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The study of fuzzy automata was initiated by [16] and [26] in 1960’s after
the introduction of fuzzy set theory by [27]. Much later, a considerably
simpler notion of a fuzzy finite state machine (which is almost identical
to a fuzzy automaton) was introduced by [10] (cf. [11], for more details).
Somewhat different notions were introduced subsequently by [7, 8, 13].
Recently, Jun [4, 5, 6] generalized the concept of fuzzy finite state ma-
chine corresponding to one higher order fuzzy sets, viz., the intuitionistic
fuzzy sets, and called it intuitionistic fuzzy finite state machine. In these
studies, the membership values in the closed interval [0, 1] were considered.
During the recent years, the researchers were initiated to work with fuzzy
automata with membership values in complete residuated lattices, lattice
ordered monoids and some other kind of lattices (cf., [3, 9, 14, 15]Anu5,
Anu6).

In this paper, we study the decomposable properties of fuzzy automata
with membership values in lattice ordered monoid via their primaries. We
show that several results related to the decomposable properties of fuzzy
automata introduced in [19, 20, 21, 22] may not hold well in the case of
fuzzy automata with membership values in lattice ordered monoid. This
paper is organised as follows: In section 1, we recall some notions re-
lated to lattice ordered monoid, monoid with and without zero divisors
and some known results which are used in the paper. In Section 2, we
introduce and study the concept of a primaries of a fuzzy automata and
a compact fuzzy automata and their primary decomposition having the
membership values in lattice ordered monoid. In Section 3, we study the
primary decomposition and f -primary decomposition for an L-fuzzy au-
tomaton.

We recall the following from [2, 19, 23].

Definition 1.1 An algebra L = (L,≤,∧,∨, •, 0, 1) is called a lattice-

ordered monoid if

1. L = (L,≤,∧,∨, •, 0, 1) is a lattice with the least element 0 and the
greatest element 1,

2. (L, •, e) is a monoid with identity e ∈ L such that for all a, b, c ∈ L

(i) a • 0 = 0 • a = 0,
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Decomposition of Fuzzy Automata Based on Lattice-Ordered Monoid

Definition 1.2

Definition 1.3

Definition 1.4

Definition 1.5

Definition 1.6

Proposition 1.1

Remark 1.1

Proposition 1.2

Definition 1.7

(ii) a ≤ b ⇒ ∀x ∈ L, a • x ≤ b • x and x • a ≤ x • b,
(iii) a • (b ∨ c) = (a • b) ∨ (a • c) and (b ∨ c) • a = (b • a) ∨ (c • a).

A monoid (L, •, e) is called monoid without zero di-
visors if for all a, b ∈ L, a ̸= 0, b ̸= 0 ⇒ a • b ̸= 0.

A monoid (L, •, e) is called monoid with zero divisors

if for all a, b ∈ L, a ̸= 0, b ̸= 0 ⇒ a • b = 0.

Let L be an lattice-ordered monoid. An L-fuzzy au-
tomaton is a triple M = (Q,X, δ), where Q is a nonempty set (of
states of M), X is a monoid (the input monoid of M), whose identity
shall be denoted as eX , and δ : Q × X × Q → L is a map, such that
∀q, p ∈ Q,∀x, y ∈ X,

δ(q, eX , p) =

{
e if q = p
0 if q ̸= p

and δ(q, xy, p) = ∨{δ(q, x, r) • δ(r, y, p) : r ∈ Q}.

Let (Q,X, δ) be an L-fuzzy automaton and A ⊆ Q. The
source, the successor and the core of A are respectively the sets

σQ(A) = {q ∈ Q : δ(q, x, p) > 0, for some (x, p) ∈ X ×A}, and
sQ(A) = {p ∈ Q : δ(q, x, p) > 0, for some (x, q) ∈ X ×A}.

We shall frequently write σQ(A), sQ(A) as just σ(A), s(A)and σ({q}) and
s({q}) as just σ(q) and s(q).

The core of any subset R of the state-set Q of an L-fuzzy
automaton is the set

µ(R) = {q ∈ Q : σ(q) ⊆ R}.

We shall frequently write µ({q}) as just µ(q).

Let (L, •, e) be a monoid without zero divisors and
(Q,X, δ) be an L-fuzzy automaton. Then for all A ⊆ Q, s(s(A)) = s(A)
and hence σ(σ(A)) = σ(A).

