpha\beta + 2k)}{(2\beta - \alpha)}\varphi X. \quad (3.21)$$

Therefore, φX is an eigenvector corresponding to the eigenvalue

$$\gamma = \frac{(\alpha\beta + 2k)}{(2\beta - \alpha)} \quad (3.22)$$

As A has exactly two distinct eigenvalues, we have the following three cases:

If $\alpha = \beta$, we conclude that $\gamma = \frac{(\alpha^2 + 2k)}{(\alpha)}$ and $\text{trace}A = \frac{n\alpha^2 + k(n-1)}{\alpha}$.

Since the shape operator A is self-adjoint, for any $X, Y \in D$

$$\alpha g(\varphi X, Y) = g(AX, \varphi Y) = g(X, A\varphi Y) = \gamma g(X, \varphi Y) \quad (3.23)$$

therefore, $\alpha = \beta = \gamma$, which is a contradiction since the shape operator A with respect to N has exactly two distinct eigenvalues.

Now, if $\gamma = \alpha$, we conclude that $\alpha\beta - \alpha^2 = 2k$ and $\text{trace}A = \frac{n-1}{2}\beta + \frac{n+1}{2}\alpha$.

By the note the shape operator A is self-adjoint, we have

$$\alpha g(X, \varphi Y) = g(X, A\varphi Y) = g(AX, \varphi Y) = \beta g(X, \varphi Y) \quad (3.24)$$

therefore, $\gamma = \alpha = \beta$, which is a contradiction since the shape operator A with respect to N has exactly two distinct eigenvalues. Thus the multiplicity of the eigenvalue α corresponding to the eigenvector ξ is one.

Therefore, we suppose that the shape operator A has exactly two distinct eigenvalues, $\alpha, \beta = \gamma$. Then it follows that $\beta^2 - \alpha\beta = k$ and $A\varphi = \varphi A$ and $\text{trace}A = \alpha + (n-1)\beta$.

Hence, by the relation (2.22), Ricci tensor related to a CR -hypersurface (M^n, g) is written as

$$Ric(e_i, e_j) = \{2kn + (n-1)\beta^2\}\delta_{ij}, \quad (i, j = 1, \dots, n-1), \quad (3.25)$$

$$Ric(\xi, \xi) = (n-1)(k + \beta^2), \quad (3.26)$$

$$Ric(e_i, \xi) = 0, \quad (i = 1, \dots, n-1), \quad (3.27)$$

We consider a CR -hypersurface M^n ($n \geq 3$) in complex space form $\overline{M}^{\frac{n+1}{2}}(4k)$ that satisfying Ricci soliton

$$\frac{1}{2}\mathcal{L}_V g + Ric - \lambda g = 0 \quad (3.28)$$

with respect to potential vector field V on M for constant λ .

We put

$$V := f\xi, \quad (f : M \rightarrow \mathbb{R}, f \neq 0) \quad (3.29)$$

Definition of Lie derivative and the second relation (2.19) imply

$$(\mathcal{L}_{f\xi} g)(X, Y) = df(X)\eta(Y) + df(Y)\eta(X). \quad (3.30)$$

We obtain

$$(\mathcal{L}_{f\xi} g)(\xi, \xi) = 2df(\xi), \quad (3.31)$$

$$(\mathcal{L}_{f\xi} g)(\xi, e_i) = df(e_i), \quad (i = 1, \dots, n-1), \quad (3.32)$$

$$(\mathcal{L}_{f\xi} g)(e_i, e_j) = 0, \quad (i, j = 1, \dots, n-1). \quad (3.33)$$

Using relations (3.25)-(3.27) and (3.31)-(3.33), Ricci soliton equation (3.28) follows

$$\lambda = 2kn + (n-1)\beta^2, \quad (3.34)$$

$$df(\xi) = k(n+1), \quad (3.35)$$

$$df(e_i) = 0, \quad (i = 1, \dots, n-1), \quad (3.36)$$

Theorem 3.5. Let M be a CR -hypersurface of complex space form $\overline{M}^{\frac{n+1}{2}}(4k)$. If $k > 0$, then a Ricci soliton (M, g, V, λ) with potential field $V := f\xi$ is shrinking Ricci soliton.

Theorem 3.6. Let M be a CR -hypersurface of complex space form $\overline{M}^{\frac{n+1}{2}}(4k)$ with $k < 0$.

a) If $|k| > \frac{(n-1)\beta^2}{2n}$. Then a Ricci soliton (M, g, V, λ) with potential field $V := f\xi$ is expanding Ricci soliton.

b) If $|k| < \frac{(n-1)\beta^2}{2n}$. Then a Ricci soliton (M, g, V, λ) with potential field $V := f\xi$ is shrinking Ricci soliton.

REFERENCES RÉFÉRENCES REFERENCIAS

1. C. Boyer and K. Galicki, *Sasakian geometry*, Oxford Mathematical Monographs. Oxford University Press, Oxford, 2008.
2. B.Y. Chen, *Ricci solitons on Riemannian submanifolds*, Riemannian Geometry and Applications to Engineering and Economics Bucharest, Romania, Proceedings of the Conference RIGA 2014 (May 19-21, 2014, Bucurexsti).
3. J. T. Cho and M. Kimura, *Ricci solitons and real hypersurfaces in a complex space form*, Tohoku Math. J. 61 (2009), 205212.
4. J. T. Cho and M. Kimura, *Ricci solitons on locally conformally at hypersurfaces in space forms*, Journal of Geometry and Physics 62 (2012) 18821891.
5. B. Chow and D. Knopf, *The Ricci flow: An introduction*, Math. Surveys Monogr. 110, American Mathematical Society, Providence, RI, 2004.
6. M. Djorić and M. Okumura, *CR submanifolds of complex projective space*, Springer, 2010.

Notes

7. R. S. Hamilton, *The Ricci flow on surfaces Mathematics and general relativity*, (Santa Cruz, CA, 1986), 237262, Contemp. Math. 71, American Math. Soc., Providence, RI, 1988.
8. C. He and M. Zhu, *Ricci solitons on Sasakian manifolds*, arXiv:1103.4407v2 [math.DG], 26 sep(2011),
9. T. Ivey, *Ricci solitons on compact 3-manifolds*, Differential Geom. Appl. 3 (1993), 301307.
10. U-H. Ki, *Real hypersurfaces with parallel Ricci tensor of a complex space form*, Tsukuba J. Math. 13 (1989), 7381.
11. U. K. Kim, *Nonexistence of Ricci-parallel real hypersurfaces in P_2C or H_2C* , Bull. Korean Math. Soc. 41 (2004), 699708.
12. J. Morgan and G. Tian, *Ricci Flow and the Poincare Conjecture*, Clay Mathematics Mono- graphs, 5, Cambridge, MA, 2014.
13. G. Perelman, *The entropy formula for the Ricci flow and its geometric applications*, <http://arXiv.org/abs/math.DG/02111159>, preprint.