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Abstract- In the present paper, we obtain three unified fractional derivative formulae. The first 
involves the product of a general class of polynomials and the multivariable Gimel-function. The 
second involves the product of a general class of polynomials and two multivariable Gimel-
functions and has been obtained with the help of the generalized Leibniz rule for fractional 
derivatives. The last fractional derivative formulae also involves the product of a general class of
polynomials and the multivariable Gimel-function but it is obtained by the application of the first 
fractional derivative formulae twice and, it involve two independents variables instead of one. The 
polynomials and the functions involved in all our fractional derivative formulae as well as their 
arguments which are of the type                     The formulae are the very general character and 

thus making them useful in applications. In the end, we shall give a particular case.   
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Throughout this paper, let   and   be set of complex numbers, real numbers and positive integers respectively.

Also . We define a generalized transcendental function of several complex variables.

  

 

                    

                                                                                  

=                                                                                           (1.1)
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all our fractional derivative formulae as well as their arguments which are of the type .  The   formulae  

are the very general character and thus making them useful in applications. In the end, we shall give a particular case.

I. Introduction And Preliminaries
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Certain Fractional Derivative Formulae Involving 
the Product of a General Class of Polynomials 

and the Multivariable Gimel-Function

Abstract-  In the present paper, we obtain three unified fractional derivative formulae. The first involves the product of a 
general class of polynomials and the multivariable Gimel-function. The second involves the product of a general class of 
polynomials and two multivariable Gimel-functions and has been obtained with the help of the generalized Leibniz rule 
for fractional derivatives. The last fractional derivative formulae also involves the product of a general class of 
polynomials and the multivariable Gimel-function but it is obtained by the application of the first fractional derivative 
formulae twice and, it involve two independents variables instead of one. The polynomials and the functions involved in 

Keywords: multivariable gimel-function, riemann-liouville and erdélyi-kober fractional operators, general class 
of polynomials, fractional derivative formulae, generalized leibnitz rule.
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                                  (1.2)

    
and

      
              (1.3)

 For more details, see Ayant [2].

The  contour  is in the - plane and run from  to  where  if is a real number with 

loop, if necessary to ensure that the poles of  

,  to

the right of the contour  and the poles of   lie to the left  of the

contour . The condition for absolute convergence of multiple Mellin-Barnes type contour (1.1) can be obtained of the
corresponding conditions for multivariable H-function given by as :

 where 

                           (1.4)

Following the lines of Braaksma ([3] p. 278), we may establish the asymptotic expansion in the following convenient
form :

     ,     

    ,      where   : 

 and 

Certain Fractional Derivative Formulae Involving the Product of a General Class of Polynomials and the 
Multivariable Gimel-Function

Ref

       

     

1

G
lo
ba

l
Jo

ur
na

l
of

Sc
ie
nc

e
Fr

on
tie

r
R
es
ea

rc
h 

  
  
  
V
ol
um

e
X
V
III  

 I
ss
ue

  
  
  
er

sio
n 

I
V

V
I

Y
ea

r
20

18

2

  
 

( F
)

© 2018   Global Journals

2.
F
. 

A
y
a
n
t, 

A
n
 

ex
p
a
n
sio

n
 

fo
rm

u
la

 
fo

r 
m

u
ltiv

a
ria

b
le 

G
im

el-fu
n
ctio

n
 

in
v
o
lv

in
g 

gen
eralized

 
L
egen

d
re 

A
ssociated

 
fu

n
ction

, 
In

tern
ation

al 
J
ou

rn
al 

of 
M

ath
em

atics 
T

ren
d
s an

d
 T

ech
n
ology

 (IJ
M

T
T

), 56(4) (2018), 223-228.



 
 

 
 

 
 
 
 
 
 
 
 
 
 

Remark 1.
If   and 

, then the multivariable Gimel-function reduces in the multivariable Aleph- function defined by
Ayant [1].

Remark 2. 
If  and 

,  then the multivariable Gimel-function reduces in a multivariable I-function  defined by Prathima et al.
[9]. 

Remark 3.
If and  

, then the generalized multivariable Gimel-function reduces in  multivariable I-function  defined by
Prasad [8]. 

Remark 4.
If the three above conditions are satisfied at the same time, then the generalized multivariable Gimel-function reduces in
the  multivariable H-function  defined by Srivastava and Panda [15,16].