Let M = (Q,X, δ) be an L-fuzzy automaton and p, q, r ∈ Q.

Then p ∈ σ(q), q ∈ σ(r) ̸⇒ p ∈ σ(r).

Let (L, •, e) be a monoid without zero divisors and (Q,X, δ)

be an L-fuzzy automaton. Then for all p, q, r ∈ Q. Then p ∈ σ(q), q ∈
σ(r) ⇒ p ∈ σ(r).

Let M = (Q,X, δ) be an L-fuzzy automaton. R ∈ LQ is
called an L-fuzzy subautomaton of M if s(R) ≤ R and λ = δ|R×X×R.

A fuzzy automaton M = (Q,X, δ) is retrievable if ∀p, q ∈ Q, q ∈ σ(p) ⇒
p ∈ σ(q) and strongly connected if ∀q, p ∈ Q, q ∈ s(p).

II. Compact L-Fuzzy Automata And Their 
Primary Decomposition

In this section, we introduce the concept of a primary of an L-fuzzy au-
tomaton M = (Q,X, δ) and provide its topological interpretation through
the concept of a regular closed set in topology, as introduced in [19, 20].
Also, we introduce the concept of a primary decomposition of an L-fuzzy
automaton M = (Q,X, δ) and provide state-set topologies are compact
(cf. [17] for a similar observation).

Definition 2.1

Definition 2.2

A closed subset of topological space is called regular
closed if it is equal to the closure of its interior

A subset R ⊆ Q is called

(i) genetic if σ(R) ⊆ s(R),

(ii) genetically closed if ∃P ⊆ R such that σ(P ) ⊆ s(P ) and s(P ) =R,
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Proposition 2.1

Proof

Proposition 2.2

Proof

Remark 2.1

Remark 2.2

Proposition 2.3
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(iii) Gen(Q) is defined as, {R : R ⊆ Q and s(R) = Q},
(iv) a primary subset of Q if R is a nonempty minimal genetically closed

subset of Q.

Let (R,X, λ) be a primary subautomaton of an L-fuzzy
automaton (Q,X, δ). Then s(σ(p)) = R,∀p ∈ µ(R).

: The proof is similar, as given in [23].

If (L, •, e) be a monoid without zero divisors. Then for
each q ∈ Q, s(µ(q)) is a primary of Q, if µ(q) ̸= ϕ.

: The proof is similar, as given in [23].

If (L, •, e) be a monoid with zero divisors. Then s(q) is not
a primary of Q. Hence for each q ∈ Q, s(µ(q)) is not a primary of Q.

From the above proposition it is clear that whenever s(p) is
regular closed, it must be minimal regular closed.

Let M = (Q,X, δ) be an L-fuzzy automaton and p ∈
Q. Then as (L, •, e) be a monoid without zero divisors. The following
statements are equivalent.

(i) s(p) is a primary of Q:

(ii) s(p) is a regular closed subset of Q:

(iii) {p} is not a nowhere dense subset of Q:

(iv) s(p) is a minimal regular closed subset of Q:

(v) p ∈ µ(s(p)).

Proof : The proof is similar, as given in [19].

Proposition 2.4 Let R ⊆ Q and (L, •, e) be a monoid without zero divi-

sors. Then s(σ(R)) is the union of all primaries of Q which contains at
least one member of R.

: The proof is similar, as given in [12].Proof

Lemma 2.1 Let Q = s(q) and (L, •, e) is a monoid without zero divisors.
Then σ(q) = g1(Q), where g1(Q) = {p : {p} ∈ Gen(Q)}.

: Let p ∈ σ(q), then q ∈ s(p) and (L, •, e) is a monoid without zero

divisors. Then Q = s(q) ⊆ s(s(p)) ⊆ s(p) ⊆ Q. Hence Q = s(p) and so

{p} ∈ Gen(Q). Thus σ(q) ⊆ g1(Q). On the other hand, if p ∈ g1(Q), then

q ∈ s(p). Hence p ∈ σ(q). Thus g1(Q) ⊆ σ(q).

Proof

Remark 2.3 Let Q = s(q) and (L, •, e) be a monoid with zero divisors.
Then σ(q) ̸= g1(Q), where g1(Q) = {p : {p} ∈ Gen(Q)}, as the following
counter-example shows.

