

Effect of Post Emergence Herbicides and their Mixtures on Weed Dynamics, Yield Components and Yield of Rice (*Oryza Sativa L.*), At Guraferda Woreda, South Western Ethiopia

By Getachew Mekonnen, Mitiku Woldesenbet & Wubishet Alemu

Mizan Tepi University

Abstract- Weeds are the principal limiting biological factor in national rice production, with losses that vary from region to region, depending on the cultivation system, predominant weed communities and weed control methods employed by the farmers. Therefore, the experiment was conducted in Bench Maji Zone at Guraferda Woreda, during the 2017 main cropping season to investigate the effect of Bispyribac-sodium 10% SC, and 2, 4-D amine salt on weeds growth, yield components and yield of rice and to investigate the possibilities of supplementing low doses of herbicides with hand weeding for effective and cost effective weed management. There were 12 treatments comprising: Bispyribac-sodium 10% SC (20 g ha⁻¹, 25 g ha⁻¹, 30 g ha⁻¹), 2, 4-D amine salt (0.75 L ha⁻¹, 1.0 L ha⁻¹, 1.25 L ha⁻¹), Bispyribac-sodium 10% SC 20 g + 2, 4-D amine salt 0.75 L ha⁻¹, Bispyribac-sodium 10% SC 10 g + 2, 4-D amine salt 1.0 L ha⁻¹, Bispyribac-sodium (20 g ha⁻¹) + hand weeding and hoeing at 35DAE, 2, 4-D amine salt (0.75 L ha⁻¹) + hand weeding and hoeing at 35DAE, Weed free and Weedy checks. The design of the experiment was RCBD with three replications. The majority of the weeds in the experimental fields were broadleaved, grassy and sedges.

Keywords: broadleaved and grass weeds, economic analyses, bispyribac-sodium, 2, 4-d amine salt, yield loss.

GJSFR-D Classification: FOR Code: 070308

Effect of Post Emergence Herbicides and their Mixtures on Weed Dynamics, Yield Components and Yield of Rice (*Oryza Sativa L.*), At Guraferda Woreda, South Western Ethiopia

Getachew Mekonnen ^a, Mitiku Woldesenbet ^a & Wubishet Alemu ^b

Abstract- Weeds are the principal limiting biological factor in national rice production, with losses that vary from region to region, depending on the cultivation system, predominant weed communities and weed control methods employed by the farmers. Therefore, the experiment was conducted in Bench Maji Zone at Guraferda Woreda, during the 2017 main cropping season to investigate the effect of Bispyribac-sodium 10% SC, and 2, 4-D amine salt on weeds growth, yield components and yield of rice and to investigate the possibilities of supplementing low doses of herbicides with hand weeding for effective and cost effective weed management. There were 12 treatments comprising: Bispyribac-sodium 10% SC (20 g ha^{-1} , 25 g ha^{-1} , 30 g ha^{-1}), 2, 4-D amine salt (0.75 L ha^{-1} , 1.0 L ha^{-1} , 1.25 L ha^{-1}), Bispyribac-sodium 10% SC 20 g + 2, 4-D amine salt 0.75 L ha^{-1} , Bispyribac-sodium 10% SC 10 g + 2, 4-D amine salt 1.0 L ha^{-1} , Bispyribac-sodium (20 g ha^{-1}) + hand weeding and hoeing at 35DAE, 2, 4-D amine salt (0.75 L ha^{-1}) + hand weeding and hoeing at 35DAE, Weed free and Weedy checks. The design of the experiment was RCBD with three replications. The majority of the weeds in the experimental fields were broadleaved, grassy and sedges. The influence of herbicides on weed density, weed dry biomass, weed control efficiency and weed index were clearly noticeable at harvest. The uppermost weed control efficiency 86.7% was noted from 2, 4-D amine salt 0.75 L ha^{-1} + hand weeding and hoeing at 35 DAE which was in parity with Bispyribac-sodium 20 g ha^{-1} + hand weeding and hoeing at 35 DAE. Bispyribac-sodium 10% SC 25 g ha^{-1} was effective in reducing weed index (18.77%). Suggestively lower number of tiller per plant, panicle length per plant and thousand seed weight was recorded with weedy check. The weed free check treatment recorded 43.76% higher yield over weedy check. Bispyribac-sodium 20 g ha^{-1} + hand weeding and hoeing at 35 DAE gave the highest harvest index (45.13%). The highest yield loss 62.44% was recorded in weedy check. The maximum net benefits were acquired with the application of Bispyribac-sodium 10% SC 25 g ha^{-1} , followed by 2, 4-D amine salt 1.0 L kg ha^{-1} . If low-cost and plenty labour are available Bispyribac-sodium 10% SC 20 g ha^{-1} + hand weeding and hoeing at 35 DAE should be done. With the availability of herbicides, Bispyribac-sodium 10% SC 25 g ha^{-1} followed by 2, 4-D amine salt 1.0 L kg ha^{-1} can be used to prevent the yield loss and to obtain maximum benefits from rice.

Author ^a & ^b: College of Agriculture and Natural Resources, Mizan Tepi University, Mizan Teferi, Ethiopia. e-mail: sibuhmekdes@gmail.com

Author ^b: Lion international trading PLC, Addis Ababa Ethiopia.

Keywords: broadleaved and grass weeds, economic analyses, bispyribac-sodium, 2, 4-d amine salt, yield loss.

I. INTRODUCTION

Rice (*Oryza sativa L.*), is the staple food of over half world's population and in Asia 1.3 billion and four hundreds of millions of people in Africa and Latin America depend on it for their diet [1]. Out of 472.39 million tonnes of Rice production in the world, 85 per cent is used for human consumption. Globally rice is cultivated in an area of 157.8 million hectare with a production of 491.3 million tonnes (2016-2017) [1]. Rice is a recent crop introduced to the Ethiopian farming systems and the cultivation of the crop has begun at Amara Region and Gambella plains in the early 1970's [2]; [3]; [4]. It is considered to be a highly productive crop next to maize in the country [5] and is an important market oriented crop. The introduction and expansion of rice production in suitable agro ecologies, therefore, could be an option to achieve food security and self-sufficiency. The country has immense potentials for growing the crop. According to ministry of agriculture and rural development report [6], the potential area for rice production in Ethiopia is estimated to be about thirty million hectares. Cereals specifically rice the one in which, the government has also recognized it as a millennium crop in light of ensuring food security in Ethiopia. It has also given especial focus to Agriculture in the poverty reduction strategy [7].

However weeds grow profusely in the rice fields and reduce crop yields drastically. Nowadays, weeds are considered as major biological constraints that reduces the potentiality of rice [8]; [9]. The risk due to weeds is lower in rice since the age old plants are transplanted so that the competition from the weeds is lower [10]. Due to weed competition during the crop production the decrease in the yield was estimated to about 16 - 86 % [11].

Among different weed management methods, hand weeding is labourious, costlier and time consuming. Hand weeding is the predominant weed control practice on smallholder farms [12]. This method

had been the oldest method of weed control which consists of hand pulling, hand slashing and hoeing of weeds. It is the major weed control method used in cereals production, but it is labor intensive and slow as compared to other manual weeding operations. It is usually delayed until the weeds are tall enough to be firmly held in the hand [13]. Smallholder farmers spend 50-70% of their total labour time in hand weeding [14]. On top of this, 69% of farmers' children between the ages of 5-14 are forced to leave school and are involved in the agricultural sector, especially at peak period of weeding [15].