 Srivastava ([14],p. 1, Eq. 1) has defined the general class of polynomials

                                                                                                                             (1.5)

On suitably specializing the coefficients ,  yields some of known polynomials, these include the Jacobi 
polynomials, Laguerre polynomials, and others polynomials ([17],p. 158-161).

We shall define the fractional integrals and derivatives of a function  ([11], p. 528-529), see also [5-7] as follows :

Let   and   be complex numbers. The fractional integral   and derivative   of a function
 defined on  is given by 

                                    (1.6)

 

where  is the Gauss hypergeometric serie.

The operator  includes both the Riemann-Liouville and the Erdélyi-Kober fractional operators as follows :

The Riemann-Liouville operator

                                                  (1.7)

The Erdélyi-Kober operators

                                                                  (1.8)

Main formulae.
Theorem 1.
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                            (2.1)

where

 

                                                               (2.2)

        

                

                         (2.4)

 

                                                                                     (2.5)

 

                                                                          (2.6)

                                                                                                   (2.7)
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                                                                                     (2.9)

                       

                              (2.10)

     

                                                                     (2.11)

Provided   

 

Proof
To prove the fractional derivative formula, we first express the product of a general class of polynomials occurring on.
Its left-hand side in the series form with the help of (1.5), next we express  the Gimel-function regarding Mellin-Barnes
multiple integrals contour with the help of (1.1). Interchange the order of summations and - integrals and
taking the fractional derivative operator inside (which is permissible under the conditions stated above ). And make
simplifications. Next, we express the terms   
so obtained in terms of Mellin-Barnes multiple integrals contour, see ([14], p.18, Eq.(2.6.4) and p.10 Eq. (2.1.1)). Now
interchanging the order of   and  - integrals  (which is permissible under the conditions
stated above ). And evaluating the -integral thus obtained by using the following formula with the help of ([10], p.16,
Lemma 1)

                                                                                                   (2.12)

provided 

and we interpret the resulting multiple integrals contour with the help of (1.1) in term of  the gimel-function of -
variables, after algebraic manipulations, we obtain the theorem.

Theorem 2.
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(2.13)

where

 

                                                             (2.14)
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                            (2.26)
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        (2.28)

       is similar to                                                               

                                                                                     (2.29)

                                                               (2.30)

                                                                     (2.31)

                                      (2.32)
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in the left-hand side of (2.13) and apply the following Leibniz rule for the fractional integrals

                                                                                                    (2.33) 

we obtain the fractional derivative formula (2) after simplification, using the theorem 1 and the result ({4], p. Eq. (6))

Theorem 3.

                                                                                   

                                                    (2.34)
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We take   and
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where
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                                                                                   (2.39)

 

                                                                        (2.40)
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Notes

 Proof

To prove the theorem 3, we use the theorem 1 twice, first with respect to the variable  and then with respect to the
variable , in this situation,the variables  and  are independent variables.

In this section, we shall see the particular case studied by Soni and Singh ([12],p. 561, Eq. (14))

Consider the theorem 1, if we take  and reduce the polynomial  to the Hermite polynomial ([17], p. 158. Eq.

II. Special Case
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                                                                                  (3.1)

The validity conditions mentioned above are verified.

Remarks :
We obtain easily the same relations with the functions defined in section 1.
Soni and Singh  [12] have obtained the same relations with the multivariable H-function.

The fractional derivative formulae evaluated in this study are unified in nature and act as key formulae. Thus the general
class of polynomials involved here reduce to a large variety of polynomials and so from theorems 1, 2 and 3; we can
further  obtain  various  fractional  derivatives  formulae  involving  a  number  of  simpler  polynomials.  Secondly  by
specializing the various parameters as well as variables in the generalized multivariable Gimel-function, we get  several
formulae involving a remarkably wide variety of useful functions ( or product of such functions) which are expressible
in terms of E, F, G, H, I, Aleph-function of one and several variables and simpler special functions of one and several
variables.  Hence the formulae derived in this paper are most general  forms and may prove to be useful in several
interesting cases appearing in the literature of Pure and Applied Mathematics and Mathematical Physics.
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product of r different Whittaker functions ([14], p. 18, Eq. (2.6.7)), we obtain the following result
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