For the lattice-ordered monoid L, consider the
monoid (L, •, e), where L = [0, 1], a • b = max(0, a + b − 1), ∀a, b ∈ L
and e = 1. Consider a L-fuzzy automaton M = (Q,X, δ), where Q is the

set of integers, X = {0, 1, 2, ...}, and δ : Q×X ×Q → L is given by

δ(m, 0, n) =

{
1 if m = n
0 if m ̸= n,

∀m,n ∈ Q, and δ(m0, x0, n0) = 1/3, δ(n0, x0, k0) = 1/3, δ(k0, x0, l0) =

1/3, for fixed m0, n0, k0, l0 ∈ Q and for fixed x0 ∈ X(x0 ̸= 0). For other

m,n ∈ Q and x ∈ X, δ(m,x, n) = 0. Here, Let s({m0}) = {n0} = Q then

σ({m0}) = ϕ. Now if {m0} ∈ g1(Q). Then {n0} ∈ s({m0}) ⇒ σ({n0}) =
{m0} ̸= ϕ. Thus σ({m0}) ̸= g1(Q).

counter-example 2.1

Proposition 2.5 Let R be a non-empty genetic subset of Q and (L, •, e)
be a monoid without zero divisors. Then s(R) is the union of those pri-
maries of Q which contains at least one member of R.
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Proof : Since R is genetic, σ(R) ⊆ s(R) and (L, •, e) is a monoid without
zero divisors. Then s(σ(R)) ⊆ s(s(R)) = s(R). Since R ⊆ σ(R), s(R) ⊆
s(σ(R)). Hence s(σ(R)) = s(R). The result follows from Proposition 2.4.

Remark 2.4 Let R be a non-empty genetic subset of Q and (L, •, e) be a
monoid with zero divisors. Then s(R) is not the union of those primaries
of Q which contains at least one member of R, as the following counter-
examples shows.

counter-example 2.2 Consider the L-fuzzy automaton given in counter-

example 2.1. Let A = {no}. Then s(A) = {no, ko}, σ(A) = {mo, no},
σ(σ(A)) = {mo, no} and s(σ(A)) = {mo, no, ko}. Then σ(σ(A)) ⊆ s(σ(A)).
Thus σ(A) is genetic and hence A be genetic subset of Q. But s(σ(A)) ̸=
s(A).

Lemma 2.2 Let (R,X, λ) be a primary subautomaton of an L-fuzzy au-
tomaton (Q,X, δ) and (L, •, e) be a monoid without zero divisors. Then
for every finite subset T of R, T ⊆ s(r), for some r ∈ R.

Proof : We prove this Lemma by induction. Let T = {p1, p2......pn} be any
finite subset of R. Then the result is obvious for n = 1. Now assume the
result is true for n = k−1; in particular for Tk−1 = {p1, p2.....pk−1}. Then
∃q ∈ R such that Tk−1 ⊆ s(q). Thus Tk = {p1, p2......pk} ⊆ s(q) ∪ {pk} ⊆
s({q, pk}). Put S = {q, pk} and let m ∈ µ(R). Then by Proposition 2.1.

R = s(σ(m)). Note that q ∈ R ⇒ q ∈ s(σ(m)) ⇒ δ(m,, x, q) > 0, for some

(m,, x) ∈ σ(m) × X now as (L, •, e) is a monoid without zero divisors.

Then m, ∈ σ(m) ⇒ σ(m,) ⊆ σ(σ(m)) = σ(m) ⊆ R (as m ∈ µ(R))

⇒ m, ∈ µ(R) ⇒ s(σ(m,)) = R (by Proposition 2.1). Consequently,

pk ∈ R ⇒ pk ∈ s(σ(m,)) ⇒ δ(r, y, pk) > 0, for some (r, y) ∈ σ(m,) × X.

From r ∈ σ(m,), we get m, ∈ s(r), whereby s(m,) ⊆ s(s(r)) = s(r). This

together with the facts that q ∈ s(m,) and pk ∈ s(r), gives q, pk ∈ s(r).
Hence S = {q, pk} ⊆ s(r). Hence Tk ⊆ s(r).