Chemical control is a better alternative mechanism to manual weeding because it is cheaper, faster and gives better weed control [14]. The inability to control weeds by hand, lack of labour, and the drudgery involved in weeding in wet and or dry conditions will encourage and increasingly justify the use of herbicides [16]. Herbicide use would also improve the lives of farmers as it is devoid of farmer's engagement in such tedious task which may result in lifelong back deformities. By reducing the labour requirement for weed control, herbicide use could allow additional resources to be invested in food crops to the benefit of food security [17]. Studies showed that herbicides resulted in 97% greater wheat yield in comparison to the farmer practice of one hand weeding in Ethiopia [18]. Chemical control gave 38-55% higher crop yields, and had a 28-50% lower cost than farmer control methods [14].

As described above, weeds can be controlled by different methods. Even though, there exist different mechanisms of weed management, they vary in their efficiency of controlling weeds. Therefore, research has to be conducted to increase the efficiency of these methods and to decrease their hazardous effects. Now a day, there is large scale expansion of crops production in Ethiopia. This necessitates the use of herbicide due to shortage of labour and high labour cost during the peak periods.

Integrating herbicides with other weed management methods is an option for better weed control. IWM does not preclude herbicide use, it includes their judicious use along with other agronomic methods that help crops to compete with weeds and

reduce weed seed production. IWM involves using an agronomical approach to minimize the overall impact of weeds and, indeed, maximize the benefits. The use of a single herbicide may result in shifting the weed flora in favor of the species that are not controlled, thus may increase the problem in the future. Therefore, herbicide combination is applied to broaden the spectrum of weeds controlled and sometimes the combinations can give spectacularly good control at doses considerably below those normally applied in single application. It may be additive or synergistic or prevent rapid detoxification of herbicide and are safer to crops and the user [14].

Consequently, information on herbicidal weed management practices in rice is limited in Southern Ethiopia in general and in Bench Maji Zone in particular. Therefore, the research was conducted to develop efficient, economical and herbicidal weed management practices for rice. The specific objectives were:

- ☞ To find out the effect of Bispyribac-sodium 10% SC, and 2, 4-D amine salt on weeds, and growth, yield components and yield of rice.
- ☞ To investigate the possibilities of supplementing low doses of herbicides with hand weeding for effective weed control.

II. MATERIALS AND METHODS

a) Description of Study Area

The experiment was conducted in Southern Nations Nationalities Peoples Region, Ethiopia during the 2017 main cropping 'Meher' season, in Bench Maji Zone at Guraferda Woreda research site.

b) Experimental Materials

New Rice for Africa (NERICA- 4) was used for this experiment. The key features of the new varieties, panicle can hold up to 400 grains compared to the 75-100 grains of its African parents, with an increase in yield from 1 to 2.5 t/ha which can increase to 5 t/ha with fertilizer use. It also matures 30-50 days earlier than traditional varieties. The adoption and cultivation of new rice varieties are increasing faster than any other food crops in many African countries [19].

Table 1: Description of herbicides used in the experiment

	Common name	Trade name	Chemical name
1	2,4-D Amine Salt	Power 860 SL	2,4-Dichlorophenoxyacetic acid
2	Bispyribac-sodium 10% SC	Pride 100 SC	Sodium 2,6-bis[(4,6-dimethoxy-2-pyrimidinyl)oxy]benzoate

c) Treatments and Experimental Design

The experiment was consisting of 12 treatments:

T1= Bispyribac-sodium 10% SC (20 g ha⁻¹)
(Postemergence)

T2= Bispyribac-sodium 10% SC (25 g ha⁻¹)
(Postemergence)
T3= Bispyribac-sodium 10% SC (30 g ha⁻¹)
(Postemergence)

T4= 2, 4-D amine salt (0.75 L ha^{-1}) (Postemergence)
 T5= 2, 4-D amine salt (1.0 L kg ha^{-1}) (Postemergence)
 T6= 2, 4-D amine salt (1.25 L ha^{-1}) (Postemergence)
 T7= Bispyribac-sodium 10% SC 20 g + 2, 4-D amine salt 0.75 L ha^{-1} (Postemergence)
 T8= Bispyribac-sodium 10% SC 10 g + 2, 4-D amine salt 1.0 L ha^{-1} (Postemergence)
 T9= Bispyribac-sodium (20 g ha^{-1}) + hand weeding and hoeing at four- five weeks after crop emergence
 T10= 2, 4-D amine salt (0.75 L ha^{-1}) + hand weeding and hoeing at four- five weeks after crop emergence
 T11= Weed free check
 T12= Weedy check

The design of the experiment was randomized complete block design (RCBD) with three replications. The plot sizes were 3 m X 2.4m. The distance between adjacent replication and plots were 1 and 0.5 meter respectively. The plot is consisting of 12 rows and 16 plants per rows spacing of 25cm x 15cm. The outer most two rows from each side of a plot and two plants on both ends of each row were considered as border and not be included for recording the observations. Thus, the net plot sizes were 2 m x 1.8m (3.6m^2).

d) Experimental Procedure

The experimental field was prepared following the conventional tillage practice before sowing the crop. In accordance with the specifications of the design, a field layout was prepared. The sizes of each experimental plot were 3 m x 2.4 m (7.2 m^2). The blocks were separated by 1m wide open spaces and the plots within a block were 0.5m apart from each other. Next to lay out the plots were leveled manually. Each treatment was assigned randomly to the experimental plots within a block. The rice NERICA-4 variety, it were planted on June 30/06/ 2017 with a spacing of 25 cm between rows and 15 cm between plants. There were 12 rows in each plot and 16 plants in each row. The herbicides were applied as the treatment in the assigned plots post emergence at tillering stage of rice. The amount of herbicides as per the treatment was calculated and measured using sensitive digital balance and measuring cylinder. Herbicide spray volume with water as carrier were 400-500 l /ha. Spraying was done with manually operated Knapsack sprayer (15 L capacity) using flat-fan nozzle. The spraying was done using a Knapsack sprayer. Hand weeding (hand weeding and hoeing) were done in the assigned plots as per the treatment. Harvesting was done, when the panicle and leaves were turned yellow. The harvested produce was sun dried for 3-5 days. Threshing and winnowing were done simultaneously and manually.

e) Data to be collected

i. Data collection on weeds

Data on weed flora present in the experimental field were recorded during the experimental period.

Weed Density: The weed populations were counted just at the time of first weeding, about 15 days before the expected harvest time. The population count (broadleaved, grass and sedges) were taken with the help of $0.25 \text{ m} \times 0.25 \text{ m}$ quadrate thrown randomly at two places in each plot and were converted to category wise population/density per m^2 .

Dry weight: While recording weed population the aboveground biomass will also be harvested from each quadrate. The harvested weeds were placed into paper bags separately and sun dried before drying in oven at a 65°C temperature till constant weight subsequently the dry weight were measured.

Parameters for Weed Control

Weed Index: It will be measured from a particular treatment when compared with a weed -free treatment and will be expressed as percentage of yield potential under weed free.

$$\text{Weed Index} = \frac{x-y}{x} \times 100$$

Where X= Yield from weed free; Y= Yield from a particular treatment

Weed Control Efficiency (WCE) - It were calculated from weed control treatments in controlling weeds.

$$\text{WCE} = \frac{(WDC - WDT)}{WDC} \times 100$$

Where WDC=weed dry matter in control; WDT= weed dry matter in treatment

ii. Data collection on crop

Days to heading: It was recorded when the ears or panicles were fully visible on 50% of the plants from each plot by visual observation.

Plant height (cm): It was determined from measurements of 10 randomly pre-tagged mother shoots from ground level to the top of the spike excluding the awns at physiological maturity.

Number of panicles per plant: Number of panicles per plant were counted from the pre-tagged 10 plants at physiological maturity and the average were recorded as number of panicles per plant of m^{-2} .

Days to maturity: Days to maturity were measured as the number of days from emergency to the day when 85% of the plants reached physiological maturity, i.e. both panicles and plants turning yellow (senescing) based on visual observation.

Thousand grain weight: Thousand grains were counted in each plot using electronic seed counter from a bulk of threshed grain and their weight were measured using a sensitive balance at harvest and the weight were adjusted to 12% moisture content.

Total Dry Biomass (kg ha⁻¹): Total dry biomass yield including straw and panicles of plants in a net plot area were measured using spring balance after sun drying to a constant weight.

Harvesting index (%): It were calculated as the ratio of grain yield to biological yield and expressed in percentage.

$$HI(\%) = \frac{\text{Grain Yield}}{\text{Biological Yield}} * 100$$

yield loss (YL): Percent relative yield loss were calculated as the difference of grain yield from weed free yield and weedy yield and expressed in percentage.

$$RYL = \frac{WFY - WY}{WFY} * 100; \text{ Where,}$$

YL= Yield Loss, WFY=Weed Free Yield, WY=Weedy Yield

f) Data Analysis

Data were analyzed following a procedure appropriate to the design of the experiment [20] using

appropriate statistical software. The treatment means that were significantly different at 5% levels of significance were separated using the LSD test.

III. RESULT AND DISCUSSION

a) Weed Parameters

i. Weed Community

The major weeds in the experimental fields were broadleaved, grassy and sedges. Fifty four weed species found infesting the experimental fields belonged to nineteen families. The major weed families competing vigorously with rice were Poaceae (12) and Asteraceae (10) and Chenopodiaceae (4). The current weed flora recorded was in accordance with the previous studies. They reported that there were as many as 350 species of more than 150 genera of 60 plant families were considered weeds of rice. Out of these, weeds of poaceae family ranked first that include more than 80 weeds [21].

Table 2: Weed community recorded in rice field at the experimental sites in 2017 cropping season

Weed species	Families	Life form
<i>Abyssinian grass</i>	Poaceae	Grass
<i>Ageratum conyzoides</i>	Asteraceae	Herb
<i>Amaranthus graecizans L.</i>	Amaranthaceae	A herb
<i>Amaranthus hybridus L.</i>	Amaranthaceae	Herb
<i>Amharanthus spinosus L.</i>	Amaranthaceae	Herb
<i>Argemone mexicana L</i>	Papaveraceae	Herb
<i>Avena fatua L.</i>	Poaceae	A grass
<i>Avena vaviloviana</i>	Poaceae	Grass
<i>Bidens pilosa</i>	Asteraceae	Herb
<i>Chenopodium fasciculatum</i>	Chenopodiaceae	Herb
<i>Chenopodium opulifolium</i>	Chenopodiaceae	Herb
<i>Chenopodium opulifolium Schr.</i>	Chenopodiaceae	A herb
<i>Chenopodium procerum</i>	Chenopodiaceae	Herb
<i>Commelina benghalensis L.</i>	Commelinaceae	Herb
<i>Commelina latifolia A. Rich</i>	Commelinaceae	P herb
<i>Coreopsis borianiana</i>	Asteraceae	Herb
<i>Cuscuta spp</i>	Convolvulaceae	Parasite
<i>Cynodon dactylon (L.) Pers.</i>	Poaceae	P grass
<i>Cynodon nemfuensis</i>	Poaceae	Grass
<i>Cynoglossum lanceolatum Forssk</i>	Boraginaceae	Herb
<i>Cyperus assimilis Steud</i>	Cyperaceae	Sedge
<i>Cyperus esculentus L.</i>	Cyperaceae	Sedge
<i>Cyperus rotundus L.</i>	Cyperaceae	Sedge
<i>Datura stramonium L.</i>	Solanaceae	A herb
<i>Digitaria abyssinica</i>	Poaceae	Grass
<i>Eleusine indica (L.) Gaertn</i>	Poaceae	Grass

Eragrostis cilianensis (All.) Janchen	Vign. Ex	Poaceae	A grass
Galinsoga parviflora Cav		Asteraceae	Herb
Galium hamatum L.		Rubiaceae	A herb
Guzotia scabra (Vis.) Chiov.		Asteraceae	A herb
<i>Heliotropium cinerascens</i> Steud. ex DC.		Boraginaceae	Herb
<i>Lantana camara</i> L.		Verbenaceae	Shrub
<i>Launaea cornuta</i>		Asteraceae	Herb
Lolium temulentum L.		Poaceae	Grass
<i>Mimosa invisa</i>		Fabaceae	Herb
<i>Nicandra physalodes</i>		Solanaceae	Herb
<i>Oldenlandia herbacea</i> L.		Rubiaceae	Herb
Orobanche ramosa L		Orobanchaceae	Herb
Oxalis corniculata L		Oxalidaceae	Herb
Oxygonum sinuatum (Meissn.) Dammer		Polygonaceae	A herb
Parthenium hysterophorus L.		Asteraceae	A herb
<i>Phalaris paradoxa</i> L.		Poaceae	Grass
Polygonum nepalense Meisn		Polygonaceae	Herb
Rumex abyssinicus Jacq.		Polygonaceae	Herb
<i>Senna didymobotrya</i> (Fresen.)		Fabaceae	Herb
Setaria verticillata (L.) Beauv.		Poaceae	A grass
Snowdenia polystachya (Fresen.) Pilg.		Poaceae	A grass
Solanum nigrum L.		Solanaceae	A herb
Stellaria media L.		Caryophyllaceae	Annual
<i>Tagetes minuta</i> L.		Asteraceae	Herb
Tapinanthus globiferus		Loranthaceae	Annual
Tribulus terrestris L.		Zygophyllaceae	A herb
Xanthium spinosum L.		Asteraceae	A herb
<i>Xanthium strumarium</i>		Asteraceae	Herb

ii. Weed density

Effect of herbicides on weed density was clearly visible at harvest. Weed density differed significantly due to herbicidal weed management practices at harvest. Among all the treatments, the weed free treatment and weedy check plots exhibited lowest and highest weed density m^{-2} respectively at harvest. The highest number of weeds per square meter was recorded in weedy check plots followed by 2, 4-D amine salt $0.75 L ha^{-1}$ for broad leaves, sedges and while the lowest weed population were recorded in weed free plot followed by post - emergence application of Bispyribac-sodium 10% SC $25 g ha^{-1}$ and Bispyribac-sodium 10% SC $20 g + 2, 4-D$ amine salt $0.75 L ha^{-1}$. The proportion of grassy weed was higher than other weeds. Grasses persist in all of the principal crops and are a major cause for this distress. This is in accordance with the findings of [22]. The lower weed density with weed free and other herbicidal treatment might be due to inherent ability of the chemical to affect the cell division, cell growth and hampering the germination of weeds. The finding was in

conformity with the finding of [23], [24] and [25] they also reported similar results with herbicides application in rice.

iii. Weed Dry Biomass

The analysis of variance showed significant difference on the influence of herbicidal weed management practices on the weed dry matter at harvest. The data on dry weight of weeds at harvest was presented in Table 3. At harvest, minimum weed dry weight was registered with the application of 2, 4-D amine salt $0.75 L ha^{-1} +$ hand weeding and hoeing at 35 DAE it is also stastically at par with the Bispyribac-sodium $20 g ha^{-1} +$ hand weeding and hoeing at 35 DAE treatment. Herbicide application resulted in significant reduction in weed dry weight over weedy check. With the increase in Bispyribac-sodium 10% SC and 2, 4-D amine salt, the weed dry weight significantly decreased, while the results were inconsistent with the application of Bispyribac-sodium 10% SC $25 g ha^{-1}$ and 2, 4-D amine salt $1.0 L kg ha^{-1}$. The rate of 2, 4-D amine

salt and Bispyribac-sodium 10% SC application may depend upon soil types, rainfall and temperature. In contrast, weedy check plots recorded highest weed dry matter (525.33gm^{-2}). [26] also reported that herbicide application decreased the dry biomass of weeds; however, this decrement depends on several factors, for example, duration of the crop, type of weed species, herbicides, fertilizer etc.