Remark 2.5 Let (R,X, λ) be a primary subautomaton of an L-fuzzy au-
tomaton (Q,X, δ) and (L, •, e) be a monoid with zero divisors. Then for
every finite subset T of R, T ̸⊆ s(r), for some r ∈ R , as the following
counter-example shows.

counter-example 2.3 Consider the L-fuzzy automaton given in counter-
example 2.1. Let A = {mo, no, ko}. Then σ({no, ko}) = {mo, no},
s(σ({no, ko})) = {mo, no, ko}. Thus s(σ({no, ko})) = A, ∀{no, ko}) ∈
µ(A), which shows that A be a primary of an L-fuzzy automaton Q. But
for every finite subset T = {no} ⊆ A, T = {no} ̸⊆ s({k0}) = {l0}, for
some {k0} ∈ A.

Proposition 2.6 If (L, •, e) be a monoid without zero divisors. Then a
primary of a compact L-fuzzy automaton is a maximal singly generated
subautomaton.

Proof : Let N be a primary of a compact L-fuzzy automaton M =
(Q,X, δ) and let p ∈ R. Then p ∈ s(µ(R)). So ∃q ∈ µ(R) with p ∈ s(q).
As q ∈ µ(R), σ(q) ⊆ R. Now σ(q) is finite owing to the compactness of
(Q,X, δ), so ∃q, ∈ R such that σ(q) ⊆ s(q,) (by Lemma 3.1) and (L, •, e)
is a monoid without zero divisors. Then s(σ(q)) ⊆ s(s(q,)) = s(q,). Also,
q ∈ s(q,) ⇒ q, ∈ σ(q) ⇒ s(q,) ⊆ s(σ(q,)). Thus s(σ(q,)) = s(q,), whereby
s(q,) is a genetically closed subset of R (as q, ∈ R). So by the minimality
of R, say s(q,) = R. Hence the primary (R,X, λ) is singly generated. Let
S = s(t) be the state-set of another singly generated subautomaton of M
such that R = s(q,) ⊆ S. To prove that R = S. It is enough to show that
t ∈ s(q,). Now s(q,) ⊆ S = s(t) ⇒ q, ∈ s(t) ⇒ t ∈ σ(q,), so that t ∈ s(q,)
(as s(q,) is a primary: cf. Proposition 2.5).

Remark 2.6 If (L, •, e) be a monoid with zero divisors. Then a primary
of a compact L-fuzzy automaton is not a maximal singly generated subau-
tomaton.

Notes



 
 

 
 

 
 
 
 
 
 
 
 
 
 

III. Primary
 

Decomposition of an 
L-Fuzzy  Automata

Remark 3.1

Proposition 2.7

Decomposition of Fuzzy Automata Based on Lattice-Ordered Monoid

Let M = (Q,X, δ) be a compact L-fuzzy automaton
and R ⊆ Q. Then s(σ(R)) can be written as the union of those primaries
of Q, which have nonempty intersection with R.

Proof : The proof is similar, as given in [19].

Proposition 2.8 Let M = (Q,X, δ) be a compact L-fuzzy automaton and
R ⊆ Q be genetic with (L, •, e) be a monoid without zero divisors. Then
s(R) is the union of primaries of Q having nonempty intersection with R.

: As R be genetic, σ(R) ⊆ s(R), implying that s(σ(R)) ⊆ s(s(R)) =
s(R), as (L, •, e) is a monoid without zero divisors. On the other hand ,
as R ⊆ σ(R) ⊆ s(σ(R)), we have s(R) ⊆ s(σ(R)). Thus s(R) = s(σ(R)).
Hence by the Proposition 3.2. s(R) is the union of primaries of Q having
nonempty intersection with R.

Proof

Remark 2.7 Let M = (Q,X, δ) be a compact L-fuzzy automaton and
R ⊆ Q be genetic with (L, •, e) be a monoid with zero divisors. Then s(R)
is not the union of primaries of Q having nonempty intersection with R,
as the following counter-examples shows.

counter-example 2.2 Similar to counter-example 2.2.
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Finite state automata admit a primary decomposition (cf. e.g., [1]). Even
an infinite state automaton can admit a primary decomposition, for ex-
ample, when that automaton is compact (cf. [18]). In [19] we extended
this for L-fuzzy automaton provided that (L, •, e) is a monoid without
zero divisors. Also, we introduce the concept of a source-splitting sub-
automaton, including their characterization and a topological description
with (L, •, e) is a monoid without zero divisors. lastly, we introduce the
concept of f -primaries of an L-fuzzy automaton M = (Q,X, δ) and pro-
vided (L, •, e) is a monoid without zero divisors.

Proposition 3.1 An L-fuzzy auotmata M is strongly connected if and
only if M has no proper subautomaton but if (L, •, e) be a monoid without
zero divisors then the convere is true

: The proof is similar, as given in [23].Proof

Lemma 3.1 Let (Q,X, δ) be an L-fuzzy automaton and q ∈ Q such that
R ⊆ s(σ(q)) is a non-empty regular closed (genetically closed) subset of
Q. Then q ∈ R and (L, •, e) be a monoid without zero divisors.

: Let p ∈ µ(R) ⊆ R ⊆ s(σ(q)). Then σ(p) ⊆ R and p ∈ s(σ(q)).
Now σ(p) ⊆ R ⇒ s(σ(p)) ⊆ s(R) = R. Also, p ∈ s(σ(q)) ⇒ p ∈ s(t),
for some t ∈ σ(q) ⇒ t ∈ σ(p), for some t such that q ∈ s(t). Again,
t ∈ σ(p) ⇒ σ(t) ⊆ σ(σ(p)) = σ(p), as (L, •, e) is a monoid without zero
divisors. Now q ∈ s(t) ⇒ q ∈ s(σ(t)) ⊆ s(σ(p)) ⊆ R. Thus, q ∈ R.

Proof

Let (Q,X, δ) be an L-fuzzy automaton and q ∈ Q such that
R ⊆ s(σ(q)) is a non-empty regular closed (genetically closed) subset of Q
and (L, •, e) be a monoid with zero divisors. Then q ̸∈ R, as the following
counter-example shows.

Consider the L-fuzzy automaton given in counter-
example 2.1. Let A = {n0} and {k0} ∈ Q. Then σ{k0} = {n0}, s(σ{k0}) =
{n0, k0}. Then A ⊆ s(σ{k0}) is not a non-empty regular closed subset of
Q, with {k0} ̸∈ A.

counter-example 3.1

Proposition 3.2 [20] (Primary Decomposition Theorem) Let the L-fuzzy

automaton M = (Q,X, δ) be compact (having possibly an infinite state-set
Q). Then

(i) M = ∪n
i=1Pi, and

(ii) for any j, 1 ≤ j ≤ n,M = ∪n
i=1,i̸=jPi,

where P1, P2, P3, ......., Pn are all the distinct primaries of M .
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A L-fuzzy automaton M = (Q,X, δ) is retrievable if
and only if M is decomposable and the primaries of M are strongly con-
nected.

: The proof is similar, as given in [20].Proof

Remark 3.2 The converse of the above proposition is not true, if (L, •, e)
be a monoid with zero divisors.

Proposition 3.4 Let (L, •, e) be a monoid without zero divisors M is

decomposable and the primaries of M be strongly connected. Then M is
retrievable.

Proof : Let M be decomposable and the primaries of M be strongly
connected. Also, let p, q ∈ Q be such that p ∈ σ(q) and as (L, •, e) be
a monoid without zero divisors. Then σ(p) ⊆ σ(σ(q)) = σ(q) and so
s(σ(p)) ⊆ s(σ(q)). Since M is decomposable and s(σ(p)) is a regular
closed subset of Q, s(σ(p)) should contain a primary subset of Q, say R.
Now, R ⊆ s(σ(p)) ⊆ s(σ(q)) ⇒ p, q ∈ R(cf. Lemma 4.1). But as R is
strongly connected, p ∈ s(q), whereby q ∈ σ(p). Thus, M is retrievable.

(ii) ∀r ∈ R, ∃r1, r2 ∈ σ(r) such that σ(r1) ∩ σ(r2) = ϕ.

Let M = (Q,X, δ) be an L-fuzzy automaton and let {Pi :
i ∈ I} be a family of all distinct primaries of M , with respective state-sets
Ri. Then s(Q− ∪i∈IRi) is a source-splitting in M .

: The proof is similar, as given in [20].

Let N = (R,X, λ) be a source-splitting subautomaton of an
L-fuzzy automaton M = (Q,X, δ) and (L, •, e) be a monoid without zero
divisors . Then µ(R) ⊆ Q− ∪i∈IRi, where R,

is are in Lemma 4.2.