iv. *Weed control efficiency*

The highest weed control efficiency (86.7%) was recorded from 2, 4-D amine salt 0.75 L ha^{-1} + hand weeding and hoeing at 35 DAE which was in parity with Bispyribac-sodium 20 g ha^{-1} + hand weeding and hoeing at 35 DAE. The increasing rate for Bispyribac-sodium herbicide application proved more efficient than their lower rates of its application, thus; higher the weed control efficiency of a treatment, the greater was the weed control. The higher weed control efficiency could be attributed to the lower weed population and weed dry weight in these treatments. It is effective against many annual broad leaved and grassy weeds, resulting higher

weed control efficiency. The results are in agreement with the findings of [27] and [9]. Among all the weed management practices, weed free plots recorded highest WCE, which might be due to decrease in weed biomass as compared to rest of the weed management practices. The highest WCE with weed free treatment also reported by [28], [29].

v. *Weed Index*

The highest weed Index (72.25%) was recorded with un weeded check, which indicated as by 72.25 per cent yield loss in un weeded check. Such yield losses due to weed competition was also reported by [30]. Among the herbicide treatments, Bispyribac-sodium 10% SC 25 g ha^{-1} (18.77%) was effective in reducing weed index followed by 2, 4-D amine salt 1.0 L kg ha^{-1} (21.75 %) and Bispyribac-sodium 10% SC 20 g ha^{-1} + 2, 4-D amine salt 0.75 L ha^{-1} (21.85 %). Better weed control efficiency and broad spectrum of control of these herbicides might have reduced weed index significantly. Similar results were reported by [31] and [30].

Table 3: Effect of weed management practices, on total weed density (m^{-2}) and dry biomass (gm^{-2}), weed control efficiency and Weed index at harvest of rice in 2017 cropping season

	Weed density	Weed dry biomass	WCE	WI
Weed management practices				
Bispyribac-sodium 10% SC 20 g ha^{-1}	156.67 ^{ab}	295.63 ^b	43.73 ^b	38.32 ^b
Bispyribac-sodium 10% SC 25 g ha^{-1}	80.00 ^{bcd}	124.93 ^c	75.66 ^a	18.77 ^c
Bispyribac-sodium 10% SC 30 g ha^{-1}	97.33 ^{abc}	136.43 ^c	74.21 ^a	27.88 ^{bc}
2, 4-D amine salt 0.75 L ha^{-1}	168.67 ^a	398.70 ^{ab}	27.33 ^b	60.85 ^a
2, 4-D amine salt 1.0 L kg ha^{-1}	72.00 ^{bcd}	107.11 ^c	79.29 ^a	21.75 ^c
2, 4-D amine salt 1.25 L ha^{-1}	71.67 ^{bcd}	133.03 ^c	74.35 ^a	29.53 ^{bc}
Bispyribac-sodium 10% SC 20 g ha^{-1} + 2, 4-D amine salt 0.75 L ha^{-1}	80.00 ^{bcd}	123.06 ^c	76.34 ^a	21.85 ^c
Bispyribac-sodium 10% SC 10 g ha^{-1} + 2, 4-D amine salt 1.0 L ha^{-1}	85.33 ^{abcd}	140.20 ^c	73.64 ^a	22.60 ^{bc}
Bispyribac-sodium 20 g ha^{-1} + hand weeding and hoeing at 35 DAE	70.00 ^{bcd}	98.86 ^c	82.20 ^a	15.56 ^{cd}
2, 4-D amine salt 0.75 L ha^{-1} + hand weeding and hoeing at 35 DAE	62.00 ^{cd}	66.26 ^c	86.71 ^a	18.21 ^c
Weed free check	0.00 ^d	0.00 ^c	100.00 ^a	0.00 ^d
Weedy check	133.33 ^{abc}	525.33 ^a	0.00 ^c	72.25 ^a
LSD (5%)	87.36	153.84	26.92	16.36
CV (%)	57.48	50.71	24.05	33.36

CV= coefficient of variation, DAE=days after crop emergence, LSD= least significant difference, Means in the same column followed by the same letters are not significantly different at 5% level of significance

b) *Crop Parameters*

i. *Phenology and growth*

a. *Days to 85 % physiological maturity*

The physiological maturity of the rice crop was significantly affected by weed management practices.

Thus, the plants in plots treated with 2, 4-D amine salt 0.75 L ha^{-1} + hand weeding and hoeing at 35 DAE, Bispyribac-sodium 20 g ha^{-1} + hand weeding and hoeing at 35 DAE were significantly earlier in attaining 85% physiological maturity than the other treatments. The results also demonstrated that weed infestation

throughout the growing period delayed 85% physiological maturity (Table 4). In conformity with this result, of [32] also identified that the plants in unweeded plots took the highest time to reach 90% physiological maturity. The result was in contrast to the findings of [33], who stated that treating plots with chemical and supplementing with hand weeding at intervals helped to reduce number of days to maturity in cowpea.

b. *Plant height*

Analysis of variance showed that the plant height was significantly affected due to the weed

management practices. Application of herbicides alone or in combination with hand weeding resulted in significantly higher plant height than in weedy check (Table 3). The taller plant height of the treatments might be due to better nutrient utilization, accelerated cell enlargement and meristematic tissue development under least weed growth environment. This finding is in conformity with the findings of [28]; [34]. Comparable results were also reported by [35]. Similarly, in wheat plant height was remarkably increased by all weed management methods compared to weedy check [18].

Table 4: Effect of weed management practices on days to 50% flowering, days to 85% physiological maturity and plant height (cm) at harvest of rice in 2017 cropping season

Weed management practices	Days to 50% flowering	Days to 85 % physiological maturity	Plant height
Bispyribac-sodium 10% SC 20 g ha ⁻¹	86.66 ^{ab}	117.66 ^b	79.80 ^{bcd}
Bispyribac-sodium 10% SC 25 g ha ⁻¹	84.33 ^{ab}	115.33 ^{bc}	77.80 ^{bcd}
Bispyribac-sodium 10% SC 30 g ha ⁻¹	84.33 ^{ab}	117.00 ^{bc}	87.53 ^{abc}
2, 4-D amine salt 0.75 L ha ⁻¹	86.66 ^{ab}	118.33 ^b	66.73 ^d
2, 4-D amine salt 1.0 L kg ha ⁻¹	85.66 ^{ab}	117.00 ^{bc}	95.53 ^{ab}
2, 4-D amine salt 1.25 L ha ⁻¹	83.66 ^b	117.66 ^b	87.20 ^{abc}
Bispyribac-sodium 10% SC 20 g + 2, 4-D amine salt 0.75 L ha ⁻¹	85.33 ^{ab}	118.33 ^b	78.93 ^{bcd}
Bispyribac-sodium 10% SC 10 g + 2, 4-D amine salt 1.0 L ha ⁻¹	87.66 ^{ab}	117.66 ^b	74.33 ^{cd}
Bispyribac-sodium 20 g ha ⁻¹ + hand weeding and hoeing at 35 DAE	85.00 ^{ab}	115.66 ^{bc}	82.40 ^{abcd}
2, 4-D amine salt 0.75 L ha ⁻¹ + hand weeding and hoeing at 35 DAE	84.66 ^{ab}	115.33 ^{bc}	92.30 ^{abc}
Weed free check	83.66 ^b	113.66 ^c	100.33 ^a
Weedy check	88.33 ^a	122.00 ^a	43.13 ^e
LSD (5%)	4.25	3.48	18.20
CV (%)	2.93	1.75	13.35

CV= coefficient of variation, DAE=days after crop emergence, LSD= least significant difference, Means in the same column followed by the same letters are not significantly different at 5% level of significance

ii. *Yield components, yield and harvest index*

a. *Number of tiller per plant*

Number of tillers per plant recorded was significantly influenced by the weed control treatments imposed (Table 4). Weed free treatments registered highest number of tillers per plant which was significantly higher than weedy check. However, it was comparable with all other herbicides treatments, facilitating better utilization of plant nutrients by crop under reduced competition from weeds evident from better weed control efficiency and tiller production up to maximum tillering stage. The lowest number of tillers was registered with weedy check. These findings are in accordance with those of [35]. This is also in agreement with the findings of [36] and [28]. [37] observed that early post-emergence application of pyrazosulfuron-ethyl 10 to 15 g ha⁻¹ significantly increased number of

effective tillers per plant and grains per panicle. In contrast to this result, [38] reported that duration of weed interference did not significantly affect number of tillers per plant of irrigated common bean which could be due to more supply of water that might have increased the competitive ability of the crop.

b. *Panicle length per plant*

Analysis of variance showed that the effect of weed management practices had significant effect on panicle length (Table 4). Significantly lower number of tiller per plant, panicle length per plant and thousand seed weight (g) was recorded with weedy check. These are in conformity with the findings of [38]; [40] [41].

c. *Thousand Seed Weight*

The grains under Bispyribac-sodium 10% SC 25 g ha⁻¹ plots recorded the highest weight (39.81g) which

was statistically at par with 2, 4-D amine salt 0.75 L ha⁻¹ + hand weeding and hoeing at 35 DAE, Bispyribac-sodium 20 g ha⁻¹ + hand weeding and hoeing at 35 DAE (Table 4). The plants raised under weed free environment utilized available resources to their maximum benefit leading to increased seed weight.

Similar to the current result, [42] also reported that thousand seed weight were increased with the increasing length of weed-free conditions and decreased with the increasing length of weedy conditions.

Table 5: Effect of weed management practices on Number of tiller per plant, Panicle length per plant and thousand seed weight (g) of rice in 2017 cropping season

	Number of tiller per plant	Panicle length per plant	Thousand seed weight (g)
Weed management practices			
Bispyribac-sodium 10% SC 20 g ha ⁻¹	14.00 ^{abc}	10.40 ^{bc}	35.37 ^{bcd}
Bispyribac-sodium 10% SC 25 g ha ⁻¹	17.06 ^a	12.60 ^{ab}	39.81 ^a
Bispyribac-sodium 10% SC 30 g ha ⁻¹	13.40 ^{abc}	10.66 ^{bc}	37.27 ^{abcd}
2, 4-D amine salt 0.75 L ha ⁻¹	11.13 ^{bc}	11.20 ^{bc}	33.22 ^d
2, 4-D amine salt 1.0 L kg ha ⁻¹	15.26 ^{ab}	12.00 ^{abc}	37.06 ^{abcd}
2, 4-D amine salt 1.25 L ha ⁻¹	13.13 ^{abc}	12.00 ^{abc}	36.42 ^{abcd}
Bispyribac-sodium 10% SC 20 g + 2, 4-D amine salt 0.75 L ha ⁻¹	12.93 ^{abc}	10.06 ^{bc}	37.40 ^{abc}
Bispyribac-sodium 10% SC 10 g + 2, 4-D amine salt 1.0 L ha ⁻¹	14.66 ^{ab}	12.53 ^{abc}	36.02 ^{abcd}
Bispyribac-sodium 20 g ha ⁻¹ + hand weeding and hoeing at 35 DAE	15.33 ^{ab}	12.86 ^{ab}	37.98 ^{ab}
2, 4-D amine salt 0.75 L ha ⁻¹ + hand weeding and hoeing at 35 DAE	14.93 ^{ab}	11.98 ^{abc}	39.63 ^a
Weed free check	18.13 ^a	14.20 ^a	39.14 ^{ab}
Weedy check	8.86 ^c	9.73 ^c	33.48 ^{cd}
LSD (5%)	5.30	2.84	4.07
CV (%)	22.27	14.39	6.52

d. Grain Yield

Grain yield of rice influenced significantly by various weed control treatments. The weed free treatment recorded significantly higher grain yield of 5701.9 kg ha⁻¹, among all the treatments. The weedy check treatment produced significantly lowest grain yield ha⁻¹ among all the treatments. The weed free check treatment recorded 43.76% higher yield over weedy check. Similar finding was reported by [43] and [44]. Among chemical method of weed control, significantly higher grain yield of 4776.5 kg ha⁻¹ was produced with Bispyribac-sodium 20 g ha⁻¹ + hand weeding and hoeing at 35 DAE which was at par with 2, 4-D amine salt 0.75 L ha⁻¹ + hand weeding and hoeing at 35 DAE (4618.0) and Bispyribac-sodium 10% SC 25 g ha⁻¹ (4612.5); those treatments recorded with 41.06 %; 40.41 % and 40.27 higher yield over weed check respectively (Table 5). The increased grain yield with these treatments is due to reduced weed density, weed biomass and better weed control efficiency along with improvement in yield attributes like number of effective tillers per plant, panicles length, and 1000 grain weight. This corroborates with the findings of [45]. On the other hand, significantly lower yield was obtained in weedy

check than the other treatments. The minimum yield in unweeded check is the result of severe weed competition by uncontrolled weed growth. Similar findings were also reported by [22].

e. Aboveground Dry Biomass Yield

Like grain yield, the aboveground dry biomass yield was also highly affected by weed management practices. The highest aboveground dry biomass yield (10797 kg ha⁻¹) was obtained in 2, 4-D amine salt 0.75 L ha⁻¹ + hand weeding and hoeing at 35 DAE treated plots which was statistically at par with 2, 4-D amine salt 1.0 L kg ha⁻¹, Bispyribac-sodium 10% SC 25 g ha⁻¹ at all the application rates, and all the herbicide mixtures. Weedy check plots had the lowest aboveground dry biomass yield among the treatments (Table 5). Prolonged weed competition resulted in reduced biomass accumulation and lesser panicle length per plant and thousand seed weight which ultimately translated into lower grain yield. Increased biomass accumulation by weeds with the increasing span of weed interference period might also be a plausible cause of yield reduction in rice. As [46] stated, weed dry matter has been found to be highly correlated with crop yield loss.

f. *Harvest Index*

The result indicated that there was significant variation on harvest index among the weed management treatments evaluated. Bispyribac-sodium 20 g ha^{-1} + hand weeding and hoeing at 35 DAE gave the highest harvest index (45.13%) while the lowest harvest index (26.85%) was recorded for weedy check (Table 3). The findings of present study are in conformity with the results obtained by [47]; [48] and [49].

g. *Yield Loss*

The weeds under different weed management treatments caused variability in the amount of grain yield loss in rice. The highest yield loss (62.44%) was recorded in weedy check. This was statistically in parity with the loss registered with the application of 2, 4-D amine salt 0.75 L ha^{-1} . All these weed management practices recorded a significant yield loss compared to other treatments. Weeds are the principal limiting

biological factor in global rice production, with losses that vary from country to country, depending on the cultivation system, predominant weed communities and weed control methods employed by the farmers [50]. Worldwide, it is estimated that weeds cause 9% of rice crop losses [51], with reductions in rice paddies of 94% to 96% in the Philippines [10]; in Colombia, losses of 30% to 73% have been reported [52]. Appropriate control methods in rice crops are essential to minimize the negative effect of weeds [53]. This difference in decrease in rice yield reported by various researchers might be due to the differences in weed flora, crop varieties and environmental conditions prevailing in the study area. Therefore, the difference in time of weed removal might have contributed to this variation in yield. The herbicides might have dissipated soon from the soil under the influence of environmental conditions prevailing during the crop season.