Proof

Lemma 3.3

Proof : To show that µ(R) ⊆ Q−∪i∈IRi, we show that µ(R)∩Ri = ϕ,∀i ∈
I. If possible, let µ(R)∩Ri ̸= ϕ, for some i ∈ I. Then µ(R)∩s(µ(Ri)) ̸= ϕ
(since s(µ(Ri)) = Ri,∀i ∈ I). Now q ∈ µ(R) ∩ s(µ(Ri)) ⇒ σ(q) ⊆ R and
q ∈ s(t), for some t ∈ µ(Ri) ⇒ s(σ(q)) ⊆ s(R) = R and q ∈ s(t), for some
t with σ(t) ⊆ Ri. Also σ(t) ⊆ Ri ⇒ s(σ(t)) ⊆ s(Ri) = Ri. So, as s(σ(t))
is regular closed and Ri, being a primary subset, is minimal regular closed,
we have s(σ(t)) = Ri. As (L, •, e) is a monoid without zero divisors. Then
q ∈ s(t) ⇒ t ∈ σ(q) ⇒ σ(t) ⊆ σ(σ(q)) = σ(q) ⇒ s(σ(t)) ⊆ s(σ(q)) ⇒
Ri ⊆ R. This shows that R contains a primary subset, a contradiction,
as N , being source-splitting in M , cannot contain any primary. Hence,
µ(R) ⊆ Q− ∪i∈IRi.

Remark 3.3 Let N = (R,X, λ) be a source-splitting subautomaton of
an L-fuzzy automaton M = (Q,X, δ) and (L, •, e) be a monoid with zero
divisors . Then µ(R) ̸⊆ Q−∪i∈IRi, where R,

is are in Lemma 4.2, as the
following counter-example shows.

counter-example 3.2 Consider the L-fuzzy automaton given in counter-
example 2.1. Let A = {m0, n0, k0}, A1 = {n0, k0}, A2 = {k0, l0}. Then

µ(A) = {n0, k0}, now µ(A) ∩Ai = {n0, k0} ∩ {n0, k0} ∩ {k0, l0} = {k0} ̸=
ϕ, ∀i = 1, 2. Thus µ(R) ̸⊆ Q− ∪i∈IRi.

[20] A subautomaton N = (R,X, λ) of an L-fuzzy au-
tomaton M = (Q,X, δ) is called source-splitting in M if

(i) R is genetically closed subset of Q, and

Proposition 3.5 An L-fuzzy automaton (Q,X, δ) is compact if and only
if their exists a finite subset Q, of Q such that s(Q,) = Q, or equivalently,
if and only if σ(Q) is finite.

Proof : The proof is similar, as given in [21].

Lemma 3.4 Let (R,X, λ) be a primary of an L-fuzzy automaton (Q,X, δ).
Then s(σ(p)) = R,∀p ∈ µ(R).

: The proof is similar, as given in [21].Proof
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Let (R,X, λ) be a primary of an L-fuzzy automaton (Q,X, δ)
and (L, •, e) be a monoid without zero divisors.Then for every finite subset
T of R, T ⊆ s(r) for some r ∈ R.

: We prove this Lemma by induction on the number of elements
in T . The results is obvious if |T | = 1. Now assume the result to be
true for all T having k − 1 elements. Consider some T ⊆ R having k
elements. Pick any p ∈ T . By induction hypothesis, ∃q ∈ R such that
T − p ⊆ s(q). Thus T ⊆ s(q) ∪ p ⊆ s({q, p}). Put S = {q, p} and let
m ∈ µ(R). Then by Lemma 4.4, R = s(σ(m)). Note that q ∈ R ⇒
q ∈ s(σ(m)) ⇒ δ(m,, x, q) > 0 for some (m,, x) ∈ σ(m) × X, as (L, •, e)
is a monoid without zero divisors. Then m, ∈ σ(m) ⇒ σ(σ(m,)) =
σ(m,) ⊆ σ(m) ⊆ R (as m ∈ µ(R)) ⇒ m, ∈ µ(R) ⇒ s(σ(m,)) = R (by
Lemma 4.4). Consequently, p ∈ R ⇒ p ∈ s(σ(m,)) ⇒ δ(r, y, p) > 0 for
some (r, y) ∈ σ(m,) × X. From r ∈ σ(m,), we get m, ∈ s(r), whereby
s(m,) ⊆ s(s(r)) = s(r). This, together with the facts that q ∈ s(m,)
and p ∈ s(r). Hence S = {q, p} ⊆ s(r). Thus s({q, p}) ⊆ s(s(r)), i.e.,
s({q, p}) ⊆ s(r). Hence T ⊆ s(r).