Table 6: Effect of weed management practices on grain yield, aboveground dry biomass, harvest index and yield loss of rice in 2017 cropping season

	Grain Yield	Aboveground Dry Biomass Yield	Harvest Index	Yield Loss
Weed management practices				
Bispyribac-sodium 10% SC 20 g ha^{-1}	3554.3 ^c	10490.8 ^a	35.72 ^{abc}	40.71 ^{ba}
Bispyribac-sodium 10% SC 25 g ha^{-1}	4612.5 ^b	11043.6 ^a	41.90 ^a	22.17 ^b
Bispyribac-sodium 10% SC 30 g ha^{-1}	4085.2 ^{bc}	11141.4 ^a	38.15 ^{ab}	32.96 ^b
2, 4-D amine salt 0.75 L ha^{-1}	2223.6 ^d	8820.9 ^{bc}	29.87 ^{bcd}	56.01 ^a
2, 4-D amine salt 1.0 L $\text{kg} \text{ha}^{-1}$	4468.2 ^{bc}	10791.2 ^a	41.34 ^a	24.78 ^b
2, 4-D amine salt 1.25 L ha^{-1}	4038.5 ^{bc}	10314.5 ^{ab}	38.98 ^{ab}	32.28 ^b
Bispyribac-sodium 10% SC 20 g + 2, 4-D amine salt 0.75 L ha^{-1}	4440.8 ^{bc}	11029.6 ^a	40.20 ^{ab}	27.25 ^b
Bispyribac-sodium 10% SC 10 g + 2, 4-D amine salt 1.0 L ha^{-1}	4385.9 ^{bc}	10585.5 ^a	41.40 ^a	26.91 ^b
Bispyribac-sodium 20 g ha^{-1} + hand weeding and hoeing at 35 DAE	4776.5 ^b	10558.4 ^a	45.13 ^a	21.38 ^b
2, 4-D amine salt 0.75 L ha^{-1} + hand weeding and hoeing at 35 DAE	4618.0 ^b	11665.8 ^a	41.72 ^a	22.03 ^b
Weed free check	5701.9 ^a	10705.2 ^a	45.63 ^a	18.68 ^b
Weedy check	1580.4 ^d	8439.1 ^c	26.85 ^c	62.44 ^a
LSD (5%)	919.32	1568.9	11.15	22.26
CV (%)	13.43	8.85	16.92	

CV= coefficient of variation, DAE=days after crop emergence, LSD= least significant difference, Means in the same column followed by the same letters are not significantly different at 5% level of significance

c) *Partial Budget Analysis*

The result of the partial budget analyses showed that Weed free check accrued 25.5 and 26.6% higher total variable cost than Bispyribac-sodium 20 g ha^{-1} and 2, 4-D amine salt 0.75 L ha^{-1} both superimposed with hand weeding, respectively (Table 6). On the other hand the highest net benefits were obtained with the application of Bispyribac-sodium 10% SC 25 g ha^{-1} , followed by 2, 4-D amine salt 1.0 L $\text{kg} \text{ha}^{-1}$.

In agreement with the result, most studies showed that, applying herbicide or herbicide plus manual weeding was more economical than manual or hand weeding alone [54].

Table 7: Results of partial budget analysis of weed management practices in rice in 2017 cropping season

	Average yield (kg ha ⁻¹)	Adjusted yield (kg ha ⁻¹) 10% down	Total variable cost (ETB ha ⁻¹)	Gross return (ETB ha ⁻¹)	Net return (ETB ha ⁻¹)
Weed management practices					
Bispyribac-sodium 10% SC 20 g ha ⁻¹	3554.3	3199	8708	47983	39275
Bispyribac-sodium 10% SC 25 g ha ⁻¹	4612.5	4151	10217	62269	52052
Bispyribac-sodium 10% SC 30 g ha ⁻¹	4085.2	3677	9565	55150	45585
2, 4-D amine salt 0.75 L ha ⁻¹	2223.6	2001	6912	30019	23107
2, 4-D amine salt 1.0 L kg ha ⁻¹	4468.2	4021	10022	60321	50299
2, 4-D amine salt 1.25 L ha ⁻¹	4038.5	3635	9502	54520	45018
Bispyribac-sodium 10% SC 20 g + 2, 4-D amine salt 0.75 L ha ⁻¹	4440.8	3997	10025	59951	49926
Bispyribac-sodium 10% SC 10 g + 2, 4-D amine salt 1.0 L ha ⁻¹	4385.9	3947	9951	59210	49259
Bispyribac-sodium 20 g ha ⁻¹ + hand weeding and hoeing at 35 DAE	4776.5	4299	14108	64483	50374
2, 4-D amine salt 0.75 L ha ⁻¹ + hand weeding and hoeing at 35 DAE	4618	4156	13894	62343	48449
Weed free check	5701.9	5132	18948	76976	58028
Weedy check	1580.4	1422	2134	21335	19202

The hand weeding is laborious and generally more expensive. From the computation of weed control cost it was observed that the maximum cost of weed control (11250 ETB ha⁻¹) was required for the treatment weed free check which was due to maximum labour requirement followed by Bispyribac-sodium 20 g ha⁻¹ + hand weeding and hoeing at 35 DAE, 2, 4-D amine salt 0.75 L ha⁻¹ + hand weeding and hoeing at 35 DAE which may be due to high volume of herbicide and labour cost. Similar results on the weed control costs were as also observed by [25].

In weed free check, the benefit cost (3.1) was lesser even though the grain yield and gross returns were higher and was due to higher cost of cultivation as a result of high cost incurred towards labour for weeding (Table 5). Due to the severe crop weed competition throughout the crop growth period resulting in decreased growth and yield contributing parameters. Similar finding was observed by [54]. These results are also in conformity with the findings of [48] and [56].

IV. CONCLUSION AND RECOMMENDATIONS

Rice is a newly introduced crop in Ethiopia. However, its importance is increasing as evidenced by the increasing in production and area covered. Due to the nature of the crop and its high productivity than other field crops, rice production in Guraferda district has been increasing and contributing both for income and food security of farmers. Weeds are the principal limiting biological factor in global rice production, with losses that vary from country to country, depending on the cultivation system, predominant weed communities and weed control methods employed by the farmers.

Hence, the experiment was conducted in Southern Nations Nationalities Peoples Region, Ethiopia during the 2017 main cropping 'Meher' season, in Bench Maji Zone at Guraferda Woreda research site. The objectives of the study were to find out the effect of Bispyribac-sodium 10% SC, and 2, 4-D amine salt on weeds, growth, yield components and yield of rice and to investigate the possibilities of supplementing low doses of herbicides with hand weeding for effective weed control.

New Rice for Africa variety four was used for this experiment. The research was consisting of 12 treatments Viz: Bispyribac-sodium 10% SC (20 g ha⁻¹), Bispyribac-sodium 10% SC (25 g ha⁻¹), Bispyribac-sodium 10% SC (30 g ha⁻¹), 2, 4-D amine salt (0.75 L ha⁻¹), 2, 4-D amine salt (1.0 L kg ha⁻¹), 2, 4-D amine salt (1.25 L ha⁻¹), Bispyribac-sodium 10% SC 20 g + 2, 4-D amine salt 0.75 L ha⁻¹, Bispyribac-sodium 10% SC 10 g + 2, 4-D amine salt 1.0 L ha⁻¹, Bispyribac-sodium (20 g ha⁻¹) + hand weeding and hoeing at four-five weeks after crop emergence, 2, 4-D amine salt (0.75 L ha⁻¹) + hand weeding and hoeing at four- five weeks after crop emergence, Weed free check, Weedy check. The design of the experiment was RCBD with three replications.

The most important weeds in the experimental fields were broadleaved, grassy and sedges. The influence of herbicides on weed density was clearly visible at harvest. The lowest weed dry weight was recorded with the application of 2, 4-D amine salt 0.75 L ha⁻¹ + hand weeding and hoeing at 35 DAE it is also statistically at par with the Bispyribac-sodium 20 g ha⁻¹ + hand weeding and hoeing at 35 DAE treatment. The

highest weed control efficiency 86.7% was recorded from 2, 4-D amine salt 0.75 L ha⁻¹ + hand weeding and hoeing at 35 DAE which was in parity with Bispyribac-sodium 20 g ha⁻¹ + hand weeding and hoeing at 35 DAE. Among the herbicide treatments, Bispyribac-sodium 10% SC 25 g ha⁻¹ 18.77% was effective in reducing weed index followed by 2, 4-D amine salt 1.0 L kg ha⁻¹ 21.75 % and Bispyribac-sodium 10% SC 20 g + 2, 4-D amine salt 0.75 L ha⁻¹ 21.85 %.

The results also confirmed that weed infestation throughout the growing period delayed 85% physiological maturity. Significantly lower number of tiller per plant, panicle length per plant and thousand seed weight was recorded with weedy check. The weed free check treatment recorded 43.76% higher yield over weedy check. Among chemical method of weed control, significantly higher grain yield of 4776.5 kg ha⁻¹ was produced with Bispyribac-sodium 20 g ha⁻¹ + hand weeding and hoeing at 35 DAE which was at par with 2, 4-D amine salt 0.75 L ha⁻¹ + hand weeding and hoeing at 35 DAE (4618.0) and Bispyribac-sodium 10% SC 25 g ha⁻¹ 4612.5, those treatments recorded with 41.06 %; 40.41 % and 40.27 higher yield over weed check respectively. Bispyribac-sodium 20 g ha⁻¹ + hand weeding and hoeing at 35 DAE gave the highest harvest index (45.13%) while the lowest harvest index (26.85%) was recorded for weedy check. The highest yield loss 62.44% was recorded in weedy chec. The outcome of the partial budget analyses indicated that weed free check increased 25.5 and 26.6% higher total variable cost than Bispyribac-sodium 20 g ha⁻¹ and 2, 4-D amine salt 0.75 L ha⁻¹ both superimposed with hand weeding, respectively. On the other hand the maximum net benefits were acquired with the application of Bispyribac-sodium 10% SC 25 g ha⁻¹, followed by 2, 4-D amine salt 1.0 L kg ha⁻¹. The hand wedding is laborious and generally more expensive. If cheaper and ample labour are available Bispyribac-sodium 10% SC 20 g ha⁻¹ + hand weeding and hoeing at 35 DAE should be done. With the availability of herbicides, Bispyribac-sodium 10% SC 25 g ha⁻¹ followed by 2, 4-D amine salt 1.0 L kg ha⁻¹ can be used to preclude the yield loss and to obtain maximum benefits from rice.

ACKNOWLEDGEMENTS

We are grateful to the Lion International trading PLC for the financial support. Our sincere gratitude is due to Tilahun Damena; senior agro chemical Experts at lion International trading PLC and all other staff members for providing us facilities and services required for this research.

REFERENCES RÉFÉRENCES REFERENCIAS

- FAO. 2015. *Statistic Information*. Food and Agriculture Organization of the United Nations, Accessed on 25th Sept, 2015.
- Ethiopian Institute of Agricultural Research (EIAR), 2011. Empowering Farmers' Innovation, Series No. 2: Rice Extension Approaches and Extension Packages in Ethiopia.
- Gebremedhin, B. and D. Hoekstra (2007). Cereal marketing and household market participation in Ethiopia: the case of teff, wheat and rice. Proceeding of the 2nd AAAE Conference. Accra, Ghana. Pp243-252.
- Yemane Asmelash, 2014. Determinants of adoption of upland rice varieties in Fogera district, South Gondar, Ethiopia. *Journal of Agricultural Extension and Rural Development*. Vol. 8(12), pp. 332-338 October, 2014.
- Central statistical Agency of Ethiopia, 2015.
- Ministry of Agricultural and Rural Development (MoARD) (2010). National Rice Research Development Strategy of Ethiopia.
- Dawit Alemu, 2015. FRG II Project, Ethiopian Institute of Agricultural Research, Addis Ababa, Ethiopia
- Kumar V, Ladha JK, Direct seeded rice. Recent developments and future research needs. *Adv. Agron*, 2011; 111:229-413.
- Rao, A. and Nagamani, A. 2013. Ecological efficient weed management approaches for rice in tropical Asia, page.78-87. In: *Protection. 4th Tropical Weed Science Conference*; 2013. January 23-25, 2013, Chiang Mai, Thailand
- Chauhan, B.S and Johnson, D.E.2011. Relative performance of shoot and root competition in dry seeded rice growing with jungle rice (*Echinochloa colona*) and *Ludwigia (Ludwigia hyssopifolia)*. *Weed Science*; 58:295- 229.
- Duary B, Mondal DC, Hossain, integrated weed management in direct seeded dry sown rice in the lateritic belt of West Bengal. *Indian J. of weed sci*, 2004; 37 (1, 2):101-102.
- Vissoh, P.V., Gbehounou, G., Ahanchede, A., Kuyper, T.W. and Roling, N.G. 2004. Weeds as Agricultural Constraint to Farmers in Benin: Results of a Diagnostic Study. *Nigerian Journal of Agricultural Science*, 52 (3 & 4): 305-329.
- Rezene Fessehaie and Kedir Nefo. 2006. Review of weed research in highland and lowland pulses. pp. 133-167. In: Abraham Tadesse(ed.), *Increasing Crop Production through Improved Plant Protection. Volume I*. Addis Ababa, Ethiopia.
- Chikoye, D., Ellis, J., Riches, C. and Kanyomeka, L. 2007. Weed management in Africa: experiences, challenges and opportunities. *XVI International Plant Protection Congress*, 652-653.
- Ishaya, D.B., Tunku, P. and Yahaya, M.S. 2008. Effect of pre-emergence herbicide mixtures on cowpea at Samaru in Northern Nigeria. *Crop Protection*, 27: 1105-1109.