Proof

Lemma 3.5

Remark 3.4 Let (R,X, λ) be a primary of an L-fuzzy automaton (Q,X, δ)
and (L, •, e) is a monoid with zero divisors. Then for every finite subset T
of R, T ̸⊆ s(r) for some r ∈ R, as the following counter-example shows.

counter-example 3.3 Similar to counter-example 3.1.

Proposition 3.6 Let M = (Q,X, δ) be an L-fuzzy automaton and (L, •, e)
be a monoid without zero divisors. Then each maximal finitely closed sub-
set of Q is T (Q)-open.

: Let R be a maximal finitely closed subset of Q. We have to show
that s(R) = R. Let T be a finite subset of s(R). For each q ∈ T , we
can find some p ∈ R with q ∈ s(p). The set S of all such p,s must be
finite. Also, S ⊆ R. Obviously, T ⊆ s(S). Now as R is finitely closed,
∃t ∈ Q such that S ⊆ s(t), as (L, •, e) is a monoid without zero divisors.
Then s(S) ⊆ s(t) (since s(s(t)) = s(t)), whereby T ⊆ s(t). Thus for
each finite subset T of s(R), ∃t ∈ Q such that T ⊆ s(t). Hence s(R) is a
finitely closed subset of Q. But as R is a maximal finitely closed set and
R ⊆ s(R), we find that s(R) = R.

Proof

Let M = (Q,X, δ) be an L-fuzzy automaton and (L, •, e) be
a monoid with zero divisors. Then each maximal finitely closed subset of
Q is not T (Q)-open.

Let M = (Q,X, δ) be an L-fuzzy automaton. Then
every primary of M is an f-primary of M .

Proof: The proof is similar, as given in [21].

Let M = (Q,X, δ) be an L-fuzzy automaton and p ∈ Q, if
s(p) is a primary of M . Then s(p) is an f-primary of M .

: In view of Proposition 4.7, s(p) is an f -primary of M .

s(p) is a primary of M if (L, •, e) be a monoid without zero
divisors. So, converse is true only if (L, •, e) be a monoid without zero
divisors.

Let M = (Q,X, δ) be an L-fuzzy automaton and p ∈ Q,
if s(p) is an f-primary of M . Then it is a primary of M and (L, •, e) be
a monoid without zero divisors.

Remark 3.5

Proposition 3.7

Remark 3.6

Proof

Remark 3.7

Proposition 3.8

Proof : We only need to prove that if s(p) is an f -primary then it is a
primary. So let s(p) be an f -primary of M . In view of Proposition 2.2,
it suffices to show that p ∈ µ(s(p)), or that σ(p) ⊆ s(p). Let q ∈ σ(p).
Then p ∈ s(q), as (L, •, e) is a monoid without zero divisors. Then s(p) ⊆
s(s(q)) = s(q). As s(q) is finitely closed and s(p), being an f -primary,
is maximal finitely closed, s(q) = s(p). Thus q ∈ s(p), showing that
σ(p) ⊆ s(p).
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Proposition 3.9 Let M = (Q,X, δ) be a compact L-fuzzy automaton and
N = (R,X, λ) be its subautomaton, if N is a primary of M . Then it is
an f-primary of M .

Proof : Once again, in view of Proposition 4.7, N is an f -primary of M .

Remark 3.8 If N is a primary of M and (L, •, e) be a monoid with zero

divisors. Then it is not an f-primary of M .

Proposition 3.10 Let M = (Q,X, δ) be a compact L-fuzzy automaton
and N = (R,X, λ) be its subautomaton, if N is an f-primary of M . Then
it is a primary of M and (L, •, e) be a monoid without zero divisors.

Proof : Once again, in view of Proposition 4.7, we only need to prove that
if N is an f -primary of M then it is a primary. Now, as M is compact,
there exists a finite subset R, of R such that s(R,) = R (cf. Proposition
4.5). Also, as R is finitely closed, ∃q ∈ Q such that R, ⊆ s(q), as (L, •, e)
is a monoid without zero divisors. Then s(R,) ⊆ s(s(q)) = s(q). Thus
R ⊆ s(q). But as s(q) is finitely closed and R is maximal finitely closed (as
N is an f -primary), s(q) = R. Hence N is a primary of M (cf. Proposition
3.1).

If N is an f-primary of M and (L, •, e) be a monoid with
zero divisors. Then it is not a primary of M .
Remark 3.9

IV. Conclusion
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In this paper, we have introduced and studied here the decomposition of
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