16. Mashingaidze, A.B., Chivinge, O.C., Muzenda, S., Barton, A.P., Ellis, J.J., White, R. and Riches, C.R. 2003. Solving Weed Management Problems in Maize-rice Wetland Production Systems in Semi-arid Zimbabwe. *British Crop Protection Council International Conference*, 1005-1010.
17. Mavudzi, Z., Mashingaidze, A.B., Chivinge, O.A., Ellis, J.J. and Riches, C. 2001. Improving Weed Management in a Cotton Maize System in the Zambezi Valley Zimbabwe. *Brighton Crop Protection Conference*, 169-174.
18. Tanner, D.G. and Girfe, S. 1991. Weed Control Research Conducted on Wheat in Ethiopia. in Wheat Research in Ethiopia: A Historical Perspective. Institute of Agricultural Research and International Maize and Wheat Improvement Center.
19. Futakuchi, K., 2005. Submergence damage in rice and challenges in expanding the crop's adaptability to submerged conditions in West and Central Africa. In: Toriyama K, Heong KL, Hardy B, (eds.). Rice is life: scientific perspectives for the 21st century. Proceedings of the World Rice Research Conference held in Tokyo and Tsukuba, Japan, 4-7 Nov. 2004.
20. Gomez, K.A. and A.A. Gomez, 1984. Statistical Procedures for Agricultural Research. 2nd Edition John Wiley and Sons, Inc. 680p.
21. Azmi M and Mashhor M. 1992. Competition of *Echinochloa crusgalli* in direct seeded rice Proceedings of 3rd international conference on plant protection in the tropics. *Malaysian plant protection society*, 6: 224-229.
22. Dakshayani VP, PS Fathima, Brunda K, Ramachandra C and Harshitha, BV. 2017. Effect of post emergence herbicides on yield and yield attributes of transplanted rice in southern dry zone of Karnataka. *Journal of Pharmacognosy and Phytochemistry* 6(4): 2068-2070.
23. Khalid A., Matloob A., Ahmad N., Rasul F. and Awan I. U. 2012. Post Emergence Chemical Weed Control In Direct Seeded Fine Rice. *The Journal Of Animal & Plant Sciences*, 22(4): 1101-1106. ISSN: 1018-7081
24. Parthipan T., Ravi V., Subramaniam E., Ramesh T. 2013. Integrated Weed Management on growth and yield of transplanted rice and its residual effect on succeeding black gram. *J Agron*. 12(2): 99–103.
25. Hasanuzzaman M., Ali M.H., Alam M.M., Akther M., Alam K.F. 2009. Evaluation of pre-emergence herbicide and hand weeding on the weed control efficiency and performance of transplanted rice. *American-Eurasian J Agron*. 2(3): 138–143.
26. Gonzalez, P.R. and Salas, M.L. 1995. Weed control with metolachlor and atrazine in maize: Effects on yield and nutrition of the crop. Pp. 193-198. *Proceedings 1995 Congress Spanish Weed Science Society*, Huesca, Spain.
27. Singh, P. Singh, P. Singh, R. and Singh, K. 2007. Efficacy of new herbicides in transplanted rice under temperate conditions of Kashmir. *Indian. Journal. Weed Science*; 39:167-171.
28. Singh, Y. Singh, V. Singh, G. Yadav, D. Sinha, R. Johnson, D. and Mortimer, A. 2011. The implications of land preparation, crop establishment method and weed management on rice yield variation in the rice-wheat system in the Indonesian Genetic plains. *Field Crops Research*;121: 64-74.
29. Walia US, Bhullar MS, Nayyar S and Walia SS. 2012, Control of complex weed flora of dry-seeded rice (*Oryza sativa L.*) with pre-emergence herbicides. *Indian J Weed Sci* 40: 157-160.
30. Suresh Reddy K 2000 Weed control in direct seeded low land rice. M.Sc (Ag) Thesis of Acharya N G Ranga Agricultural University, Hyderabad.
31. Sukanta Pal and Hirak Banerjee 2007 Efficacy of penoxsulam against weeds in transplanted kharif rice (*Oryza sativa L.*). *Indian Journal of Weed Science* 39 (3 & 4): 172-175.
32. Sunday, O. and Udensi, E. 2013. Evaluation of Pre-Emergence Herbicides for Weed Control in Cowpea [*Vigna unguiculata* (L.) Walp.] in a Forest -Savanna Transition Zone. *American Journal of Experimental Agriculture*, 3: 767-779.
33. Chattha, M.R., Jamit M. and Mahmood, T.Z. 2007. Yield and yield components of cowpea as affected by various control methods and rain-fed condition of Pakistan. *International Journal of Agricultural Biology*, 9 (1): 120-124.
34. Mahajan, G. Chauhan, B. Johnson, D. 2015. Weed management in aerobic rice in northwestern Indonesia genetic plains. *Journal, Crop Improvement*; 23: 366-382
35. Subramanyam, D. and Deepthi Kiran, Y. 2010. Performance of pre and post emergence herbicides on weed flora and yield of transplanted rice (*Oryza sativa*). *Indian journal. Weed Science*; 42 (3and4): 229- 331.
36. Walia U S, M S Bhullar, S. Nayyar and A.S. Sidhu. 2008. Control of complex weed flora of dry-seeded rice (*Oryza sativa*) with pre and post-emergence herbicides. *Indian. J. Weed Sci.*, 40(3-4):161-164.
37. Bhanu Rekha K, Jaju M S and Reddy M D 2002 Effect of herbicides in transplanted rice. *Indian Journal of Weed Science* 34 (1 & 2): 123-125.
38. Mukhtar, A.M. 2012. Critical period of weed interference in irrigated common bean (*Phaseolus vulgaris L.*) in Dongola area. *Journal of Science and Technology* 12(3):1-6.
39. Mishra JS, Dixit A, Varshney JG, Efficacy of Penoxsulam on weeds and yield of transplanted rice (*Oryza sativa*). *Indian J. Weed Sci*, 2007; 39 (1, 2): 24-27.
40. Raj R, Kumar A, Kumar V, Singh CB, Pandey UC. 2016. herbicides option for controlling weeds in

transplanted rice (*Oryza sativa*) under north eastern plains zone. Indian J. Agron; 60(2):197-203.

41. Sansa S, Syriac EK, Sheela, Raj K. Penoxsulam as post emergence herbicide for weed control in transplanted rice. Indian J. Weed Sci., 2016; 48(2): 215-216.

42. Anwar M. P., Juraimi A. S., Samedani, B.A. Puteh, and A. Man. 2014. Critical Period of Weed Control in Aerobic Rice. *The Scientific World Journal* doi:10.1100/2012/603043

43. Satyanarayan V, Iatchnna A. and varaprasad P.V. 1997. Weed management in direct seeded upland paddy. *Annals of agricultural research*, 18(3): 385-387.

44. Mukherjee PK, Sarkar A and Kumar M S. 2008. Critical Period of Crop-weed Competition in Transplanted and Wet-seeded Kharif Rice (*Oryza sativa L.*) under Terai Conditions. *Indian Journal of Weed Science* 40 (3-4): 147 -152

45. Singh, M. and Singh, R. 2010. Efficacy of herbicides under different methods of direct-seeded rice establishments. Indian Journal. Agricultural. Science; 80: 815-819.

46. Juraimi, A. S.. Mohamad Najib, M. Y M. Begum, A. R. Anuar, M. Azmi, and A. Puteh. 2009. "Critical period of weed competition in direct seeded rice under saturated and flooded conditions," *Pertanika Journal of Tropical Agricultural Science*, vol. 32, no. 2, pp. 305–316.

47. Saha S, Rao KS, Evaluation of bensulfuron-methyl for weed control in wet direct-sown summer rice. *Oryza*, 2010; 47(1): 38-41.

48. Sunil, C. M., Shekara, B. G., Kalyanamurthy, K. N. and Shankara Lingappa, 2010, Growth and yield of aerobic rice as influenced by integrated weed management practices. *Indian J. Weed Sci.*, 42(3 & 4): 180-183.

49. Parameshwari YS, Srinivas A, Influence of weed management practices on nutrient uptake and productivity of rice under different methods of crop establishment. *J. Rice Res*, 2014; 7(1, 2): 77-86.

50. Labrada R. 2003. The need for improved weed management in rice. In: FAO. Sustainable rice production for food security. Proceedings of the 20th Session of the International Rice Commission. Bangkok, Thailand.

51. Rodenburg J and Johnson E. 2009. Weed management in rice-based cropping systems in Africa. *Advances in Agronomy* 139: 149-218. doi: 10.1016/S0065-2113(09)03004-1

52. Cobb A and Reade J. 2010. Herbicides and plant physiology. 2^{ed}. John Wiley and Sons, Oxford. 277 p.

53. Fuentes C. 2010. Manejo de las malezas del arroz en América Latina: Problemas y soluciones. pp. 391-411. In: V. Deviogani., C.P. Martínez and F. Motta. Producción eco-eficiente del arroz en América Latina. CIAT-Centro Internacional de Agricultura Tropical, Cali, Colombia. 447 p.

54. Mekonnen G, Sharma JJ, Negatu LW, Tana T, 2016. Growth and Yield Response of Cowpea (*Vigna unguiculata L. Walp.*) to Integrated Use of Planting Pattern and Herbicide Mixtures in Wollo, Northern Ethiopia. *Advan Crop Sci Tech* 4: 245. doi: 10.4172/2329-8863.1000245

55. [55] Rajkhowa D.J. and Barua , I.C.. 2007. Integrated weed management in upland rice in Assam. *Indian Journal of Weed Science*; 39 (3and4): 176-177.

56. [56] Pasha, L. M., Krishna, L., Bhadru, D. and Naik, R. B. M., 2012, Comparative performance of different weed management practices in system of rice intensification. *Madras Agric. J.*, 99(7-9): 473-475.